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ABSTRACT.    Let  U  be a bounded open subset of the complex plane, and let
H  be a closed subalgebra of H   ((/),  the bounded analytic functions on  U.   If  E
is a subset of dU, let  Lp  be the algebra of all bounded continuous functions on
U which extend continuously to E,  and set  H E = H Pi L„.   This paper relates
distance estimates of the form d(h, H) = d(h, H E),  for all  h £ L „,  to pointwise
bounded density of HF  in H.   There is also a discussion of the linear space
H + Lp,  which turns out often to be a closed algebra.

1.   Introduction.   In  [17] Sarason proved that if A is the open unit disc in

the complex plane, then

d(h, A{A)) = d{h, H~(A)),     all b £ C(r)A).

In   [20], Zalcman extended Sarason's theorem to cover algebras of analytic func-

tions on certain infinitely connected planar domains.   The object of this paper is

to extend the Sarason-Zalcman results to more general open sets   U, and to

consider a wider class of subalgebras of //""(t/).   In order to state our problem

and results more precisely, we now fix some notation, which will be used through-

out the paper.

By   U we will denote a bounded open subset of the complex plane, and by  E

we will denote an (arbitrary) subset of the topological boundary  dU of  U.   We let

L(U) denote the algebra of bounded continuous function on  U.   The subalgebra of

L{U) of bounded analytic functions on  U is denoted by //""(l/).   The subalgebra

of   L(U) of functions which extend continuously to each point of  E is denoted by

Lg((/) = L£.   Finally we let  Wg((7) be the algebta of bounded analytic functions

on   U which extend continuously to each point of   E:

r/~(f7) = H°°{U) n LE.
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In the particular case  E = dil', we have the algebra A(U) of the continuous

functions on  U which are analytic on  U:

A(U) = H^dJ) = H°°(U) nC(Ü).

Here   C(X) denotes the continuous complex-valued functions on X.   If B is any

subspace of  L(U), and  h £ L(U), then the distance from  h to B  is given by

d(h, B) = inf{||Ä-g||:g6ß},

the norm being the supremum norm over   U.

Now let   H be any subalgebra of  H°°(U), and set  Up - H n L£.   Our problem

is the following:   How well can we approximate, in the uniform norm, a given

function in  L(U) by functions in H E?   Since  HE C H, we have d(b, H) < d(h, HE)
fot all h £ L(U).   We will be interested in conditions on  U, E and H which

ensure that

(*) d(h, H) = d(h, HE),    all h £ LE.

We say that HE is pointwise boundedly dense in H if every function in H

can be approximated pointwise on   U by a bounded sequence in  /Vß.   It turns out

that the validity of the distance estimate   (*) is closely related to the pointwise

bounded density of  H„  in  H,  and we will give fairly general conditions under

which these notions are equivalent.   As a special case of our results (cf. Theorem

5.1), we have the following.

1.1 Theorem.  A(U)  is pointwise boundedly dense in //°°(L/)  if and only if

d(h, A(U)) = d(h, H°°(U)),    all h £ C(U).

Those sets   U fot which  A(U) is pointwise boundedly dense in  H°°(U) have

been characterized by the authors   (cf.   [2], [13]) in terms of analytic capacity.

Actually, we will prove something much stronger than the forward implication

of Theorem 1.1.

1.2 Theorem.  Suppose A(U)  is pointwise boundedly dense in //""(ii), and

that  E  is an arbitrary subset of dil.   Then

d(h, //£({/)) = d(h, H°°(U)),    all h £ LB.

Our original motivation for studying problems of this sort was to approximate

uniformly functions in  /7g(t/) by functions in W°°((J) which extend analytically

across   E  (cf.  [14]).   An example of the approximation theorem we have in mind

is the following

1.3 Corollary.  Suppose that A(U)  is pointwise boundedly dense in /Y°°(c/),

and that  E  is an arbitrary subset of dil.   Then every j 6 H°Z(U) can be
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1973] DISTANCE ESTIMATES AND POINTWISE BOUNDED DENSITY 39

approximated uniformly on  U by functions in /7°°(/7) which extend continuously

to an open set containing  E.

Proof.  Let e > 0.   Since / e LR, there is an open subset  V of  dU and

h £ Lv such that  \\h -f\\< e/2.   Then d(h, H°°{U)) < e/2.   By Theorem 1.2, there
is  g £ Hy{U) such that   ||g - h\\ < e/2.   This  g approximates / within e.

The paper begins with the derivation of pointwise bounded density from the

distance estimate in  §2.   The converse assertion is somewhat mote difficult and

can only be proved under certain hypotheses, which are discussed in  §3.   The

proof of the converse is in  §§4 through 6.   A similar distance estimate is con-

sidered in  §7.    "Geometric" conditions which yield the distance estimates are

given in  §8.

The results described so far do not directly generalize the results of Sarason

and Zalcman because we consider algebras on  U rather than dU.   In  §9 we

prove analogous results for the algebra H   (p), the weak-star closure of A(U) in

L°°(/t), where  p denotes harmonic measure on dU for  U.   This includes the

desired generalization.   We also consider  H°°{a) where  a denotes area measure

on   U.

In  §10 we turn to estimating the distance of / £ H to HE in terms of its

distance to  Lg.   In  §11  we consider the subspace  H + L£ of  L(U), which turns

out to be a closed subalgebra of  L{U) under suitable hypotheses.   In  §12 we

specialize to the case of the unit disc, discussing the subspaces  H°°{dd) + L^idff)

of  L°°{dd).  We prove these linear spaces are always closed subalgebras of

L^idß), which are generated by H°°(d0) and the complex conjugates of Blaschke

products which are analytic on   E.   Some open problems are mentioned in  §13.

Some more notation: the open disc with center at z and radius r will be

denoted by  A(z; r).   All norms will be supremum norms, unless othetwise indicated.

The supremum norm over a set  S is denoted by   ||-|L:

||/Hs=supí|/(x)|:xeS¡.

The term "measure" will mean "complex regular Borel measure."   If A is a

set of continuous functions on a compact set X and p is a measure on  X, we

write ft 1 A if ffdp = 0 for all f £ A.   We denote by A1 the set of measures  p
on  X for which p 1 A.

2.   Distance estimate implies pointwise bounded density.   Let %. be the
Stone-Cech compactification of  U and let JHE be that of  U U E.   Then
L(U) « COR) and   LE Si C(JHE).   The inclusion  Lg -» L(U) induces a map
7r: Tí —» mE which is the identity on  U.

The coordinate function Z projects % onto the closure   U of  U.   If À £ E,
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then the projection  77 collapses the fiber Z~  (A) to a point.   If A  is not in the

closure of E, then the projection  77 is a homeomorphism on the fiber Z-  (À).   In

particular, if E is closed, we can describe  77 completely:   it collapses each fiber

over  E to a point, and it maps 5R\Z~  (E) homeomorphically onto !)1Îe\E.

We can regard  77 as a map from measures on 51Î to measures on Mlg, by setting

(np)(S) = p(n~  (S)), whenever S is a Borel subset of Ml£.   Equivalently,

fhdfi = fhd(np), h £ LE(p).   Recall that H£ = H n Lp, whenever H is a closed
subalgebra of H°°(U).   The preceding identity shows that  Tr(HL) C HE.

2.1 Lemma.   Let H be a closed subalgebra of H°°(U) and let E be a subset

of dU.   Then the following are equivalent:

(i)  d(h, HE) = d(h, H) for all h £ LR;
(ii)  for each measure v on %.p  orthogonal to H„  there exists a measure ^t

on M orthogonal to H such that n(p) = v and ||^|| = \v\.

Proof.   Assume (i) is true.   Let v £ tí i satisfy   ||i/|| =1.   Define a linear

functional A on the linear subspace  H + L E C L(U) by

A(/ + h) = fbdv,       f £ H,h £ LE.

This functional is well defined because v annihilates  HE = H C\ Lp.   If

||/+ è|| < 1  then d(h, H)<1, so that d(h, HE) < 1  and   |/ hdv\ < 1.   Thus  A has
norm 1.   Let p be a Hahn-Banach extension of A to  L(U).   Then p £ H  ,

n(p) = v and   ||ix|| = 1.
Conversely, suppose (ii) is true.   Let h £ LE.   By the Hahn-Banach theotem,

there is a measure  v £ /V¿  such that  d(h, HE) = fbdv and   ||i^|| = 1.   Let  p be

the lift of  v given by (ii).   Then  d(h, H£) = /hdfi < d(h, H).   That completes the
proof.

In the same way one can show that if  c > 1,  then  d(h, Hp) < cd(h, H) fot all

h £ Lp if and only if each  v £ i/x  has a lift p £ /Vx with   ||it|| < c||f||.

2.2 Theorem. Let H be a closed subalgebra of H°°(l]) and let E be a sub-

set of dU. Suppose that d(h, HE) = d(h, tí), for all h £ Lp. Then for any f £ H
we can find a sequence \f \ in HR such that ||/ || < ||/|| and f converges to f

uniformly on each subset of U with positive distance from E.

Proof.   Let / £ Ball (H).   We have to show that / is in the closure of Ball (H£)

in the topology of uniform convergence on compact subsets of Jlï\Z-   (E).   By the

Hahn-Banach theorem it suffices to show that if  K is a compact subset of

5H\Z     (E) and  a is a measure on   K such that
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\(gäa\ < 1     for all g £ Ball(f/£)

then   \Sfda\ < 1.
So let a be as above, and let  r\ be a norm-preserving extension to  LE of the

functional g —> f g da on Hg.   Then  ||7/|| < 1  and the measure v = r¡ - a is

orthogonal to HE.
Using Lemma 2.1, take  p £ H1 such that   ||fx|| = ||i/|| and  n{p) = l/.  Since  77

is norm-decreasing we have   \v\{J) < |/i|Gr~  (/)) for any Borel set / C îlîg.   Since

II"II = llfll  we must nave   \v\(J) = |^|(n"_1(/)).   Applying this to / = n{M\K) we
obtain   \p + cr\0K\K) = |/x|0H\k) = |i/|(3He\k) = |ij|(JRb\k).  Since  n is one-to-one
on   K we have   \p + cr|(K) = \n(p + ct)|(K) = |)7|(K).   These inequalities show that

lift + 4 < hll = 1   so that

\ffda\ = \ffd(p + a)
as required.

<1,

3.   Stable algebras.   Now we will begin seeking conditions under which

pointwise bounded density implies the distance estimate.   In this section, we

define a class of subalgebras of H°°{U) to which our techniques apply.

A subalgebra H of H°°{U) is stable if the following conditions are met:

(i)   The unifotm closure of H contains  A(U).

(ii)  If / £ H and zQ £ U, then  [/ - /(*„)]/(* - z„) e H.
Examples of stable subalgebras of H°°(U) include A{U), and H°°{U) itself.

In fact, if H is stable, then so is  H„, so that all the algebtas  H™(U) ate stable.

Another important class of stable algebras are the algebras  H^(o-), where  H°°(o-)

is the weak-star closure of A(U) in  L°°(cr), and  a is the area measure on  U.

For the remainder of this section, we fix a closed stable subalgebra  H of

f/°°(i/).   The maximal ideal space of  H is denoted by  m(H).   By identifying each

X. £ U with the homomotphism "evaluation at   X" ,  we can regard   Ii asa subset

of M(H).   When convenient we will tegard the functions in H  as continuous

functions on M{H).   With this convention, the coordinate function Z projects

M(H) onto a compact subset of the complex plane.   Since l/{z - z.) £ H if and

only if z0 i U,  Z projects %.(H) onto  U.   For each X e U, the set Z-1(a)C

Mili) is called the "fibet" over X, and denoted by ¡Hix(r/).  Using (ii), it is easy

to see that ^(W) consists of only the point \X\ whenever X £ U.

By Arens' theorem, the maximal ideal space of A{U) coincides with  U.   The

inclusion A(U) C-» H induces a projection 1\1.{H) —< )K(A(f/)) = U, which coincides

with the coordinate map Z.   In particular, every function in A(U) is constant on
each fiber %X{H).

Let g be a smooth function with compact support.   If / is a bounded Borel
function, we define
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(TJMO-- ff /M " y |¿»¿y - g(¿V(¿> t (B,/)(i).
8 TT JJ z - L, dz g

Since  R f is the convolution of a bounded function with the locally integrable

function 1 A, R /is continuous.   Consequently  T f extends continuously to any

point at which / is continuous.   In the sense of distributions, we have

(à/dz)T f = gdf/dz.   It follows that  T f is analytic wherever /is,   T f is
analytic off the closed support of g, and / - T f = R f is analytic on the interior

l g gof the level set g~  (1 ) of g.
If f £ H°°(U), we extend / to be zero off  U, and define  T f as above.   Then

T J £ /Y°°(i/).   The key property of closed stable algebras is their invariance

under the operators   T .

3.1   Lemma.   Let H be a closed stable subalgebra of H°°(U), let f £H and
let g  be a smooth function with compact support.   Then T f £ H.   The "Gelfand"

extension of T f from  U to %(H) is obtained by declaring g = g(A) and

RJ = R /(A) on each fiber \(H):

(Tgf){<f>) = g(A)/(</>) + (Rgf)(X),        <f> e \(H).
Proof.   Define

F(0^(f fiz)-f}°%dxdy,       CeU.
77 JJ        z - C       dz

For each z £ U,[f(z) - f(Q]/(z - £) belongs to H.   The  integrals

ff\z - Ç\~   \dg/dz\dxdy converge uniformly in C e U.   Regarding  F as the

integral of an  //-valued function, we see that the integral  F belongs to H.   Now

UO^ff'^äxdy77   JJ   z- C   dzG\U Z~ £ dz

defines a function G £ A(U) satisfying  T f = F - fG.   Consequently   T f £ H.
If <f> eftx{H), then

<f>(Tgf) = <f>(F) - cf>(f)<f>(G)

= (Re /)(A) + 0(/)g(A).
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That completes the proof.

3.2 Lemma.   Let X £ dU, and let g  be a smooth function supported on the

disc A (A; 8) satisfying 0 < g < 1   and \dg/dz\ < 4/8.   Then for f £ H°°(U),

llyl!<8sup¡|/U)-/(¿)|:z>íeAU; 8)\.

Proof.   The norm of   T f is attained over  A(A; 8), because   Tf is analytic

off that disc.   With this in mind the estimate follows easily from the inequality

//¿(AîS)!*-^"1   dxdy<2n8.
The next result is a weak form of the clustet value theorem valid for

H°°{U) [11].

3.3 Theorem.   Let H be a closed stable subalgebra of H°°(U) and let

X  £ dU.   If f £ H,  then
H/H)MH)= lim SUP IMOI-

K U3l-\

Proof.   Clearly by compactness of M(H),

li^sup|/(0|<||/||Ax(w).
U3Í--K

Suppose there is a disc  A(À; <5) such that   \f \ < 1   on   Un A(A; 8).   We must show

||/|L.   (H> <1.   Let g be as in 3.2.   Then   ||T / |L   -H.<16, and the inequality
in the ptoof of 3.2 shows that   |R /(A)| < 8.   By 3.1,   |/| < 24 on Dlïx(/V).   The
same argument shows   |/"| < 24 on !)ÏÏ^(/V) for every positive integer n. Taking

nth  toots and letting  n tend to  °°, we obtain   \f \ < 1   on  ?Rx(i/).

3.4 Corollary.   Let H be a closed stable subalgebra of H°°{U).   If f £ H
extends continuously to X (from  U), then f is constant on ulï^W).

3.5 Theorem.   Let H  be a closed stable subalgebra of //""(l/), and let

A £ dU.   If f belongs to the restriction algebra H\^.   ,„.,  then there is  F £ H

such that F|„   ,H) = f and \\F\\U  < 33||/||Ä  (H).
A A

Proof.   Suppose   ||/||<1.   Choose  FQ£H suchthat  FQL =/.   Then
\F0\ < 1  on  A(A; 8) n U fot some  8 > 0.   Choose g as in Lemma 3.2, with g = 1
in a neighborhood of A, and set  F = T FQ - {R  FQXA) £ H.   Then  F - FQ tends
to zero at A.   By Corollary 3.4,  F coincides with / on M^(H).   Using 3.2 to

estimate   T FQ, and 3-3 to estimate  {R  FQ)(A), we obtain   ||F|| < 33.

3.6 Corollary.   // H  is a closed stable subalgebra of rV°°((7) and X £ dU,
then the restriction algebra  r/L    .„.   is uniformly closed.

4.   A separation lemma.   In this section we prove the vetsion of the separa-
tion theorem for convex sets which we need latet.
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4.1   Lemma.   Let  Sf) be a closed subspace of the real Banach space  X and

let <f> be a continuous linear functional on §).   Let fi be a bounded convex open

subset of X,   let t > 0,  and let fi    be the  (-neighborhood of fi  in X.   Suppose
a £ R satisfies  </>(y) < a for all y £ ^) n fi .   T¿C72 there exists a continuous

linear extension \fi of r/> to X stvc& ¿¿a/ i/r(x) < « /or a// % 6 fi.

Proof.   Replacing   X and   ^) respectively by   X/</>-   (0) and %}/(f>~   (0) we

may assume that   ¿5 is one-dimensional.   First suppose that   j) O fi   ,2 / 0.   Let

xQ be the unique point of   2) with  4>(xQ) = a.   Since  xQ ¡¿fi   ,2,  we can find a

continuous linear functional Ö on  X with  6(xQ) > sup\6(x): x efi   .-S.   Then

ÖL = c</> for some   c £ R„.   Since  fi,/2 H g) / 0, we must have   c > 0.   Then

ifs = 0/c is the required extension.

Now suppose  fi,/, n D = 0-   Then we can find a continuous linear functional

p on  X with  pL = 0 and p < - 1   on fi.   Let <p be any continuous extension of

<j>  to   X.   Then iff = </> + bp is the desired extension,   whenever  b £ R is

sufficiently large.

5. The distance estimate for closed sets. In this section we establish the

following theorem, which provides a converse for 2.2 in the case that  E is closed.

5.1 Theorem. Let H be a closed stable subalgebra of H°°(U), and let E be
a closed subset of dU.   The following are equivalent:

(i)   d(h, HE) = d(h, H), for all h £ Lß.
(ii)   Hp   is pointwise boundedly dense in H.

(iii)   If f £ H,   then there is a sequence   \f   j  ¿72  tip  such that   ||/  || < ||/||,

and f    converges uniformly to f on each subset of U at a positive distance

from E.

Proof.   Theorem 2.2 shows that (i) implies (iii), while (iii) evidently implies

(ii) .   So we must show that (ii) implies (i).   This will follow immediately from

Lemma 5.3.   First we prove the following lemma, which will be used again in the

next section.

5.2 Lemma.   Let H be a closed stable subalgebra of H°°(U),  let E and T
be disjoint compact subsets of dU, and let f £ H_.   Suppose there is a bounded

sequence  \f  \ in Hp  converging pointwise to f on  U.   Then we can find a

bounded sequence \F   \ in HF   _ converging uniformly to f on each subset of U

at positive distance from E.

Proof. Let M = sup ||/ ||. Let S C U be at a positive distance from E, and

let ( > 0. It suffices to find F £ HEtjT satisfying ||F|| < 2M + e and |F - f\ < e
on  S.

Let g be a continuously differentiable function on   C,  with  0 <g < 1,  such
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that  g = 0 on a neighborhood of  E and g = 1   on a neighborhood of S U T.   For

each  n let i/>   = T (/-/), so that

1   rr /U) - / (z) dp
*n(0 - g(0(/(0 - /„(O) + i //-a- %dxdy, C £ U.

Then  if/    £ H       By Holder's inequality,

1 HU   _„(/_/)||    <ip      ||/- / Ik sup-Wn      «V      /„'II«, _ „     a_       »/      '»"3,^2-^
1

3/2

where the   L^-norms are with respect to the atea measure on  U.   Now /   converges

to /in  L , and the last factor is bounded by a constant depending only on the

diameter of  U, so we can choose  N so that   \\ifrN - g(f ~fN)\\ < e. Then F = fN +

if/N has the desired properties.   That completes the proof of the lemma.

5.3   Lemma.   Let E be a compact subset of dU.   Let B and H be closed

stable subalgebras of H°°{U) such that  B C HE(U).   Suppose that for each f £ H
there exists a sequence  \f  \  in B with sup ||/   || < °°   and f   —> f uniformly on

each subset of U at a positive distance from E.   Let h., ••• ,h,   £ Lp,   let

X.,••■, X,   be compact subsets of U,  and let r¡., ■ ■ ■ , r¡, > 0.   Let N be the

set of bounded continuous functions f on  U such that  ||/ - ¿•||w.n[r < 7/■ for some

neighborhood  V. of X.,  1 < i < k.   Let f £ H n N.   Then we can find a sequence

\F   }  in B n N such that F    —> f uniformly on every subset of U at positive
distance from E.

Befóte proceeding to the proof of Lemma 5.3, note that the implication

(ii) => (i) of Theorem 5.1 follows immediately from Lemmas 5.2 and 5.3.   For this,

we use only the special case of Lemma 5.3 in which  B = Hp, k = l,  h. = h,

Xj = U, and   -q^ = d(h, H) + e. However, we will need the more technical statement
in the next section in order to extend the result to nonclosed sets.

Proof of Lemma 5.3.   Recall that %.E is the Stone-Cech compactification of

U U E so that   L„  =  C(mE).   Uniform convergence on each subset of   U at a

positive distance ftom  E is the same as uniform convergence on compact subsets

of }R£\E.   Hence we must show that  F lies in the closure of  B n N in the

topology of uniform convergence on compact subsets of iRF\E.   Let p be a

measure with compact support in JR„\F.  and let

,{Re/a > sup<Re J f dp : f £ B n N>.

Since  N is convex it suffices to show that Re J" F dp < a.

We can find  r¡- < r¡. for each  i such that  F £ N  , where  N    is defined like

N with  r¡   in place of r¡..   Define a continuous real-linear functional 0 on  B by

ç5>(/)= Re /fdp, f £ B.   Using Lemma 4.1 with Q = A/', we extend cf> to  Lß and
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obtain a measure  v on 3H£ such that Re /g dv < a for all g £ N   n Lß, while

Re ffdv = Re //^tt for all / £ B.   Then v - p is orthogonal to B.
Let ë be the algebra obtained from the algebra of bounded Borel functions on

Mp  which are continuous on 1HIB\E,  by identifying any two functions which

coincide on  !JRf\E and coincide   |iv|-almost everywhere on  E.   Then  ë is essen-

tially the direct sum    of   L°°(|i/B|) and the algebra of bounded continuous functions

on  JUgXE.   Note that  B C Lg C ë.   We introduce a topology  r on  ë by declaring

that a net  l/aS in ë converges to / £ te in the  r-topology if and only if ^con-

verges uniformly to / on every compact subset of !)Rp\E and fa converges weak-

star to / in   L°°(|v|).

Let J be the  r-closure of B.   Then 1 is a r-closed subalgebra of ë, and

the functions in J" are all bounded and analytic on   U.   Since  p - v 1 B, and

7-convergence implies weak-star convergence in   L°°(\p - v\), we also have

fl — V 1 J.
Let p be the restriction map p(h) = h\„, h £ ë. Then p(ë) is the algebra

of all bounded continuous functions on U, and p(j) is a closed subalgebra of

H°°(U).
The remainder of the proof will be decomposed into four lemmas.

5.4  Lemma.   // / £ J" vanishes on  U then / = 0.

Proof.   Since / vanishes on )HE\E it will suffice to show / = 0 almost

everywhere   (ä?|f|).   Let the net  [/J in   B  converge to  / in the  r-topology, and let

zQ £ U.   Since  B is stable, the function  [fa(z) - fa(zQ)]/(z - zQ) is in  B.   Noting

that  fa(zQ) —' f(z0) = 0,  it is easily verified that   [fa(z) - fa(zQ)]/(z - zQ) con-

verges to  f(z)/(z -zQ) in the  r-topology.   Hence

f(z)S d(v - p) =0,        z    £ U.

Since  / = 0 almost everywhere  (a'lji |), we have  fdv 1 ß 3 A(U) and fdv 1

l/(z - z0) for all zQ £ U.   Now the linear span of A(U) and the functions

l/(z - zQ), zQ £ U, is dense in  C(dU) (cf. [2]).   Since fdv is carried by  E C dU,
we must have fdv = 0, so / = 0 almost everywhere  (¿/|jv|), as required.

5.5   Lemma.   The restriction map p maps p~  (H) D J   isometrically onto H.

Proof.   First, p(3") 2 W.   To see this, let / £ H and let  {/  ! be a bounded
sequence in   B  converging to / uniformly on subsets of   U at a positive distance

from  E.   If \fa\ is a subnet of {/ \ which converges in the weak-star topology of

L°°(|^|), then fa converges in the  r-topology to a function in  J whose restriction

to   U coincides with  /.
Now  p maps  p~  (H) O j one-to-one onto H.   By the closed graph theorem,
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p is bicontinuous.   Moreover,  p is multiplicative, and hence is an isomorphism

of the uniform algebras  p~   (H) n J and  H.   Since any isomorphism of uniform

algebras is an isometry, the lemma is established.

5.6 Lemma.   Suppose h £J satisfies p(h) = F.   Then

II¿-MIl~(mv nE)<<-'    i<'<*-
z

Proof.   Let  cp be a complex-valued homomotphism of  L0"^!^) lying in the

fiber over X £ E, i.e., satisfying  </j(Z) = A.   The restriction of <p to J" n p~  {H)

determines a homomorphism <p of H satisfying  c/>(Z) = A and <f>(f) = <p{p{f)),

f £CS n p~   {H).   If A £ V. then the cluster values of F - h .{X) at A are bounded
by   ||F-£.||„, so that by Theotem 3.3 we have   |<p(F - h .(X))\ < \\F - h .|| v.,
whence |<£(è) - ¿¿(A)| < \\F - A.||.,..   Since  <£>{g) = g(X) fot all g e Lg, we have
\<p{b - h.)\ < || F - ¿||,,..   Since this is true for all <f> in fibers over E n V., the

norm of h - h. in  L^lflyp) is bounded by   ||F - h ]\ v   < rj., as required.

5.7 Lemma.   Let h £J satisfy p(h) = F.   Then h  is in the r-closure of

N' n LE.

Proof.   This is a straightfotwatd consequence of the estimates obtained in

Lemma 5.6.   It can be proved as follows.   Choose 8 > 0 so that 28 < r¡. -

\\F - ¿(-||y.nu> 1 < t' < k.   Let  Wj, • • • , W   be an open cover of mE such that the
oscillation of each h. on  W. is less than 8.   We can assume that either n(W.) C

Vi or  n{W.) n Xi = 0   for each pair  i, j (here  n is the projection of %E onto  U).

Fix a point x   £ W.,  1 < / < r, and let  T.. be the open disc  \\£ - h.(x.)\ < r/'.j Ç C.
Fot each  /' set

T.= C\\T..:i such that n(W.) C V.\.
7       '   '       'J 11

Then   T. is a convex open set in  C, and  h(x) £ T. for all x e W .\E and  \u\-

almost all  x e W . n F.   Consequently there is a bounded sequence   \yj.    [°° ,   in

Lg   such that yj.     converges to  h uniformly on compact subsets of  W \E and

|v|-almost everywhere on  F, and such that  ifr.    (x) £ T. for all x £ W \E and

|iv|-almost all x £Wn E.   Let  \ef>l, • • • , <£ri be a continuous partition of unity

subordinate to   \W., • ■ ■ , W \, and set  if/    = 2r   ,^.t/>.  .   Then it is easily verified1 r ' n 1 — 1    J    Jn J
that if/    £ LE n N, and if/    converges to h in the  r-topology.

To conclude the proof of Lemma 5.3, take  h £J with p(h) = F.   Since  h
belongs to the  r-closure of  N' n L£, and since Re Jgdp < a for all g £ N' n LR,

we have  Re fhdv<a.   Since  f h dv = f b dp = f F dp, we have Re j F dp < a,
and the proof is complete.

6.   The distance estimate for arbitrary sets.   In order to extend the results
of the pteceding section to nonclosed sets   E, we must make a furthet assumption
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on  H.   We say that  H is pointwise boundedly closed if every pointwise limit on

U of a bounded sequence in H also belongs to H.   By the Krein-Schmulian

theorem, this is equivalent to asserting that H be weak-star closed in  L°°(a),

where  a is the area measure on   U.   Our principal results in this section are the

following.

6.1 Theorem.   Let H  be a stable subalgebra of H°°(U) which is pointwise

boundedly closed.    Let  E  be a subset of dU which is an F  -set.   Then the

following are equivalent:

(i)  d(h, HE) = d(h, H), for all h £ Lp.
(ii)   H p   is pointwise boundedly dense in   H.

(iii)   There is a sequence  \E   !°° ,   of closed subsets of dU such that
1 n n~l

E = UF ,  and HP     is pointwise boundedly dense in H.
n hn

6.2 Theorem.   Let H be a stable subalgebra of H°°(U) which is pointwise

boundedly closed.   Let Q  be a subset of dU such that Q   is an F  -set, and H„

is pointwise boundedly dense in H.   If E  is an arbitrary subset of Q,  then

d(h, HE) = d(h, H),    all h £ LE.

First we prove a lemma.

6.3 Lemma.      Let H  be a stable subalgebra of H°°(U) which is pointwise

boundedly closed, and let E  be a closed subset of dU such that  H p   is pointwise

boundedly dense in H.   Suppose  T  is a closed subset of dU,  h., • • • , h,  £ Lp _,

X., ■ • ■ , X,   are compact subsets of U,  and r¡. , ■ • • , rj,   are positive numbers.

Let f £ H_ and suppose   ||/ — h .|| „     ,. < r¡. for some neighborhood V.  of X.,

z = 1, • • • , k. Let f > 0 and let S C U be at a positive distance from E. Then

we can find g £ H _, with \g — f\ < e on S and \\g - h.\\v> „ < 77. for some

neighborhood  V .  of X .,   i = 1, • • • , k.

Proof.   First suppose  En T = 0.   Then the conclusion follows from Lemma

5.3, with  HT in place of H and HT¡jE in place of B.   Lemma 5.2 guarantees

that the hypotheses of Lemma 5.3 are fulfilled.
In the general case we put  E   = [z e E: d(z, T) > l/n\.   For  1' = 1, ■ • ■ , k

choose a compact neighborhood  M. of X. contained in  V..   We define by induc-

tion on n   for n = 1, 2, • • • , functions g    £ H„     _ and h    £ C(U), and compact

neighborhoods  X    of £   U T in  ii,  such that

(A) |gj - /| < e/2 a"nd   \gn - gn_l \<(2~n on S.
(B) ||g    -^¿lliy   .ny < 7/. for some neighborhood  W   . of M, i = 1, — , k,
(C) \\gn - bk\\w*   nU <l/k   fot some neighborhood  W   ,   of  X,,  k < n.
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For the induction step, the case already treated yields gn satisfying evety-

thing except (C) for  k = n; for that we let h    be any continuous extension of

g  L,   ,,_ to  U and then choose X    to satisfy (C).
72 ' n n U / n

Some subsequence of !g  ! converges pointwise on   U to g £ H, which

satisfies   |g - f\ < f on S,   \\g - h.\\M ,n(; < r¡v  \\g - ¿¿||x*n[J < 1A for each  k.
The last condition implies  g e HEuT, and the proof is complete.

Now to prove Theorem 6.1, it suffices to show that (iii) implies (i). Hence

both Theorems 6.1 and 6.2 will be proved, once we establish the following more

general result.

6.4  Lemma.   Let H be a stable subalgebra of H°°{U) which is pointwise

boundedly closed.   Let \E  \ be a sequence of compact subsets of dU, such that

each  HP     is pointwise boundedly dense in H.   Let E C (JE .    Let T be a com-
cn n

pact subset of dU, let f £ f/_ and h £ LR T satisfy \\f - h\\ < 1. Let S be a
subset of U whose closure does not meet E and let e > 0. Then we can find

g £ HE   T with  \\g - ¿|| < 1,  and \g - f\ < e on S.

Proof.   We may assume  E n T = 0.   First suppose  F = \JE  .   Let  F   =

U"_,F..   We construct by induction on  tz functions  g    e/íc     _,  h    £ C(U), and
i —•it ti i <rí\j i        n.

compact neighborhoods   X    of  E    U T such that

(A) |gj -/| <e/2  and   \g„"gn_1\ < e 2~n  on  S.

(B) ||gn-Ä||<l.
(C) ||g   - ¿J|u/     ny<lA for some neighborhood  W      of Xk,   k < n.
For the induction step Lemma 6.3 yields g    satisfying everything except

(C) fot  k = n,  and that case is dealt with as in the proof of Lemma 6.3.

Some subsequence of  !g   ! converges pointwise on   U to g £ H, and g

satisfies   |g - f\ < e on  S,   \\g - h\\ < 1,  and   ||g - h,\\x      ¡J < 2/k lot each  k.
The last fact implies  g £ HE   _,  and the ptoof is complete when  E = iJE .

In the genetal case, choose   rj > 0 with  2r¡ < 1 - ||/ - h\\, and choose a

neighborhood V of  E not meeting  Tu J so that there exists  h    eL„   . with

\\h   - ¿|| < T).   The special case above applies to  F = V O (IjE   ), so we can find

g e LFu T with  \g-f\< eon S and  ||g - h'\\ < \\f - b\\ + r,.   Then  ||g - ¿|| <
||/- ¿|| + 2t) < 1, which proves the genetal case.

7.   The algebras HE.   In this section, we indicate how the techniques we

have developed apply to another class of subalgebras of H.   If E is a subset

of (3(7, we denote by HE the algebra of uniform limits of those functions in HF

which extend to be continuous in a neighborhood of E.   If E is a relatively open

subset of dU, then HE coincides with HE.   If H is stable, then  H     is also
stable.   The following theorem is analogous to Theotem 5.1.

7.1   Theorem.   Let H  be a closed stable subalgebra of H°°(U), and let  E
be a closed subset of dU.   The following are equivalent:
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(i)   d(h, tíB) = d(h, H), ail h £ Lg.
(ii)   n p  is pointwise boundedly dense in H.

(iii)   rL    = HE,  and //     is pointwise boundedly dense in H.

Proof.   If (i) is true, then d(h, HE) = 0 for ail h £ HE, so that HR = Hg.
An application of Theorem 5.1 then shows that (i) and (iii) are equivalent, and

that they imply (ii).   It suffices then to show that (ii) implies (i).   In order to do

this, we note the following extension of Lemma 5.2.

7.2 Lemma.   Let H be a closed stable subalgebra of //°°(l0, and let E  be
a closed subset of dU.   Let  T be a closed subset of U,  and let f £ H extend

continuously to a neighborhood of T.   Suppose there is a sequence \f \  in Hp

converging pointwise to f on U,  such that  ||/ || < M.   Then there is a sequence

\F  I  in H such that  ||F  || < 2/M,  F    extends continuously to a neighborhood of

E U T,  and F    converges to f uniformly on T and on each subset of U at a

positive distance from E.

Proof.  We proceed exactly as in Lemma 5.2, except that instead of setting

g = 0 on a neighborhood of E (now  E n T need not be empty), we take g = 0

on a neighborhood of E\V, where  V is a neighborhood of  T on which / is

continuous.   Then  i/f    will still be continuous on a neighborhood of  E, and the

rest of the argument is as before.

Proof of 7.1 (concluded).   That (ii) implies (i) now follows from Lemma 5.3,

with  B =7fE, k = l, ¿j = b, Xj = U, and  r/, = d(h, H) + e.
The theorems in  §6 can also be extended to cover the algebras  HE.   The

analogue of Lemma 6.4 is the following.

7.3 Theorem.   Let H  be a stable subalgebra of //°°((/) which is pointwise

boundedly closed.   Let {E   } be a sequence of compact subsets of dU,  such that

each H P     is pointwise boundedly dense in H.  Let  E C (JE .   Let  T be a com-
cn n

pact subset of dU,  and let f £ H extend continuously to a neighborhood of T.

Let  h £ Lp   _ satisfy   ||/ - i|| < 1,   let S  be a subset of U whose closure does

not meet E,  and let e > 0.   Then we can find g £ H„   _ with  \\g - b\\ < 1  a72a"

\g - f\ < f on S.

Proof.   As before, we can assume  E = \JE  .   Using Lemmas 7.2 and 5.3 we

construct inductively a compact neighborhood  M. of T, compact neighborhoods

M    of F   =E,U..-uE   u T and functions /    £ /iV   ... such that  ||/   -b\\<l,n n \ n ' n ¡nnd U «' n        ••      '
|/j - /| < e/2  on S, and   |/„+1 - /J < e/2n+1 on 5 u*!,.   Then fn -* g say,
pointwise on   U and uniformly on each  M  ,  so  g £ H„  and   ||g - h\\ < 1.

We also state explicitly the analogues of Theorems 6.1 and 6.2, since we

will need the results later.
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7.4 Theorem.   Let H be a stable subalgebra of H°°(U) which is pointwise

boundedly closed.   Let E  be a a-compact subset of dU.   Then the following are

equivalent:
(i)   d(h, HE) = d(h, H), all h £ LR.

(ii)   Hp = Hp,  and Hp   is pointwise boundedly dense in H.

(iii)   Hp   is pointwise boundedly dense in  H.

(iv)   There is a sequence  \E   \°° ,   of closed subsets of dU such thatv ' n 77 = 1      ' '

E = US  ,   and H „     is pointwise boundedly dense in H.

7.5 Theorem.   Let H be a stable subalgebra of H°°(U) which is pointwise

boundedly closed.   Let Q  be a a-compact subset of dU such that HQ   is point-

wise boundedly dense in H.   If E  is any subset of Q,  then HF = HF,  and

d(h, HE) = d(h, H), all h £ LB.

To prove 7.4 notice that (i) implies   Hß = HE,  so that (ii) holds by 6.1.
Clearly (ii) implies (iii) and (iii) implies (iv).   But 7.3 shows that (iv) implies

(i).   To prove 7.5, observe that  d(h, H£) = d(h, H) fot all  h £ Lg,  by 7.3,  and
that means   H p = H p.

8.   Capacity conditions and distance estimates.   In this section we treat

specifically the case  H = //""(íV), and we seek geometric conditions on   U which

imply the distance estimates.   In light of the equivalences of distance estimates

and bounded pointwise density, these conditions will be expressed using

analytic capacity.

Let Q be a subset of the complex plane  C.   The analytic capacity y(Q)

is defined to be  sup||/ (°°)|: / is analytic off a compact subset of  Q,   \f\ < 1,

/(oo) = 0\.   The continuous analytic capacity  a(Q) is defined to be supi|/'(°o)|:

/ £ C(S  ), f is analytic off a compact subset of  Q,   \f\ < 1,  /(<») = 0[.   Evidently
y and   a ate monotone set functions satisfying  a(Q) < y(Q), and   a(Q) coincides

with  y(Q) whenever Q is open.   In general,  y(Q) < diameter Q.   If Q is compact

and connected,  y(Q) is comparable to diameter:

y(Q) < diameter Q < 4y(Q),        Q  a continuum.

For proofs of these facts and a discussion of other elementary properties

of analytic capacity, see [10]. The approximation result which enables us to

obtain distance estimates is the following.

8.1   Lemma.    Let J  be a compact subset of dU for which there exists

c > 0,  r > 1   and 8Q>0 satisfying y(A(z; 8)\u) < ca(A(z; r8)\u) for all z £ j
and 0 < 8 < 8Q.   Suppose  T is a compact subset of dU,  and f £ //""(l/) extends

continuously to a neighborhood of T.   Then there is a sequence {/  j  z'72 H°°(U)

such that each f    extends continuously to a neighborhood of J U T,  f    converges
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to f uniformly on  T and on each subset of U at a positive distance from ],  and

11/  Il 17 £ ^Il/Il//' where the constant  C depends only on c and r.   If moreover S

is some prescribed compact subset of zero length lying on a  C  -curve, then we

can in addition take each f    to be analytic in a neighborhood of S.

We omit the proof, since it is a standatd application of Vitushkin's

techniques.   For more general theorems of this sort, see   [3], ot   [13].

8.2 Theorem.   Let E be a subset of dU.   Let S be a countable union of

compact sets of zero length lying on C    curves.   Suppose that for each z £ E\S,

there exist constants  c > 0,  r > 1   and 50 > 0 such that y(A(z; 8)\U) <

ca(A(z; r8)\u), 0 < 8 < <50.   Then

d(h, H°°(U)) = dih, Wgííi)),    all h £ LE.

Proof.   Write  S = \JS  , whete  S    is a compact set of zeto length, lying on

a   C    curve.   Let

Qn = \z £ dU : y(\(z; 8)\u) < na{A(z; n8)\u),  0<8<l/n\.

Then  Q    is compact.   By Lemma 8.1, HV!     c (U) is pointwise boundedly dense

in  H°°{U).   Applying Theorems 7.4 and 7.5, with  E   = Q   U S , we obtain the
desited distance estimate.

Theorem 8.2 shows in particulat that evety / £ H^{U) can be apptoximated

unifotmly on   U by functions in  H°°(l/) which extend continuously to a neighbot-

hood of  E.   Under the appropriate estimates on analytic capacity, these functions

can in turn be approximated uniformly by functions which extend to be analytic

in a neighborhood of  E.   In particulat, if we apply Theorems 4.11 and 8.4 of   [3],

we obtain the following result.

8.3 Theorem.   Let E  be a subset of dU.   Let S be a countable union of

compact sets of zero length lying on  C     curves.   Suppose that for each z £ E\S,

there exist constants  c > 0,   r > 1   and 8Q > 0 such that y(A(z; 8)\U) <

cy(A(z; r8)\Ü), 0<8<8Q.   Then

d(h, H°°(U)) = d(h, tf~({/)),    all h £ LE.

Moreover, every f £ H°Z{U) can be approximated uniformly on  U  by functions

which extend to be analytic on  E.

The capacity estimate of Theorem 8.3 obtains at each point of dU which

lies on the boundary of a component of  C\ii.   The theorem applies, for instance,

in the case that   U = A is the open unit disc.

9.   The algebras H°°(cr) and H°°(^).   The Satason-Zalcman results mentioned

in  the  inttoduction give distance  estimates  fot  functions defined only on   dU.
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On the other hand, we have been dealing with functions defined on   U.   In order to

obtain a genuine  extension of their theorems, we must reinterpret our work in

terms of boundary functions.   We do so in this section by introducing the stable

algebras H°°(o-) and H°°(p), which are also of some interest in their own right.

Let o be the area measure dxdy on  U,  and let H°°(o) denote the weak-star

closure of A(U) in  L°°(o).   The main theorem in  [4] asserts the following.

9.1 Lemma.   If f £ H°°(a), there is a sequence f   £ A(U) such that  \\f \\ <

||/||, and f    converges uniformly to f on each compact subset of U.

In particular, the functions in  /i°°(a) are analytic on   U,   and  H^M is a

stable subalgebra of H°°(U).   The algebras  H°°(o-) and  //""(l/) will coincide when

and only when  A(U) is pointwise boundedly dense in  H°°(U).   As a corollary of

our previous efforts, we note the following theorem, which  includes Theorem 1.2

and its Corollary 1.3-

9.2 Theorem.   // E  is any subset of dU,   then

d(h, H°°(o)) = d(h, H^(a)),    all h £ L£.

Every function in Hp(o)  can be approximated uniformly by functions in H°a(a)

which extend continuously to an open subset of dU containing  E.

Proof.   The distance estimate follows from Theorem 6.2, with 0 = dU.   The

second assertion follows from the distance estimate (cf. the proof of Corollary

1.3).
If K is a compact subset of C,  then  R(K) is the algebra of continuous

functions on  K which can be approximated uniformly on   K by rational functions

with poles off  K.   Consequently  R(U) is a subalgebra of A(u).   If R(U) coin-

cides with  A(U),  then Vitushkin's constructive techniques can be used to show

(cf.   [3])  that every function  / £ /7°°(i7) which extends to be continuous on a

subset  E of dU can be approximated uniformly by functions in  II°a(U) which are

analytic on  E.    In fact, the  approximators can be chosen to belong to any stable

subalgebra of  //   (U) to which  / belongs.   Consequently we obtain the following

corollary to 9-2.

9.3 Corollary.   Suppose that A(U) = R(U).   If E  is any subset of dU,  and
f £ H   (er) extends continuously to each point of E,   then f can be approximated

uniformly on  U by functions which are analytic on E.

Let pz be the harmonic measure on dU fot the point z £ U.   Let p be any

positive measure on  dU such that p(E) = 0 if and only if p (E) = 0 for all

z £ U;   fot instance, we can choose one point z. from each component of  U,

and set p = 2 p./2j.   If / £ L°°(p), we define   f(z) = ffdpz, z £ (/.   Then f
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is evidently a bounded harmonic function on  U,  satisfying  ||/ || „ < ||/||   .

9.4 Lemma.    The map f —> f   is a linear isometric isomorphism of L°°{p)

and a weak-star closed subspace of' L°°{a).   The map is bicontinuous when   L°°(/t)

and L°°{o~) are given their weak-star topologies.

Proof.   The isometry part is an elementary result in potential theory (cf.

[2, Lemma 2.2]).   It follows easily that a bounded net [/ \ in L°°(p) converges

weak-star in L°°(p) if and only if \fji converges weak-star in  L°°(a).   These

facts, together with the Krein-Schmulian theorem, yield the remaining conclusions

of the lemma.

9.5 Lemma.   Suppose A. £ dU and f £ L°°(p).   Then

ess lim sup|/(A)| < lim sup|/U)|.
dU3\^\Q U3z~XQ

If An  is a regular boundary point of  U,   or if f   is analytic on  U,   then equality

holds.

Proof.    The first inequality follows easily  by applying Lemma 9.4 to

U n A(A- 8) for small 8 >0.   If A.  is a regular boundary point, then  p    clustets

at the point mass at A. as z —> A„,  so we easily get equality here.   If /   is

analytic, then we can apply Iversen's theorem to get equality (cf.  [9]).

Now let H^ip) be the weak-star closure of A{U) in L°°(/t).   In view of the

preceding lemmas, we obtain the following.

9.6 Lemma.    The map f —> /    is an isometric algebra isomorphism of H°°{p)

onto E°°(ct).   It is weak-star bicontinuous.   If f £ H°°{p) and X £ dU,   then   f is

continuous at X if and only if f  is continuous at A.

Notice that when  A{U) is pointwise boundedly dense in  H°°{U),  the above

lemma implies that the algebras  H°°{p), W°°(a) and  E°°(l/)  all coincide.   This

occurs, for example, in the cases consideted by Zalcman  [20].

Suppose that  E is a subset of dU.   Let L^(p) be the subspace of functions

in  L°°(p) which are (essentially) continuous at every point of E.   Then / £ L°^(p)

if and only if / is constant on the "fiber" over each point of E of the maximal

ideal space of L°°(/t).   Any function in L°^{p) can be approximated uniformly by

functions in  L °£(p) which are continuous on an open set containing E.

As before,   we define Hg(/x) = L°^{p) n H°°(p).   In view of Lemma 9.6, we

see that / £ H^ip) if and only ii f £ f/g(ff).   Our main result is the following.

9.7 Theorem.   Let p be harmonic measure on dU for U,   and let E°°(fi) be

the weak-star closure of A{U) in  L°°{p).   If £  is any subset of dU,   then
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d(h, /V°°(/i)) = d(h, tf^(p)),     all h£ L^(p).

Proof. It suffices to prove the theorem for functions h £ LE(p) which are

continuous on an open subset of C containing E. Let / £ H (p), and let e > 0.

For each A £ E,  lim sup \f(w) - h(\)\ < ||/- h\\.   By Lemma 9.5,
uLJ zj W —« A

lim sup l/U)-MA) | < ||/-Ä||.
U3z^X

It follows that  \f(z) - h(z)\ < \\f - h\\ + e on some relatively open subset V of U

containing E.   Construct an open subset W of  U such that W U V D U,   U n dW C

V, and U O dW consists of a family of smooth curves.   Define the continuous

function   g on W to be the harmonic extension of h\aw to W.   Since every point

of  U n dW is regular,   g assumes the continuous boundary values ¿ on  ii n dW.

Hence we can extend g continuously to  U by declaring g = h on  U\W.     Then

g £ LE(U), and  |g - f\ < \\f - h\\ u on  u\w.   In  W, g - /   is then the harmonic
extension of the function equal to g - f  on  U C\ dW.   It follows that  |g - / |   <

||/- i|| + £ also on W,  and thus   ||g - f|| < ||/- h\\ + e.   Hence

dig, rf»)<||/+¿|| + e.

By Theorem 9.2 there is a function  F £ H^(p) such that  ||g - E|| < ||/- h\\ + 2e.

It follows easily that  \h - F\ < \\f - h\\ + It, so that d(h, HE(p)) < \\f - h\\ + 2(.
Letting e —» 0,  and then taking the infimum over / £ Hoa(p), we obtain

d(h, H^(p)) < d(h, H°°(p)).   The reverse inequality is trivial.

Of course the above proof is much easier when  E is a subset of the regular

points of dU.   For then h £ L^(p) implies h  £ L£,  so that, by 9.2, d(h, H^(a)) =
d(h, Hoc(ar)).   Then since f *-*[  is an isometry,  d(h, H°°(a)) = d(h, H°°(p)), and

d®,_ H~(ff)) = d(h. H^(p)).
Again we obtain an approximation result as a corollary.

9.8 Corollary.   // E is an arbitrary subset of dU,  and f £ H°^(p), then f

can be approximated uniformly by functions in //""(/z) which extend continuously

to a neighborhood of E.   If furthermore  A(U) = R(U), then every f £ H^(u) can

be approximated uniformly by functions in Haa(p) which are analytic on E.

Theorem 9-7 includes the Sarason-Zalcman theorems.   Indeed, if we take

E = dU, we obtain d(h, A(U)) = d(h, H°°(p)), all h £ C(dU).   This result has been
extended to a uniform algebraic setting in  [15].

10.   A related distance estimate.   In this section, we will treat the problem

of estimating the distance from / £ H to HE.   This is related to the preceding

work by the following lemma,

10.1 Lemma.   Let H be a closed subalgebra of H°°(U), and let E be a
subset of dU.    Then the following assertions are equivalent:
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(i)   There is a constant c > 0 such that d{h, HE) < cd(h, H), ail h £ L£.
(ii)   There is a constant c' > 0 such that d{f, HE) < c'd(f, LE), ail f £ H.

(iii)  H + LE  is a closed subspace of L{U).
Moreover, if c and c   are the best possible constants in (i) and (ii)

respectively, then  c — 1 < C    < c + 1.

Proof.   The equivalence of (i) and (ii) is a simple consequence of the tri-

angle inequality.   Suppose for instance that (i) is true.   Let / £ H,  and let e > 0.

Choose h £ LE  such that  ||/ - ¿|| < d{f, L R) + e.   Then d{h, H£) < cd(h, H) <
cd(f, LE) + ce, so there is g £ f/£  satisfying  ||¿ - g|| < cd{f, L £) + ce.   Hence

d(f, HE) < ||/ - g|| < ||/ - ¿|| + ||¿ - g|| < (c + l)[d(f, LE)+ e].   Letting e - 0,
we obtain the estimate (ii), with c   = c + 1.   The proof that (ii) implies (i)   is

similar.

Since  H n LE = HE, the natural mapping LE —» L(U) —> L{U)/H induces a
mapping t; Le/He —> L{U)/H.   Then there is a constant c such that d(h, H£) <

cd(h, H), all h £ LE,  ii and only if the range LE/H of r is closed.   Since
H + LE  is the pre-image of E£//Y under the  quotient map  L(U) —► L(U)/H,
LE/H is closed if and only if H + L„  is closed.   That proves that (i) and (iii)

are equivalent.

10.2 Corollary.   // d(h, H£) = d{h, H) for all h £ L£,   r¿er2 d{f, H™) <
2d{f, LE), all f eft

In the next two theorems we give instances in which this estimate can be

improved upon.

10.3 Theorem.    Let H be a closed subalgebra of H°°{U).   Suppose that  E  is

a closed subset of dU which is a peak interpolation set for H£.    Then d(h, Hß) =

d(h, H), all h  £ LE,   and  d{f, H£) = d(f, L£), all f e H.

Proof.   Let /eft and .h £ L£  satisfy   ||/- ¿|| < 1.   Let e > 0.   It suffices
to find g e/iE with  ||/ - g|| < 1 + e and   ||¿ - g|| < 1 + e.

Since  E is an interpolation set for HE, we can find h  £ HE  such that

h = h on E.   Replacing / and   ¿ by / - ¿   and h - h , we may assume ¿ = 0

on E.
Choose an open neighborhood  V of E   in  U such that  |¿| < e/2,  and hence

l/l < 1 + e/2, on  V n U.   Since E is a peak set for HE, we can find  F e HE
with F = 1  on E,   ||F|| < 1,   ||1 - F|| < 1, and  IF! < <r/||/||  on  u\v.   Set
g = (l - F)/ £ HE.   Then g - / = Ff is bounded by  1 + e/2 on  V, and it is
bounded by e on  u\v,  so that  ||g - /|| < 1 + e/2.   Since  |g| < |l - F| |/| < 1 + e/2
on   V, g - h is bounded by  |g| + |A| < 1 + e on  V.   Also,  g-h = f-h-Ff is
bounded by  \f - h\ + \Ff\ < 1 + e on  U\V,  so that  ||g - ¿|| < 1 + e.   That proves
the theorem.
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10.4 Theorem.   Let H  be a closed subalgebra of H°°{U).   Let E be a closed
subset of dU such that d{h, H£) = d(h, H) for all h £ L£,  and such that the
restriction E£|£  is dense in C(E).   If f £ H but f i E£,  then d(f, /7£) <
2d{f, LE).

Proof.   We will use the notation introduced in  §2.   Suppose f £ H does not

belong to Hp.   By the Hahn-Banach theotem, there is a measure  r¡ on M such

that   ||7/11 = 1,   r) 1 HE, and

d{f,HE)= jfdr,/0.

Then  77(7/) e (//„)  .   By Lemma 2.1, there is a measure p on M such that (lift,

n(p) = 77(77), anc*   IMI = Ik^H-   Then  77 - p 1 L£, so that

rf(/, f/£) = J/a-ÍT? - p) < \\r, - p\\d(f, LE).

So it suffices to show that   \\r¡ - p\\ < 2.

Now ||t7(jli)|| < 1 ,  and  7r(p) 1 f/£.   By out hypothesis,   E can catry no measures

orthogonal to H£, so that  n{p) cannot be  supported on  E.   Hence

l>\(nß)(E)\ = \(i\{tT'HE)).

Since  77 is one-to-one off it~   (E), p and  77 coincide on !M\77-  (E).  Hence

llr» - ill = Ir» - >?|(ff" !(fi)) < \p\(*~ HE)) + \r¡\(n'HE)) < 1 + y| < 2, as tequired.
The remainder of this section is devoted to showing that the constant 2  in

Theotems 10.2 and 10.4 cannot be improved upon.   We will be working on the
unit disc  A.

In  [1], Adamyan, Arov and Krein give an example of a function  v £ C((9A)

which has no nearest element in A(A).   Theit example can be used to show that

Theorems 10.2 and 10.4 are sharp.   The example goes as follows (we thank

D. Sarason for pointing out the existence of the example and the proof which
follows).

Let  u be a continuous function on  r3A such that the hatmonic conjugate     u

oí  u is not continuous.   Then the function

h(z) = z e{*u = (z e~u)eu+i*u

belongs to H°°(dd) + C(t9A), because the latter space is an algebra  [17].   Hence

we can write  h = j + v, where / £ H°°(d0) and v £ C{dA).   Then d(v, A (A)) =
d(v, E°°)< ||¿|| =1.

.*
Suppose there is  g £ A such that  ||i> - g|| < 1.   Let F = ze~u~l " e H1.

Then

J|F|d*Ö= f hFd6= fvFdd= f(v-g)Fd9,
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so that   |F| = (v - g)F a.e.   Substituting the expression for  F,  we obtain

eu+1 u = eu(v - g) z £ H°° n C = A, which contradicts the fact that     u is discon-

tinuous.   We conclude that d(v, A (A)) = 1, and that there is no nearest point to

v in A(A). .*
Now suppose that  u is chosen so that the cluster set of e1      at each point

of  (9A is the whole unit circle.   We claim that d(f, A(A)) = 2,  and that there is no

nearest point to / in A(A).   Indeed, since d(f, C) < ||¿|| < 1, we have

d(f, A (A)) < 2.   If g £ A (A) is arbitrary, then   ||g - v\\ > 1.   Since g - v is con-
tinuous, while the cluster set of h at every point of dA includes the whole unit

circle, we have   \\h + g - v\\ = ||/ + g|| > 2.   Hence  d(f, A(A)) = 2, and from 10.2
we have  d(f, C) = 1.

10.5 Theorem.   There exists f £ H°°(A) such that d(f, C(A)) = 1,  and
d(f, A (A)) = 2.

That shows that 10.2 is sharp.   To show that 10.4 is sharp, we modify the

above construction.

10.6 Theorem.   // E  is a subset of <3A of positive inner length, and if

t > 0,  then there is f £ f/°°(A) such that d(f, C(K)) < 1,  while d(f, /7£(A)) > 2-e.

Proof.   By shrinking E, we can assume that E is a closed proper subset of

dA which has positive length.   Let u be a positive continuous function on <9A

such that e1  " has cluster set the unit circle at each point of E and such that

L\Ee-"de<</2>   Le~Udd=i-
— .*

As above, set h(z) = zel  u = / + v, where / £ /Y°° and  v £ C.   Then d(f, C) <

||/+v||=l.   Suppose that g £ tf£ satisfies   ||/-g||<2.   Then   ||f-g||<3.
Setting  F = e""-1'*" £ //J, we obtain 1 + e/2 < fe~udd = /|F| dd = jF(f + v)dd =
fF(v - g)dd = /aAy£ + JE < 3£/2 + ||v - g||£, so that 1 - e < \\v - g||£.  Since
v - g is continuous on E, and the cluster set of / + v at each point of E includes

the full unit circle, we obtain 2 - e < ||/ - g||£.   Hence d(f, /7£) > 2 - e.

11.   On  H + L£.   Recall that W is the Stone-Cech compactification of  U,
so that  L = C01Ï).   The inclusion A(U) c_» L induces a projection 31Î —» U, which

coincides with the coordinate function Z, regarded as an element of C01I).   For
each A £ U, define the fiber My to be

lx = Z-KA) = {a £l:Z(a) = AS.

Then M\ = [Ai if A £ U, while M\ is quite complicated when A £ dU.   With this
notation,
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L£ = \h £ C(m) : ¿L    is constant for each  A £ E\.

It follows that

H+ LEÇ\feC0R):f\%   e H\%    for ail A e E[.

If  E is a closed stable subalgebra of H°°(U), and  X £ U, then  H\^       is a
closed subalgebra of  C0Hx) [cf. Theorem 3.5 and proof].   The set appearing at

the right-hand side of the above inclusion is then a closed subalgebra of C(!m),

but  H + L£ is a ptioti neither closed nor an algebra.   In this section, we will

show that under appropriate hypotheses, the above inclusion becomes an equality.

11.1 Lemma.   Let H be a closed stable subalgebra of H°°(U),  let E  be an
arbitrary subset of dU, and let [H + Lp] be the closure of H + L£  in C01Ï).
Then

[H + LE] = \g£ C(3R) : gL   e [H + LE\ , A e Ij.
A A

Proof.   Let  B be the resttiction of  [H°° + L£] to Z~l{E).  Since   L£
includes all the functions in CQJÍ) which vanish on  Z~  (E), B is a closed sub-

space of  C(Z~  (E)), and  [E°° + L£] consists of the function in  B, extended in

all possible continuous ways to M.

Now note that  B is a C(E)-module.   In fact, if / £ E°° and g is any rational

functions with poles off dU, it is easy to see that fg £ H°° + C{dU) C H°° + L£.
Hence  B is an  R(dU)-module.   Since  B is also an A((7)-module, and since

A(U) + R(dU) is dense in  C{dU), B is a  C(E)-module.   By the theoty of anti-
symmetric sets for uniform algebras (cf.   [10, p. 61 ]),  B coincides with the

functions in  C{Z~   (E)) which belong to B on each level set of C{E).   Since

the level sets of  C(E), tegarded as a subalgebra of C{Z~  (E)), are precisely

the level sets of Z, we find that

B = i/eC(Z-1(Ë)):/|s   e B\% , X £ E\.
That proves the lemma.

11.2 Theorem.   Let H  be a stable closed subalgebra of H°°{U), and let  E
be a closed subset of dU.   Suppose there is a constant c > 0 such that

d{h, HE) < cd{h, H), all h £ L£.   Then H + L£  is a closed subalgebra of L{U)
consisting of precisely the functions f £ L{U) such that /L     £ H\       for all

X£E. 'X «A

Proof.   By Lemma 10.1, H + L£ is a closed subspace of  L(U).  Since the

functions in   L£ are constant on each fibet over X £ E, we have  (H + Lp)L

L  , X £ E.   Since  E is closed,   L£LEL  , X £E.   Since  E is closed,  Lj„   = CijlU for A í E.   The desired      *
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description follows now from Lemma 10.1.   In particular, from its explicit des-

cription it follows that   Lp + H is an algebra.

Next we wish to extend Theorem 11.2 to some classes of nonclosed sets.

First we establish a lemma.

11.3 Lemma. Let H be a stable closed subalgebra of H°°(U). Suppose S

and T are compact subsets of dU, and T„ is a compact subset of the relative

interior of T  in dU.   If f £ H + L„ and f £ H + L_,  then f £ H + Ls   _ .

Proof.   Let / = /j + hl = /, + ¿2, when /. £ H,  h^  £ L$, and ¿2 £ L_.   Then
F=/j-/2 = /32-/7j belongs to HTnS-   Let g be a smooth function with compact

support, such that g = 0 in a neighborhood of  TQ,  and g = 1   in a neighborhood of

S\T. Applying the operator T    discussed in  §3, we obtain a function  F   = T (F),

which belong to H~  .   Since  F - F    is continuous at the points of continuity of

F,  and at the points on the interior of the level set  {g = 1 !, F - F   £ Hs.   Now

h2 - F   £ LT ,  while on the other hand h2 - F' = h. + (F - F1) £ Ls, so that
h2~F' 6LSuT0-   HenCe

f=(f2 + F') + (h2-F')£H+LSuTQ.

11.4 Theorem.   Let H be a stable subalgebra of H°°(U) which is pointwise

boundedly closed.   Suppose Q   is a  a-compact subset of dU such that d(h, //„) =

d(h, H) for all h £ LQ.   Then H + LQ   is a closed subalgebra of L(U), consisting
of precisely the functions f £ L(U) such that /L    £ H\^    for all A £ Q.

Proof.   By Lemma 10.1,   H + L„  is a closed subspace of   L(U).   The family
of /'s described in 11.4 is a closed subalgebra of  L(i7) which contains  H + L„.

To complete the proof, it will suffice to show that every such / can be approxi-

mated uniformly by functions in  H + L„.

Suppose then that  e > 0,  and that  / £ L(U) satisfies   ||/|| < 1   and  f\^    £ WL
for all  A £ Q.   Write   Q as an increasing union of compact subsets  Q     with  QQ

empty.   By Theorem 11.2,  / £ H + Ln     fot each  n.
We will construct inductively sequences   [/   ¡, \g   \, \h  \ and  \R   \ such that

(i)   R0 is empty,_/0 = hQ = f, and g0 = 0.

(ii)   Rn C R     j Ç U, and  Rn is a closed neighborhood in  U of Q   U \z £ U:
d(z, dU)>l/n\.

(iii)   h    £ L(U) extends continuously to a neighborhood of  R  .

(iv)    \\b   || <1, and h    £ H + Ln    for all /.
(v)   \h     ,~h\ <l/2" on  R  .1   77 + 1 n[ n

(vi)   g     £ H, f    = g    + h  .an 'n      °n n

wa i^+i-U^/2"*1-
The induction step goes as follows.
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SuDDose  í , g.  , h    and  R    have been constructed.   Let  T be a compactrr ' n      n      n_. n
neighborhood of   R     in   U such that  h    extends continuously to a neighborhood

T' of  T.   Then /    e ft + L_' and /    £ ft + LQ       .   Using Lemma 11.3, we cann 1 n ^n+1
write /   = g + ¿, wheteg £ ft and h £ LQ T extends continuously to a

neighborhood of  T.   Set  F = g - gn = ¿n - h £ H T, and note that   ||F + ¿|| =
||¿  || < 1.   Now we apply Theorem 7.3 with S = Rn>  £ = Qn+¡\T and  T.   The
hypothesis of that result holds because  E is a-compact and Hq        is pointwise

boundedly dense in  H.   By 7.3 there is a function  F   £ Hq t such that

||F' + ¿|| < 1   and   |F' - F| < l/2"+1  on  Rn.   Set  qn + 1 = g - F' eft, and set
h     , = h + F1.   Noting that h   ,. - ¿   = F   - F, we obtainn+1 & n + 1 n '

(iii)      h     ,   £ Ln _.
(iv)'    ||¿*+1|| < 1,  and  ¿*+,  eft + LQ? for ail  /.

(v)'   \b*   .-AI <l/2"+1  on  R  .

^' /„ = «n+i+Â«+r
Choose  z/ e C((7) such that z/. - ¿     , = 0 on 0     . uT,   For 8 > 0, choose

i/ g e C((/) such that 0 < v g < 1,  w? = 0 on g     , u T, and ^5 = 1   off a
S-neighbothood of Qn  , U T.   Using Theotem 11.2, we see that vs(¿„+1 - u) +
u £ H + L0    for all j.   Moreover,  v ¡{h     . - u) + u extends continuously to a

neighbothood of    T u Q     .  in  (7, and  v g(¿        - 7/) + a converges uniformly to

¿     -   as  5 —> 0.   If we set ¿     j = ys^n+l ~ ") + "> f°r ^ sufficiently small,

then (iv) through (vii) will be valid, in view of (iv) , (v)  and (vi) .   On account

of the continuity property of ¿     ., we can easily choose  R     .  to satisfy (ii)

and (iii).   That completes the induction.

Now the g    £ H ate converging pointwise boundedly to a function g   eft°°(t/).

Since   ft is assumed to be weak-star closed,  g   eft.   Moreover,   h    converges to

some function  h   £ L{U), unifotmly on a neighborhood of each Q  , so that

h    £ Lq.   Finally (i) and (vii) show that the  /   convetge uniformly to a function

/* £ L(U) satisfying   ||/*- /|| < e, and /* = g* + h* £ ft + LQ.   Hence / is in the
uniform closure of  ft + L„,  and the proof is complete.

11.5  Corollary.   Let ft and Q  be as in Theorem 11.4.   // E  is any subset
of Q,   then ft + L£   is a closed subalgebra of L(U).

Proof.   That ft + L£ is closed follows from 6.2 and 10.1.   To see that
ft + L£  is an algebta, it suffices to show that ¿ft C W + L£ for every h £ Ly,

where   V is an open neighborhood of E in  dU.   However, in this case   V n Q

is   (7-compact, so that, by 7.4,   V n Q satisfies the hypotheses of 11.4.   This
yields   ¿ft Ç ft + LynQ Ç ft + L£.

Theorems 9.2 and 9.8 show that the conclusions of 11.4 and 11.5 hold for
the algebras  ft°°(r7) and H°°(/t).   We state this result explicitly, for emphasis.
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11.6 Theorem.   Ler ix be harmonic measure on dU,  and let /í°°(/¿) be the

weak-star closure of A(U)  in  L°°(p).   If E  is an arbitrary subset of dU,   then

/7°°(i/) + L™(p)  is a closed subalgebra of L°°(p).   If moreover E  is  a-compact,

then H°°(p) + L£(zx) consists of precisely the functions in  L°°(p) which belong to

H00^)  on each fiber of the maximal ideal space of L°°(p) over points of E.

12.   The algebra Hx'(dd) + L°Z(dd).   We now consider the case in which

U = A is the open unit disc in the complex plane.   The harmonic measure on  <9A

is the normalized angular measure  d6.   Theorem 11.6 asserts that Hx'(d$) +

L™(d6) is a closed subalgebra of Loa(dO), for any subset E of dA.

In   [6] Douglas considers subalgebras   B  of   L°a(dd) with the following

property: there is a family J" of inner functions in H°°(dd) such that B  is the

algebra generated by  H00(dd) and the complex conjugates of the functions in   J.

Douglas proves that if  B  is any such algebra, if  & is the operator algebra on

H  (dd) generated by the Toeplitz operators   T.,  f £ B,  and if C is the

commutator ideal of  J), then the correspondence  /—» T. + (_ is an isometric

algebra isomorphism of  B onto  J3/C

It is easy to see that Sarason's algebra  H°°(dd) + C(dA) is such an algebra,

since it is generated by  H°°(dd) and the complex conjugate of the coordinate

function Z.   In this case, the commutator ideal C is precisely the ideal of
compact operators on  H  (dd).

A result of Douglas and Rudin  [7] asserts that  L°°(d6) is generated by

Hoa(dd) and the complex conjugates of the inner functions in  H°°(dQ).   We intend

to prove the analogous theorem for the algebras   Hoa(d6) + L^(dd).   This is easy

to do, once we prove the following extension of the main result of   [7].

12.1   Theorem.   Let E be an arbitrary subset of the unit circle  dA.   Then

every unimodular function in  Lp(dd) can be approximated uniformly by functions

of the form  F/G,   where   F and G are Blaschke products which are analytic onE.

Before beginning the proof, we mention that the case   E = <9A is elementary,

and has appeared in the literature  (cf.   [16]).   In this case, the theorem asserts

that every unimodular function  u £ C(dA) can be approximated uniformly by

quotients of finite Blaschke products.   To see this, express  u in the form z"v2

for some   v £ C(<9A), approximate   v uniformly by a rational function  h,  and

observe that z"h(z)/h(l/z) is a quotient of finite Blaschke products and is close
to   u.

Since every unimodular function in   L^(d8) can be approximated uniformly

by unimodular functions which are continuous on an open set containing  E,  we

may as well assume that  E is an open subset of  dA.   It will be convenient to

work with the upper half plane instead of the unit disc, so that we will assume
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henceforth that  £ is an open subset of the extended real line, and that  °° £ E.

The ptoof given by Douglas and Rudin shows that every unimodular function

in   Lp3 which is constant on   £ can be approximated uniformly by a quotient of

Blaschke products which are analytic on  E.   It suffices then to show that every

continuous unimodular function on E can be approximated uniformly on E by a

quotient of Blaschke products which are analytic on E.   The next lemma shows

that we need approximate only functions with a bounded atgument.

12.2 Lemma.   // / is a continuous unimodular function on E,  there are

Blaschke products  B.   and B    which are analytic on E, such that arg {fB./B  )

has a bounded continuous branch on E.

Proof.   We can find two step functions  Xi  ar*d X? defined on  E,  which are

nondecreasing on each interval in £, and which take only values which are

integral multiples of 277, so that Xi ~ X? + ar8 / *s DOUfided.   Let  [x  [ be the
points where  Xi   jumps, and let  \y   \ be the points where  Xo )umPs-   Let

a    = x   + ia    and  b   = y   + iß  , where   a.     ß   > 0 are small numbers to ben n n n      J n        "n n' ~n __
fixed.   We observe that as   a   —► 0, atg ((x - a )/(x - a  ))  converges to a step

function whose only discontinuity is a jump of 2r7 at x  .   The same goes for

ß .   So if we choose   a    and ß    small enough, the Blaschke ptoducts  B Az) =

Il ((z - an)/(z - T)) and  B 2(z) = U ({z - bj/{z - T)) will converge, and

arg(/oj/B2) will have a bounded continuous branch on  E.   We can assume that

the  x^ and y    do not cluster in  E,  so that B.  and  B2 will be analytic on E.
That does it.

The apptoximation of continuous unimodulat functions on  E with bounded

atgument is accomplished in the next two lemmas.

12.3 Lemma.   Let 0 < e, 8 < 1,  and let g  be a continuous real-valued
function on  R which is zero outside a closed interval   I of length  \I\.   Let   V

be a neighborhood of I  in  R.   Then we can find finite Blaschke products  B  , B
such that

(1) |g-arg(B,/B2)| < 4i(l + ||g||)  on R.
(2) |arg(Bj/B2)| <8 outside  V.

(3) T¿e sum of the imaginary parts of the zeros of B.   and B.  is less than
A(f)|/| ||g||, where A(e) depends only on e.

Moreover the zeros of B.   and B    can be chosen to lie in any prescribed
neighborhood of I in C.

Proof.   Consider the function

x+e2    dtlf,(x) = 2r«" xeR.
J x-eL 1 + r
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Evidently i/f is an even function, i/f > 0, yj(x) increases for x < 0, if/(x)

decreases for x > 0,  and i/f(0) < 4e .   Since

,2

anuary

/
-- = arg(x - i2 + z) - arg(% + e   + z)

x-f   i + ¿2

arg(% + f2 - z) - arg(x - f   - z),

we can express  i/f as the argument of the quotient of two simple Blaschke products

with zeros at x - e   + z and * + e   + z:

./ s            (x - e   + i)(x + e2 - i)
ip(x) = arg-

(x - i   - i)(x + (   + i)

One computes easily that   ||^r||j = 4r7f  , so that the functions  i/r  (x) =

(l/4ne p)ifi(x/p), x £ R, p > 0,  form an approximate identity as   p —» 0.

We can assume that g > 0.   Let  r¡ = 4v(p, and choose  p so small that

H^o*g-dL<f'

|g(s) - g(t) <e    if  \s - t\ < r).

Partition  R into contiguous intervals  /   of length  7/ and left endpoint a.. Write

~     |~g(a.)1
hix)=   X)   I -~j477f2p«A/0(x-a.),

y = -oo

where   [•] denotes the greatest integer function.   Then  h(x) = arg B  (x)/B  (x),

where   Bj  and B    ate Blaschke products with zeros at  a. - e p + ip, and

a. + e p + ip respectively, with multiplicity   [g(a.)/e].   So the sum of the imagin-

ary parts of these zeros does not exceed   £(g(a.)/e)p = (l/4m  )lí,r¡g(a.).     Since

there are at most   \l\/t] points   a. at which  g does not vanish, this sum is bounded

by   |'| ||g||/477e2,  and (3) is valid.
Let d be the distance from dV to /.   If x £ R\V,  then   |H*)| <

1 g(a .)rjifj p(x - a.) < 1 -qg(a .)if, p(d) < \I\ \\g\\tf/p(d).   Since  ifj p(d) -. 0 as  p — 0,
we can obtain (2) by taking  p sufficiently small.

To verify (1), it will suffice to show that

(1)' ll¿-Vgll<f2 + 2f+e||g||.
For this, estimate

\h(x)-dfjp*g)(x)\ <Tl + T2 + Tv
where
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|[fí!i!l !Í!a)i 4ne2pif/p{x - a;),

T2 = Z í?^Wp(* - «y) - /,  <Ap(* - y>dy' i

T3=EJ, *P<*-yM")-¿y)\dy.
i

Here  T    is easy to estimate

T3^íl^p(x-y)(dy = e-

Suppose x lies in the interval ¡k.   Since if/ At) is even and decreasing for / > 0,

Z #p(* - a;) -  J /   ifrp(x - y) dy\
i i '

S  Z    £#/* - «y+l) - #p(* - «y)l;<*
+ Z £#p(* - «y) - #P(* - fly+i)] + #p(* - ak) - J, 'Ap^- y) ¿y

<3rff/p{0)<r¡/4jTp = e.

Hence   T. < e||g||, and

ri<fZ #p(* - «y) < f (í + J_°^ V>pM ¿i)   = f2 + «•

That establishes  (1) , and the ptoof is complete.

12.4 Lemma. // g is a bounded continuous real-valued function on E, and

if e > 0, there are Blaschke products B, and B , analytic across E, such that

\g-atg{Bx/B2)\ <e.

Proof.   We can assume that g vanishes near  °°.   Put  En = \x £ E: d(x, R\£)

< 1/2}, En = \x £ E: 2'"-1 <d(x, R\e)<2""+1S, h>1.   We can wtite
g = 2n=0g  ,  where  g    is real-valued and continuous on   R,  g    vanishes outside

a compact subset of  E  , and   ||g   || < ||g||.

Each E is a finite union of open intervals. By applying Lemma 12.3 to

each component of E , we can find finite Blaschke ptoducts B)."' and By1'
such that

\gn-atz(B[n)/B2"ï)\<e/4    on R,

largiß^Vß^)! < f/2"+2    on R\e^
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and such that the sum of the imaginary parts of the zeros of B,      and By1' does

not exceed A(f)|E   I ||g||,   where   |E   |  is the  length  of E   .   We can moreover'i    n'  "° " '    n' ° n
assume that the zeros of By*' and  By1' lie in the 2""-neighborhood of  E .

Since   S |E   | < <x, the conditions on the zeros of By1' and  By1' show that

B. = Il By2   and B2 = II By1' are convergent Blaschke products which are

analytic on E.   Since no point x £ E is contained in more than two of the  E 's,

we have

£ |g>) - arg (BjHxVö^ \*))|< 2(e/4) +  ¿ e/2"+2 = e.

Hence   |g(x) - arg (Bj(x)/B2(x))| < e fot all x £ E.   That proves the lemma, and

the proof of Theorem 12.1 is now complete.

12.5  Corollary.   Let E  be an arbitrary subset of dA.   Then every function in

H°°(d8) + L™(d0) can be approximated uniformly by functions of the form  Fg,

where g £H°°(dd) and F  is a Blaschke product which is analytic on E.

Proof.   The functions   Fg, where   F and  g  are as above, form a subalgebra of

Hoa(d8) + L°Z(dQ).   The uniform closure of this algebra includes H°°(dQ) and the

unimodular functions in" L^(dd), and hence all of Hoa(d9) + L^(dd).

13.   Some open problems.   Many of the results concerning H°°(U) whose

proofs depend on Vitushkin's constructive techniques    (cf. especially  [12]) are

valid also for stable subalgebras of HX(U).   However, it is not known whether

the analogue of the cluster value lemma for H   (U) is valid for stable algebras.

Using the same notation as in Lemma 3.2, we ask the following:

13.1 Problem. For which closed stable subalgebras H of H°°(U) is it true

that, for all / £H, f 0H \(H)) coincides with the cluster set of / at A (from U)?

In particular, is this true for the algebra  //""(o-) introduced in   §9?

The proof of Theorem 1.1, characterizing pointwise bounded density in terms

of a distance estimate, depends on the fact that the distances are measured in the

supremum norm over all of  U (cf. the proof of Theorem 2.2).   If h £ C(dU), then

it is easy to define  d(h, A(U)) and d(h, H°°(U)).
13.2 Problem. Is A(U) pointwise boundedly dense in H°°(U) if arid only if

d(h, A(U)) = d(h, H°°(U)), all h £ C(dU)?
It is easy to construct  U, and a closed set  E C dU,  such that there is no

constant  c satisfying

(*) d(h, H£(i7)) < cd(h, H°°(U)),    all h £ L£.

This amounts to the existence of a measure in   (H^(U))1 which cannot be "lifte

to a measure in (H°°(U))  .   The question is whether the existence of a constant
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c satisfying  (*) already implies that we can take  c = 1.   In patticulat, we ask

the following.
13.3 Problem.   Is A(U) pointwise boundedly dense in H°°{U) if and only if

H°°(U) + C(U) is a closed subspace of  L{U)?
The itetation ptocedutes we have used have restricted the validity of some of

the main results to  ocompact sets, and it is natutal to ask whethet these results

can be extended to atbittaty sets.

13.4 Problem.   Is there a tractable charactetization of all subsets  E of dU

such that d(h, H£) = d(h, ft)  for all h £ L£?   If -ft + L£  is a closed subalgebra
of  L(U), does it necessarily consist of all / £ L{U) such that f\ *,   ,„. £ ftL   .„.

fot all A e E?
This latter question seems difficult, even fot the algebta H°°(A).

Finally, related to  §§7 and 8, we have the following question:

13.5 Problem.   Is it ttue that  H£ always coincides with  ft£?

This is ptobably not true.   But if one could prove this fot the algebra  H^iU),

one could deduce strong results on the semi-additivity of analytic capacity

(cf. §8 of  [3]).
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