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In this paper, we first propose an accurate edge detector using a distance field-based convolutional neural network (DF-CNN). In
recent years, CNNs have been proved to be effective in image processing and computer vision. As edge detection is a fundamental
problem among them, we try to improve the accuracy of edge detection based on the deep learning framework. (e proposed
network combines a feature extraction backbone that can fully exploit the multiscale and multilevel information of the edge with
the supervised training of the distance field branch to realize the accurate end-to-end object edge detection. (e distance field
branch is applied to predict the Euclidean distance from nonedge points to the nearest edge point in the feature maps. And the
distance information embedded in the predicted distance field map can effectively improve the accuracy of edge detection. (e
network is trained to minimize the weighted sum of the distance field branch loss and the cross-entropy loss. Our experimental
results show that the proposed edge detector achieves better performance than previous approaches and the effectiveness of the
proposed distance field branch.

1. Introduction

Edge detection is one of the low-level challenging tasks in the
field of computer vision. (e improvement of the edge
detection technology can promote the development of
medium and high-level visual tasks (e.g., object detection
[1, 2] and image segmentation [3, 4]). Generally, a good edge
detection algorithm has the following characteristics: (i)
effectivity, it can detect the edge and is effective for various
problems; (ii) integrity, the closed and continuous contour
of the interested object region can be obtained, which has no
breakpoints and discrete points; (iii) accuracy, the obtained
edge is as close as possible to the true edge.

A large amount of background and structural infor-
mation contained in the image is important for traditional
edge detection methods which usually give priority to the
underlying features such as color, brightness, and gradient.
(e traditional edge detection methods can be summarized
as follows: (i) (e early pioneering methods, such as PB [5],
Sobel operator [6], and the widely used Canny operator [7];

(ii) Konishi et al. [8] expressed edge detection as a statistical
inference based on data-driven technology and realized edge
detection by using the joint probability distribution of image
features. Martin et al. [5] input the brightness, illumination,
texture, and other local features of the image into the logistic
regression classifier for edge judgment. (e performance of
the method that designed features manually based on in-
formation theory has been greatly improved compared with
the early pioneering methods, but its cost is high, the steps
are tedious, and the real-time performance is not good; (iii)
Structured edge detection algorithms that contain the SE
(structured forest edge detection) algorithm [9], etc. (e
limitations of the traditional edge detection algorithms are
inefficiency and low accuracy so that they cannot be widely
applied.

In recent years, with the development of computing
power, CNNs have great advantages in automatic learning of
natural images so that it becomes increasingly popular in a
variety of computer vision tasks, such as image classification
[10–12], semantic segmentation [13, 14], and instance
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segmentation [15]. More and more researchers begin to use
CNNs to detect the edge of objects, in which some suc-
cessful algorithms have sprung up. In 2015, Shen et al. [16]
introduced a deep convolutional neural network (DCNN)
to detect the edge and proposed an edge detection algo-
rithm named deep contour. Bertasius et al. [17] proposed
an end-to-end network architecture deep edge, which
combines the local and global information of images to
significantly improve the accuracy of edge detection. Xie
and Tu [18] studied HED that solved two important
problems: (i) the training and prediction based on the
whole image; (ii) multiscale feature learning. Previously,
methods based on CNN usually only adopted the feature
information of the last layer of each convolution stage. In
2017, Liu et al. [19] proposed RCF to combine features from
each CNN layer efficiently. Recently, Su et al. [20] con-
sidered that the edge detection algorithms based on CNN
can achieve high performance because it depends on the
large pretrained CNN backbone; however, it will consume a
lot of memory and energy. In addition, a simple, light-
weight, and effective architecture named pixel difference
network (PiDiNet) for efficient edge detection was pro-
posed. Although the processing speed of PiDiNet is fast, the
accuracy of edge detection is not high enough.

Based on the observations of the well-known edge de-
tection algorithms (e.g., HED [18], RCF [19], and BDCN
[21]) which adopt pixelwise binary cross-entropy loss, we
consider that these methods ignore a factor that is the
distance between background points and edge. Concretely
speaking, in the loss of the aforementioned model, the errors
on all points in the image provide the same contribution to
network tuning. Actually, the distance information of each
pixel to the edge is vital. Further, the distance information is
applied to the network by introducing a distance field branch
to enhance the accuracy of edge detection.

2. Related Work

Since the problem of edge detection has been regarded as
one of the most fundamental problems in computer vision,
researchers have devoted themselves to it for nearly 60 years,
and they have emerged a large number of approaches.
Generally speaking, these methods were roughly divided
into two categories: classical traditional methods and deep
learning-based methods. Here are some of the most rep-
resentative approaches in the past few decades.

(e classical traditional edge detection algorithms often
focus on the color, gradient, and texture underlying features
of images. Robert operator [22] is an operator that uses a
local difference operator to find edges. Because the Robert
operator usually generates a wide response in the region near
the edge of the image, the accuracy of edge detection is not
very high. Sobel operator is a form of a filtering operator,
which is used to extract edges. It can use a fast convolution
function, which is simple and effective. But the Sobel op-
erator does not strictly distinguish the foreground of the
image from the background; in other words, the Sobel
operator is not based on the image gray processing because
the Sobel operator does not strictly simulate human visual

physiological characteristics, so the extracted image edge is
sometimes not satisfactory. (e Canny operator is a mul-
tistage optimization operator with filtering, enhancement,
and detection, and has strong robustness. Before processing,
the Canny operator first uses a Gaussian smoothing filter to
smooth the image and remove the noise. (e Canny seg-
mentation algorithm uses the finite difference of the first
partial derivative to calculate the gradient amplitude and
direction. However, the poor accuracy of these methods
makes it difficult to be adopted in today’s applications.

With the rapid development of deep learning in recent
years, a series of deep learning methods have been proposed
for edge detection, in which the RCF based on HED is one of
the best edge detection algorithms. Here, we briefly review
the structure of the HED and RCF.

(e highlights of HED are briefly summarized as follows:
(i) image to image. (e algorithm learns automatically
throughout the whole process without any other operation,
and when we input an image into the model, we can get the
result directly; (ii) based on the improvement of FCN and
VGG, six losses were simultaneously extracted for optimi-
zation training, edges of different scales were output through
multiple side outputs, and then the final edge output was
obtained through a trained weight fusion function. We note
that in paper HED, the six losses are trained simultaneously.
In the prediction stage, the output result of the last layer can
be directly taken as the final result. We can also take the
output of all layers and average it for the final result, and the
advantage of this is that it will further improve the accuracy,
but the disadvantage is that it will increase the time when
additional operations are added; (iii) in the training pro-
cess, edge detection is actually a binary classification task
for each pixel. Most of the pixels are nonedges and only a
few are edges. In order to balance the positive and negative
samples, the authors introduce the class-balanced cross
entropy. It is obvious that the six losses that are simulta-
neously trained are complicated, and the class-balanced
cross-entropy strategy assumes that each pixel contributes
equally to the loss so that there is room for improvement in
the edge detection task.

As shown in Figure 1, the RCF is made up of a backbone
that adopts all the convolutional layers of VGG16, deeply
supervised nets, and fusion modules. (e backbone is
divided into five stages; with this fully convolutional
structure, it can extract edge features automatically. (e
deeply supervised nets of RCF conduct supervised learning
for each stage and output a predicted edge map for each
stage so that the model can converge better and faster. (e
fusion module of RCF fuses the five edge maps which are
output by deeply supervised nets with a 1× 1 convolution
layer. Because the final edge map of RCF contains the
feature information of each layer of the backbone, it is
better than the edge map of HED that only use some feature
information. (e same problem with HED is not taken into
account that each pixel has a different degree of influence
on the loss.

(e distance field introduced in this paper is essentially a
function that obtains the distance between the nonedge
points and the nearest edge point. It can be expressed as
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in which D(i, j) and value(i, j) denote the value of the pixel
(i, j) in the distance field map and the value of the pixel (i, j) in
the edge map respectively. (e horizontal and vertical values
of edge points in the image were represented by m and n.

A distance field example is illustrated in Figure 2, in
which we produce a distance field by calculating the Eu-
clidean distance between a given pixel and the other pixels.
In the traditional convolutional neural network, the task of
edge detection is a binary classification for each point in the
image. However, sometimes, the results are not satisfactory.
To improve the accuracy of edge detection, the edge map in
the distance field map is embedded, and we will obtain rich
distance information. When misjudgment is made at the
points farther from the edge, the loss function is so large that
it can converge quickly. (e next section describes our
network in detail.

3. Distance Field-Based Convolutional Neural
Network (DF-CNN)

In this section, we introduced our proposed distance field-
based convolutional neural network, termed DF-CNN,
which receives an image as input and then generates the edge
probability map and the predicted distance field map as
output. DF-CNN can be split into two subnetworks (as
shown in Figures 3 and 4): ResnNet101 feature extraction
network (RFEN) and distance field (DF) branch. While
RFEN is fed with the source image, DF is fed with the edge
probability map which is the output of RFEN.

3.1. Network Architecture. After investigating many pieces
of literature in the field of deep learning, the design idea of

this model is derived from the RCF network, and the module
of RCF is improved accordingly. As is shown in Figure 3, we
choose ResNet101 as the backbone of image feature
extraction.

Even though DF-CNN is inspired by RCF, major dif-
ferences are described as follows:

(i) We use ResNet101 instead of VGG16 [11] and cut
off all the fully connected layers. We can see that the
ResNet achieves state-of-the-art performance in the
ImageNet large-scale visual recognition challenge of
2015; with sufficient datasets in this work, it can be
believed that ResNet101 can further improve per-
formance. To be honest, due to the rapid devel-
opment of classification in ImageNet, there are
currently better backbones than ResNet; of course,
many tricks such as attention mechanism can also
improve the performance; but in this paper, what we
are concerned about is the effect of the distance field
branch. In addition, we do not do toomuch research
on the backbone network.
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Deeply-Supervised
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Figure 1: Structure of RCF.
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Figure 2: A distance field example.
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(ii) Each 1× 1-21 Conv layer is connected to the ReLu
layer. (en, a deconv layer is connected to the
upsample corresponding feature map so that the
model can generate an edge probability map that is
the same size as the original image.

(iii) For simplicity, a cross-entropy loss/sigmoid layer is
only connected to the fusion layer in the network.
We do not care about the learning results of each
intermediate feature layer but only pay attention to
the learning of the fusion layer.

(iv) (e loss function of the distance field branch is
added to the cross-entropy loss function of the
predicted edge probability map and ground truth
(true edge probability map) as the loss function of
the whole network. In this way, the distance factor
from nonedge points to edge can be contributed to
the model loss.

We combine the distance field branch into a holistic
end-to-end framework, in which the distance field branch
monitors the parameter learning of the entire network.
ResNet101 backbone obtains the feature information of
each convolution layer; although after fusion, the fusion
layer will have rich edge information; still, there will be

some deviation; here, to join a branch, by monitoring the
distance from the non-edge points to the edge points of the
predicted edge probability map, the whole network is
made to further study, and more accurate edge map is
obtained.

3.2. Distance Field Branch. DF-CNN has been proposed to
generate a predicted edge probability map. To improve the
accuracy of edge detection, a key component of DF-CNN is
the distance field branch, as appreciated in Figure 3, the
output from the RFEN block feeds the DF; of course, we will
process the output of RFEN, the threshold value is set as
0.25, and the probability value of the edge map is less than or
equal to the threshold value; 1 is set, if not, 0 is set. (e DF
consists of some basic CNN layers. (e DF is set as shown in
Figure 4. Kernel size and channel of the conv1 layer is 3× 3
and 128, respectively, followed by a ReLU activation func-
tion; kernel size and channel of the conv2 layer is 3× 3 and
128, respectively, followed by a ReLU activation function;
kernel size and channel of the conv3 layer is 3× 3 and 1,
respectively, followed by a sigmoid activation function; the
last layer gives a predicted distance field map with the same
size as the true distance field map.
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Figure 3: Our DF-CNN network architecture.(e input is an image with arbitrary sizes, and the model outputs a predicted edge probability
map and a predicted distance field map in the same size, respectively.
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If we go through DF, we get the predicted distance field
map that corresponds to the predicted edge probability map.
As appreciated in Figure 5, we show a working diagram of a
distance field branch. For the predicted edge probability map
obtained fromRFEN, we set the probability threshold value as
0.25. After processing, 1 represents the nonedge points, and 0
represents the edge points. (en, the processed edge prob-
ability map is sent into the distance field branch, and we will
get the predicted distance field map. As for the true distance
field map, in the stage of processing training data, we use the
distance field function for the ground truth (true edgemap) to
get it. Finally, MSE is used to calculate the loss value.

3.3. Loss Function. For the pixel-level classification problem
of edge detection, the classification of each pixel of an image
is usually regarded as a binary classification problem (edge
points and nonedge points). (erefore, cross entropy is used
as the cost function of each pixel classification in RFEN.
Each ground truth in the BSDS500 dataset is marked by
multiple annotators. As each annotator has a different
cognition of the edge, there is some noise in the edge of the
dataset. (e threshold method is used to exclude the dis-
puted points in the label images. (e loss function of each
pixel in this model is expressed as

f(x) �

α · log 1 − P Xi; W( ( , lbi


 � 0,

0, 0< lbi
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Y+ and Y− denote the positive sample set and negative
sample set, respectively. (e hyperparameter λ is to balance
positive and negative samples. (e CNN feature vector and
ground truth gray value at pixel i are presented by Xi and lbi,
respectively. P(X) is the sigmoid function, and W denotes
all the parameters that will be learned in RFEN.

In the training process of RCF, the loss of each stage and
the loss of the fusion module are taken as the loss function
of the whole model. But this simple additive loss function
does not reflect the importance of the fusion module.
(erefore, we directly use the loss of the fusion module to
conduct optimization training on RFEN. (e loss function
of RFEN is

L(W) � 
I

i

l X
fuse
i ; W , (4)

in which Xfuse
i denotes the activation value of the i-th pixel in

the image output by the fusion module. |I| denotes the total
number of pixels in the image.

(e distance field branch is ultimately a regression
problem. (e loss function of the predicted distance field in
DF is expressed as

L1 �
1
m



m

i�1
yi − yi( 

2
, (5)

in which

yi � η · N G
fuse
i ; W1 . (6)

yi and yi denote the value of the i-th pixel in the true
distance field map and predicted distance field map, re-
spectively. m is the total number of pixels in the predicted
edge probability map. Gfuse

i denotes the value of Xfuse
i after

threshold processing. N(X) is the sigmoid function, and W1
denotes all the parameters that will be learned in DF. (e
hyperparameter η is to set the value of the predicted distance
field map between 0 and 5.

(e loss function of DF-CNN is expressed as

L � L(W) + cL1, (7)

in which L(W) and L1 denote the loss function of RFEN and
DF, respectively. (e hyperparameter c is to adjust the
proportion of the distance field branch loss function in the
overall loss function. In this paper, we set it to 0.5.

4. Experiments

We implement our network using the publicly available
PyTorch. (e ResNet101 model that is pretrained on
ImageNet is used to initialize our model. For other SGD
hyperparameters, the initial global learning rate is set to
1e− 2 and will be adjusted with the number of iterations.(e
momentum and weight decay are set to 0.9 and 0.0005,
respectively. We train the model for 30 epochs. (e pa-
rameters lb and λ in loss function are also set depending on
training data. (e experiments in this paper are imple-
mented using an NVIDIA GTX 1080ti GPU.

(e detection indicators of the edge detection model
mainly include ODS (optimal dataset scale) and OIS (op-
timal image scale), in which ODS refers to the detection
results when all images in the test set are fixed with the same
threshold; OIS refers to the detection result for each image
using the optimal threshold for the current image. (e edge
map output by the model in this paper was processed by
non-maximum suppression, and the index was measured by
the Edge Box toolkit.

4.1. Datasets. In this paper, we use a total of three datasets:
BSDS500, PASCAL, and NYUD. However, in order to better
illustrate the efficacy of the ablation experiments, we used
different combinations of datasets. Next, we describe the
three datasets in detail.

BSDS500: the traditional edge detection dataset
BSDS500 is composed of three parts: training set, validation
set, and test set. Among them, the training set contains 200
pictures, the validation set contains 100 pictures, and the test
set contains 200 pictures. To prevent the model from
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overfitting, the BSDS500 dataset is enhanced. By using the
OpenCV toolkit, a total of 300 images from the training set
and validation set of BSDS500 were rotated, expanded, and
clipped.

PASCAL: as one of the benchmark data, PASCAL is
frequently used in edge detection, object detection, image
segmentation network comparison experiment, and model
effect evaluation. (e training set contains a total of 11,530
annotated images, and all of them would be used to train the
purposed model.

NYUD: NYUD is an indoor scene dataset; it is made up
of 1,449 pairs of aligned RGB and densely labeled depth
images. (e dataset is split into 381, 414, and 654 images for
training, validation, and test, respectively. We train our DF-
CNN network with training and validation sets following the
settings in RCF. We combine the training and validation set
and augment them by rotating the images and corre-
sponding annotations to 4 different angles (0, 90, 180, and
270 degrees) and flip them at each angle.

4.2. Ablation Experiments

4.2.1. Different Backbone Networks. We explore the influ-
ence of the backbone of the model by replacing the VGG16
with the ResNet101. Specifically, we use the five stages of the
ResNet101 to directly replace the five stages of the VGG
network, and we take the fusion layer of all stages of the
ResNet101 network as the subsequent input. (e results are
reported in Table 1. Obviously, under the same training set,
after replacing the backbone, our model improves the ODS
F-measure from 0.798 to 0.802. We show the intermediate

results of each stage from our model and RCF in Figure 6,
and we found that the output feature map of each stage of
RCF was similar, but the information of the fused feature
map was not fully utilized. Although the feature map of the
previous stages in our network was not satisfactory, the
output effect of the fused edge map was better.

4.2.2. Different Training Sets. As known to all, in deep
learning tasks, the training set is the most basic and im-
portant factor, which can directly affect the training results.
Referred to the previous work, here, we do a comparative
experiment; one experiment adopts the BSDS500 dataset as
the training set, and the other experiment adopts
BSDS500 + PASCAL as the training set. (e results are re-
ported in Table 2. In the model of RCF, it improves the ODS
F-measure from 0.798 to 0.806, and in our model, it im-
proves the ODS F-measure from 0.802 to 0.813. It is proved
that the expansion of training set has a great influence on the
improvement of training results.

4.2.3. Increasing the Distance Field Branch. As the concept
of distance field branch proposed by us for the first time in
this paper, to verify its effectiveness, we add distance field
branch to the network on the basis of the above experiment,
in which the processing result of RFEN output is taken as the
input of the distance field branch. (e implementation
details are described below. First, we introduced the RFEN
parameters in experiment 4.2.2 into the model and froze
them. (en, we trained the distance field branch and got a
better effect. Finally, the RFEN is defrosted, and the joint

Edge probability map

0.1 0.2 0.1 0.1 0.1 0.1

0.1 0.8 0.1 0.8 0.9 0.1

0.1 0.8 0.1 0.1 0.9 0.1

0.1 0.7 0.1 0.1 0.8

0.1 0.8 0.9 0.8 0.9

0.1

0.1

0.1 0.1 0.1 0.1 0.1 0.1

1 1 1 1 1 1

1 0 0 0 0 1

1 0 1 1 0 1
Distance

field branch

1 0 1 1 0

1 0 0 0 0

1

1

1 1 1 1 1 1

True distance field map

Predicted distance field map
backpropagation

MSE LOSS

2 1 1 1 1 2

1 0 0 0 0 1

1 0 1 1 0 1

1 0 1 1 0

1 0 0 0 0

1

1

2 1 1 1 1 2

1.4 0.5 0.7 0.3 0.8 1.8

0.9 0.1 0.2 0.2 0.3 0.7

0.6 0.3 0.9 0.8 0.2 0.6

0.7 0.4 0.8 0.7 0.4

0.8 0.5 0.3 0.2 0.1

0.9

0.8

1.6 0.5 0.7 0.7 0.9 1.3

Figure 5: Distance field branching example demonstration.
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Table 1: (e comparison results with different backbone networks.

Experiment Backbone network Train dataset Evaluation results
VGG16 ResNet101 BSDS500 PASCAL ODS OIS

Ref [19] √ √ 0.798 0.815
Experiment 4.2.1 √ √ 0.802 0.818

Figure 6: From one to eight columns is the output of stages 1, 2, 3, 4, 5, fuse, NMS, and original images, the top line is the outputs of RCF,
and the bottom one is the outputs of our model.

Table 2: (e comparison with some competitors on different datasets.

Experiment Backbone network Train dataset Evaluation results
VGG16 ResNet101 BSDS500 PASCAL ODS OIS

Ref [19] √ √ 0.798 0.815
Ref [19] √ √ √ 0.806 0.823
Experiment 4.2.1 √ √ 0.802 0.818
Experiment 4.2.2 √ √ √ 0.813 0.831

Table 3: (e comparison results between experiment 4.2.2 that does not have a distance field branch and experiment 4.2.3 (DF-CNN).

Experiment Backbone network Distance field
branch

Train dataset Evaluation
results

VGG16 ResNet101 DF BSDS500 PASCAL ODS OIS
Experiment 4.2.2 √ √ √ 0.813 0.831
Experiment 4.2.3 (DF-CNN) √ √ √ √ 0.818 0.833
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training is carried out to get the final result. (e comparison
results between experiment 4.2.2 that does not have a dis-
tance field branch and experiment 4.2.3 (DF-CNN) are
shown in Table 3. In this experiment, the model will have
two outputs: a predicted edge probability map and the
corresponding predicted distance field map. (e range of
predicted distance field values is 0 to 5; we show the true and
predicted distance field chromaticity maps in Figure 7.

4.3. Experimental Analysis. We show a statistical compari-
son in Table 4. From experiment 4.2.2 to experiment 4.2.3,
the ODS F-measure increases from 0.813 to 0.818, which
proves the validity of the distance field branch. From RCF to
DF-CNN, the ODS F-measure increases from 0.806 to 0.818,
DF-CNN is 1.2% ODS F-measure higher than RCF. Com-
pared to the latest edge detection technology PiDiNet, as
shown in Table 4, the PiDiNet seems to focus more on the

Table 4: (e statistic comparison with some competitors on BSDS500 dataset.

Method ODS OIS FPS
Canny [7] 0.611 0.676 28
EGB [23] 0.614 0.658 10
MShift [24] 0.598 0.645 1/5
gPb-UCM [25] 0.729 0.755 1/240
Sketch Tokens [26] 0.727 0.746 1
MCG [4] 0.744 0.777 1/18
SE [9] 0.743 0.763 2.5
OEF [27] 0.746 0.770 2/3
DeepContour [16] 0.757 0.776 1/30†
DeepEdge [17] 0.753 0.772 1/1000†
HFL [28] 0.767 0.788 5/6†
N4-Fields [29] 0.753 0.769 1/6†
HED [18] 0.788 0.808 30†
RDS [30] 0.792 0.810 30†
CEDN [31] 0.788 0.804 10†
MIL+G-DSN+MS+NCuts [32] 0.813 0.831 1
RCF [19] 0.806 0.823 30†
RCF-MS [19] 0.811 0.830 8†
Experiment 4.2.1 0.802 0.818 17†
Experiment 4.2.2 0.813 0.831 17†
Experiment 4.2.3 (DF-CNN) 0.818 0.833 16†
PiDiNet [20] 0.807 0.823 92†
PiDiNet-L [20] 0.800 0.815 128†
PiDiNet-Small [20] 0.798 0.814 148†
PiDiNet-Tiny [20] 0.789 0.806 152†
† means GPU time.

Figure 8: Several examples of the comparison between the edge probability map output by the DF-CNN and the RCF on the BSDS500 tests.
From left to right: origin image, ground truth, DF-CNN edge map, and RCF edge map.
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speed of edge detection. It clearly demonstrates that our DF-
CNN achieves the best performance and becomes the state-
of-the-art technology; at the same time, compared with RCF,
the speed of our network decreases while the accuracy is
improved, but it can also meet the real-time demand. In
addition, the comparison between the predicted edge
probability map output by the model in this paper, and the
original image of BSDS500 is shown in Figure 8.

To prove the effectiveness of DF-CNN, we also train our
network on the NYUD dataset. In the training process, λ is
set to 1.2, and no η is needed for NYUD since it only has one
ground truth for each image. Other network settings are the
same as used for BSDS500. As a testing, we just train the
model for RGB images, and some examples of DF-CNN that
tested on NYUD are shown in Figure 9.

5. Conclusions

(is paper presents a new edge detection model named DF-
CNN. Based on the ideas of RCF and HED, the model
replaces the VGG16 with ResNet101 to improve the ex-
pression ability of the backbone and fully integrate multi-
scale features. Finally, the performance of the model is
improved by combining the feature map generated by the
fusion module that makes full of semantic and fine detail
features with the distance field branch. Experiments show
that this model can effectively generate high-quality edge
images and the corresponding distance field map; although
the speed is somewhat lower than the RCF, the real-time
performance of the model is guaranteed.

Further consideration is given to the result of distance
field branch output by the model. (erefore, we consider that
it can be applied to the instance segmentation task. Since the
result of the current instance segmentation method often
presents the problem of rough boundary segmentation, the
fusion of the distance field branch into the segmentation task
can achieve the purpose of improving the segmentation ac-
curacy. Subsequent work will be carried out along with Mask

R-CNN, and the method of detection before segmentation
will be adopted. (e research scheme will be detailed below.

Adhering to the principle of the first detection and then
segmentation, we can get a predicted mask from the model.
(e predicted mask is taken as input to the distance field
branch. Finally, we will obtain two losses: mask loss and DF
loss; then, the sum of the two is taken as the total loss of the
distance field mask branch. (e specific realization idea of
distance field branch in the instance segmentation model is
different with DF-CNN because the edge curve in the in-
stance segmentation is closed and continuous; when we
make the true distance field label, referencing the traditional
active contour model, we set the edge point value to 0; a
point beyond the edge is given a positive value based on its
distance from the nearest edge point; similarly, points within
the edge are given a negative value based on their distance
from the nearest edge point. A convolutional neural network
is used to learn the distance field branch and fit the distance
field function; it is expected that the high-quality distance
field map can be used to obtain a more accurate segmen-
tation edge.

Data Availability

(e datasets and results generated during the study are
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Figure 9: Several examples of the comparison between the edge probability map output by the DF-CNN and the ground truth on the NYUD
tests. From left to right: origin image, ground truth, DF-CNN edge map, and RCF edge map.
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