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Römerstr. 164, 53117 Bonn, Germany

Figure 1: Several snapshots from an interactive session: A tablecloth is dragged around by the user with the mouse.

Abstract

In this paper we address the problem of rapid distance computa-
tion between rigid objects and highly deformable objects, which is
important in the context of physically based modeling of e.g hair
or clothing. Our method is in particular useful when modeling
deformable objects with particle systems—the most common ap-
proach to simulate such objects.

We combine some already known techniques about distance
fields into an algorithm for rapid collision detection. Only the rigid
objects of an environment are represented by distance fields. In the
context of proximity queries, which are essential for proper colli-
sion detection, this representation has two main advantages: First,
any given boundary representation can be approximated quite eas-
ily, no high-degree polynomials or complicated approximation al-
gorithms are needed. Second, the evaluation of distances and nor-
mals needed for collision response is extremely fast and indepen-
dent of the complexity of the object.

In the course of the paper we propose a simple, but fast algorithm
for partial distance field computation. The sources are triangular
meshes. Then, we present our approach for collision detection in
detail. Examples from an interactive cloth animation system show
the advantages of our approach in practice. We conclude that our
method allows real-time animations of complex deformable objects
in non-trivial environments on standard PC hardware.
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1 Introduction

Rapid collision detection between different objects is an important
part of interactive computer graphics applications. Intense research
over the last decade has provided many algorithms for particular
applications. Rigid objects which are moving in a static environ-
ment are an example for the most common scenario. In this case
hierarchical collision detection algorithms provide exact and fast
solutions. A bounding volume hierarchy is built for each object
and during collision detection the hierarchies are tested recursively
against each other for overlap. Since these overlap tests are highly
efficient and the number of tests with geometric primitives is usu-
ally small, the overall performance allows interactive applications.

But in the case that one of the objects is not rigid anymore things
become worse. Just imagine a piece of cloth dragged around in
virtual environment. Now it is possible that the whole surface of
the deformable object is in contact with another object. In this case
the collision detection performance of a bounding volume hierarchy
drops considerably. Although the hierarchy is still able to report
nearby triangles very efficiently, the number of primitive overlap
tests increases to a maximum, since all geometric primitives of the
deformable object have to be tested with primitives of the other ob-
ject. In many applications this means that you have to check lots
of pairs of triangles against each other. Clearly, this approach is
prohibitive for interactive applications. In particular, if the applica-
tion has to resolve not only collisions but has to solve differential
equations for dynamic motion.

In order to overcome this performance problem we propose an
algorithm for rapid collision detection between deformable and
rigid objects which uses distance fields as a basis for proximity
queries. Our algorithm is not only very efficient but also more exact
than previous approaches using voxelisation. Furthermore, only mi-
nor pre-computations for auxiliary data structures are needed. For
moderately sized meshes all data structures used can be built dur-
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ing startup of the application due to our very efficient distance field
generation algorithm.

We first describe an efficient method for calculating the distance
field. It can be applied to huge oriented triangular meshes which
need not necessarily be closed. In the second part of the paper
we show how to utilize a distance field for collision detection be-
tween rigid objects and deformable objects. We propose a solution
to handle concavities and how to deal with multiple distance fields
at once. Finally, we present some of our results and the applica-
tion of our algorithm to the area of cloth modeling for interactive
applications.

2 Related Work

In the area of collision detection several methods were proposed in
the last years. For convex polyhedra algorithms have been devel-
oped that work in expected linear time, see e. g. [10, 17]. In order
to overcome the restriction of convexity various hierarchical bound-
ing volume approaches have been developed: axis aligned bound-
ing box trees [23], oriented bounding boxes used in OBBtrees [8],
sphere trees [11, 18], discretely oriented polytopes (k-DOPs) [13]
and dynamically aligned DOP-trees [26]. Recently, a novel bound-
ing volume hierarchy has been proposed, which is as fast as OBB-
Trees or DOP-trees but which uses much less memory [27].

In the context of physically based simulation of cloth more spe-
cialized hierarchical collision detection algorithms have been de-
veloped [19, 25, 15]. Recently, a computational expensive but very
accurate algorithm for robust treatment of collisions was presented
[4].

The most suitable collision detection algorithms for interactive
applications are image space or voxel-based techniques [14], where
each voxel is marked as inside, outside or surface voxel. Since no
hierarchy has to be traversed and no primitives have to be tested
against each other, this algorithm is very fast. Clearly, this kind
of algorithm trades off accuracy for speed. In order to be more
accurate Zhang and Matthew [28] proposed to store additional in-
formation in the voxel-grid. Thus, primitive overlap tests are still
performed. In order to overcome these primitive tests Meyer et
al. store only the normal and the closest surface point per voxel
[16]. This information is used for collision response computations.
This method, although more precise, still introduces inaccuracies
since the surface is linearized inside each voxel and not continuous
between voxels. Finally, Vassilev et al. [24] described a method
which is most closely related to our approach. The authors are us-
ing the rendering hardware for constructing two depth and velocity
maps of the object—one map for the backside of the object and
one map for its front. These maps are used for distance calcula-
tions and collision response. Their algorithm is restricted to convex
shapes or—in the case of virtual humans—appropriate mapping di-
rections. Furthermore, the accuracy is quite low at the silhouette of
the object.

The concept of distance fields is popular in the field of computer
graphics. It has been used for metamorphosis of objects [3], ac-
celeration of volume data rendering, for motion planning and for
penetration depth estimation purposes in the range of physically
based modeling [5]. Distances to the static objects of a scene are
mapped to a Cartesian grid as part of the preprocessing. This al-
lows us to rapidly query the distance of a point to an object without
testing all geometric primitives. Distance field computation can be
computational expensive and, therefore, fast computation methods
still remain a topic.

There are standard methods for building up a distance field.
Jones and Satherley [12] used distance transforms to propagate
an ex ante calculated distance shell throughout the whole volume.
Sethian [22] introduced the so-called level set method to the field

of computer graphics, which describes an evolving front by a par-
tial differential equation. Once a distance shell has been computed
it can be used as initial value for a level set based fast marching
algorithm.

3 Distance field computation

A distance field of a surface S is a scalar function

D : R
3 −→ R,

D(p) = min
q∈S
{| p−q |}, ∀p ∈ R

3.

If the surface is closed, one can define a sign function with

sgn(p) =

{

−1 if p inside
1 if p outside

which yields together with the distance function a signed distance
field.

Since the concept of inside and outside only makes sense in the
case of a closed surface, we use a more simple definition of these
perceptions. We assume that S is defined by a set of oriented trian-
gles. Then, a face normal n is known for every point q∈ S. Now let
q ∈ S be a nearest point of S to p, then we define the sign function
as

sgn′(p) =

{

−1 if 〈p−q | n〉< 0
1 if 〈p−q | n〉 ≥ 0

.

Within a small envelope of S for any p there is a q such that
sgn(p) = sgn′(p). Thus, it is not necessary for the mesh to be closed
but it has to be oriented.

Since we are dealing with triangular meshes we have three types
of normals: face-, edge- and vertex normals. Due to the fact that
edge normals are expensive to compute—information about adja-
cent triangles are required—only face normals are used for distance
field computation.

The algorithm can be summarized as follows (see Algorithm 1;
~vi(t) denotes a vertex and~ei(t) denotes an edge of triangle t): for ev-
ery triangle of the mesh a prism is calculated by moving its vertices
along the face normal by an amount of ε in negative and positive
direction (ε is δ times the cell diagonal; using δ we can vary the
thickness of the distance envelope). Subsequently, the axis-aligned
integer bounding box enclosing the prism is determined. For all
grid points that lie in the bounding box the distance to the trian-
gle is computed. Finding the minimum distance between a given
point and a triangle can be done efficiently using Voronoi regions of
the features of the triangle 1. The current distance is set to the new
value if the calculated absolute distance is less than the current. The
sign of the distance value results from the sign of the inner product
of the face normal and the direction vector, i.e., if the considered
point lies below the triangle plane, the sign is negative otherwise
positive. Thus, the triangle plane divides the bounding box volume
into a positive and a negative part.

The asymptotic time complexity of the algorithm is O(nm)
where n is the number of triangles and m the number of grid points.

At first glance one might wonder if this algorithm produces a
valid distance field despite potential sign errors. Indeed, sign errors
can become a problem if the size of the triangles becomes too large.

Due to the fact that the distance field is built up successively,
changes of sign occur in the overlapping areas of bounding boxes
if the angle between the face normals is unequal to 0. In the convex
case a change of sign from minus to plus is legal, because it makes
an inside point an outside point. In contrast, a change of sign from
plus to minus is illegal, because it would make an existing inner

1To compute the Voronoi regions only a single triangle is considered.
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Input: triangular mesh T with face normals~n, equidist. cartesian grid G

Output: distance field F

F ←+∞
ε ←‖ (dx, dx, dx) ‖ ·δ
for all t ∈T do

compute Prism P← PRISM(t,~n(t), ε)
compute integer bounding box Gp← IAABB(P)
for all ~p ∈ Gp ∩G do

d← 〈~p−~v1(t) |~n(t)〉
if ~p /∈VoronoiReg(t) then

if ~p ∈ {VoronoiReg(e
i∈{1,2,3}(t))} then

d← dist(~p,~ei(t)) · sgn(d)
else

d← min{‖ ~p−~v{1,2,3}(t) ‖} · sgn(d)

end if

end if

F (~p)← min{abs(d), abs(F (~p))}
end for

end for

Algorithm 1: DISTANCEFIELD(T , G )

point an outside point. Figure 2 depicts these circumstances (pro-
jection of two adjacent triangles in the direction of the common
edge). Suppose that the triangle ti has been processed and another
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Figure 2: Overlapping bounding boxes of two in succession built in
triangles. The green borders mark the areas where a change of sign
minus to plus occurs.

triangle t j which is adjacent to ti is currently being computed. Let

the bounding box of the prism of a triangle be B. We denote the pos-
itive part of the volume by B⊕ and the negative by B⊖. A change
of sign from plus to minus occurs inside the area APM = B⊕

i
∩B⊖

j

and from minus to plus inside the area AMP = B⊖
i
∩B⊕

j
. Since ev-

ery point of APM lies above the plane of ti, its distance to t j cannot

become smaller than its distance to ti. From this it follows that an
existing distance value inside the ’critical section’ (red bordered ar-
eas in Figure 2) will not be replaced by another and, therefore, the
sign still remains valid.

Within the area AMP a change of sign from minus to plus is
essential, because all points inside AMP become outer area of the
object. For all points inside AMP which are not lying inside the
Voronoi region of the common edge the distance to t j is smaller

than to ti. Therefore, the distance values at those points will be
set to new values which implies the claimed change of sign (green
bordered areas). The problem is that in case of acute angles (i.e.,
the angle between the face normals ∠(n2, n1) lies between + π

2 and
+π) all points of AMP that are lying inside the Voronoi region of
the common edge will not undergo a change of sign, because the
distance remains the same. The result is a small negative wedge-
shaped region (see marked critical section in Figure 2) outside the
object that irradiates from the common edge. This all holds for the
convex case where the angle between the two face normals lies in
[0, +π].

In the non-convex case (i.e., angle between the two normals of
adjacent triangles is in [0,−π]) a change of sign from plus to minus
is legal and from minus to plus is illegal, because it makes an inside
point an outside point. The situation sketched in Figure 2 remains
valid except that one has to turn the face normals to the opposite
direction and swap the plus and minus signs. A change of sign has
to be prevented inside the area AMP and to be promoted in the area
APM . The same circumstances as mentioned before now lead to a
small wedge-shaped and positive-signed region inside the object.

Due to numerical inaccuracies we have to use a tolerance value.
Otherwise, values and their signs could be replaced in cases where
they must not. This effect is conspicuous at the borders of the edge
Voronoi regions. It leads to spongiform wedges in the area of edges.

In consequence of sign errors the algorithm has problems to
compute the distance field correctly in case of simple geometric
primitives with acute angles. For convex polytopes with obtuse an-
gles no such sign errors occur.

3.1 Results

We have tested our distance field algorithm with several geometries
(triangular meshes with up to 1.8M faces) at variable resolutions.
For complex triangular meshes with predominantly small triangles
like those shown in Figure 3 the algorithm produces very pleasing
results in short time (see Table 1).

For reconstruction we used the marching cubes algorithm. Sub-
sequently, we measured the Hausdorff distance between the origi-
nal data T and the reconstructed surface T ′ (normally referred to as
forward Hausdorff distance). The Hausdorff distance is defined as
dH(T, T ′) = max d(p, T ′), p ∈ T, with d(p, T ′) = min ‖ p− p′ ‖,
p′ ∈ T ′. It constitutes an accepted measure for the distortion of sur-
faces [1].

Figure 4 illustrates the distances from a mesh of a human model
to its reconstruction. Based on the assumption that the bust mea-
sures approximately 45cm (from head to the bottom of the chest)
the maximum distance amounts to 1.4mm (mean 7×10−3 mm). In
the problem area of the non-convex ears the maximum distance is
less than 0.5mm.

3.2 Comparison to other methods

The advantages of this algorithm are obvious. First, we can apply
it to very large meshes, because we do not construct any memory
consuming data structures for surface representation like trees or
Voronoi diagrams. Furthermore, we require the meshes to be ori-
ented but it is not necessary for the meshes to be closed. This as-
sumption seems to be more realistic than that of a closed mesh, i.e.
think of a car body without window panes or human head models
without eyeballs etc.

We compute a snatchy but not minimal distance envelope around
the surface. For collision detection purposes this is sufficient for
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Figure 3: Comparison of original data (left) and its reconstruction
out of the distance field data (right) — (a) Happy Buddha - original
data (1.1M faces). The distance field computation (167× 167×
401) took 14secs. on a 1.8 GHz Pentium IV; (b) Turbine Blade -
(1.8M faces, 356×278×600, 29secs., 2.2 GHz Pentium IV).

two reasons:

• In case of physically based simulation of rigid bodies time
steps normally become small during integration of the equa-
tions of motion as a consequence of applied collision response
forces. The probability for a particle to cross the distance en-
velope in a single time step is small. If collision response
bases upon position adjustment, time steps normally are larger
(up to one frame). But we know from experience that the dis-
tance envelope is nevertheless sufficient (see pictures below).

• Due to the fact, that particles or rigid bodies in simulation
of continuous objects are interconnected by springs or joints
(e.g. in cloth simulation) single particles that cross the dis-
tance envelope will be pulled out by other particles.

In comparison to our method Breen et al. [3] first built up the
whole Voronoi diagram for the faces, edges and vertices of the tri-
angular mesh. They used scan conversion to determine which cells
of the grid lie in each Voronoi region, i.e., the distance to the sur-
face at a set of points within a narrow band and the zero set are
computed. The two sets are used as raw data for a fast marching
method [21]. Unfortunately Breen et al. do not give any informa-
tion about computation times.

Jones and Satherley [12, 20] used an octree-based approach to
accelerate computation; it reduces computational complexity to
O(n logn). Alternatively one can apply distance transforms to pre-
computed distance shells to speed up the propagation of distance
values to the whole grid [12]. Distance transforms are fast but not
very accurate.

These methods are two step processes. The first step is the nar-
row band computation, in the second step the narrow band distances
are propagated to the remaining grid points.

4 Rapid collision detection

In this chapter we propose a method for rapid collision detection
between rigid bodies and deformable objects like cloth or strands

Figure 4: Hausdorff distance from the original surface to the re-
construction (400× 257× 393). Blue maps to zero distance. The
maximum aberration in the problematic areas of the (non-convex)
ears does not exceed 0.5mm.

of hair. We decided to solve this problem approximately by not
testing each triangle of the deformable object, but considering only
the vertices. Clearly, we now have to hold those vertices about a
predefined ε away from the surface to avoid artifacts, see Figure
5. This distance depends on the size of the triangles. Since we are
using a fine triangulation of the deformable object our approach is
feasible. Furthermore, the approximations made by our approach
allow interactive applications, which would not be possible if a full
collision detection was carried out.

e

(a) (b)

Figure 5: (a) Without offsetting the vertices inter-penetration arti-
facts occur at sharp corners since only vertices are checked during
collision detection. (b) Introducing an ε-offset solves the problem
since the maximum distance of two vertices is known in advance.

4.1 The simulation loop

In order to explain our collision detection algorithm we review
shortly which steps have to be taken for each simulation iteration.
We assume that a particle system is used. In such a system each
vertex of the discretized surface or volume represents a particle p

i
with an associated mass mi. A new simulation step starts with the

old positions xn
i ∈ R

3 and velocities vn
i ∈ R

3 of all particles. The
movement of each particle is governed by the well-known Newton’s

equation of motion f
i
= mi ·ai

= mi ·
d2xn

i

dt2 where f
i
∈R

3 denotes the

force acting on the particle and a
i
∈R

3 is the acceleration. In order
to solve the equation external and internal forces have to be consid-
ered and integrated over time to get the new particle positions and
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Triangles Resolution Time examined

[secs.] points

Skull 60 339 252×363×281 5.177 22775185

347×500×388 7.468 41802953

Vampire 127 656 290×289×401 3.155 13384822

434×432×600 4.626 22769128

Greta 36 236 376×85×401 1.472 6240152

755×167×804 3.703 17736887

Spaceship 90 800 157×400×75 3.825 16318608

196×500×92 5.017 21377069

234×600×110 6.469 27288247

273×700×128 8.112 34271815

311×800×146 9.874 41905391

Skeleton 87 878 78×64×400 1.893 8583692

153×124×800 3.157 17982883

Bunny 69 451 200×156×199 2.203 9274604

400×311×397 4.597 19065462

Dragon 871 414 400×182×284 13.876 79220231

600×271×425 17.985 99091981

Buddha 1 087 716 167×167×400 14.860 86503240

249×250×600 18.656 104837218

Turbine 1 765 388 238×186×400 23.110 132638147

356×278×600 29.532 164197880

Table 1: Duration of distance field computation for triangular
meshes on a 1.8 GHz Pentium IV (500 MB); Dragon, Buddha, and
Turbine on a 2.2 GHz Pentium IV (2 GB).

velocities. We refer the interested reader to [7] for more information
about physically based cloth modeling. After the time integration

we get the new positions xn+1
i

and the new velocities vn+1
i

. Colli-
sions are resolved simply by moving particles back to the surface of
the object. Since this relocation changes the trajectory of the par-
ticle, the velocities have to be corrected according to the collision
response. Finally, our particle system is in a correct state in which
no inter-penetrations are visible and the simulation step ends.

Notice, that in our system possible collisions are not affecting the
computation of forces of the particle system. Although techniques
for incorporating collision information exist [2], we have chosen
not to use them because of the increased time complexity.

4.2 Collision Response

During collision response we need to reconstruct two kinds of val-
ues from our already calculated distance field: Distances for ar-
bitrary points between the sampled grid points and corresponding
surface normals at these points. To compute the distance values we
use trilinear interpolation of the 8 corner points of a grid cell. This
interpolation provides us with a smooth reconstructed surface in-
side each grid cell. Between different cells the surface is only C0.
The normals are computed by normalizing the analytic gradient of
the trilinear interpolation [6]. In contrast, storing normal informa-
tion per grid point would be more memory intensive and the trilin-
ear interpolation of the real normal is computationally even more
expensive than evaluating the analytic gradient.

With these reconstruction methods we are able to determine the
signed distance between a particle of the deformable object and the
boundary surface of the rigid object rapidly. At first, we have to
transform all necessary coordinates of the particle into the coordi-

nate system of the collision object. Then, if xn+1
i

is detected to be
closer to the object’s surface than the given threshold ε , it is set

back in the direction of the normal n at xn+1
i

. The normal is com-
puted by normalizing the gradient of the distance field. Let d be the

distance of the vertex to the surface, then

rn = 〈n | ε−d〉 (1)

computes the normal component of our collision response 2. For an
approximate modeling of friction we compute a tangential compo-
nent rt by scaling the tangential part ∆xtof the vertex movement
vector

∆xn = ∆x−n〈∆x | n〉 (2)

rt = −c f ∆xt (3)

where ∆x = xn+1
i
− xn

i and c f is the friction parameter (1.0 for

friction cancels all the tangential movement). The final vertex po-
sition is computed by

xn+1
i = xn+1

i + rn + rt. (4)

Although our algorithm does not compute the exact intersection
point p

is
between the particle and the object’s surface, we get sat-

isfactory results in practice. This is due to the fact that errors are

quite small. The surface normal at xn+1
i

points only at slightly dif-
ferent direction as it would at p

is
and the scaling of the tangential

component is just a little bit too much which helps the system to
stay more stable.

For an exact solution we could determine the distance which the
particle may move until he hits the object. Then we could set xn

i =
p

is
and apply our above algorithm. Unfortunately, this introduces

two additional distance evaluations: one at xn
i for finding p

is
and a

second one at p
is

itself. Since these evaluations are the most costly
part of our algorithm we do not use this method but stick to our
much simpler algorithm as described above.

Notice, that our algorithm models a totally inelastic collision.
So, the energy of the impact is lost. By scaling rn appropriately we
could also model an elastic collision, if this effect is of any interest.
For the examples shown in this paper we used our inelastic model.

4.3 Trapped particles

The algorithm for collision response described above works quite
well for convex objects. But in the case of concavities a particle can
get stuck as depicted in Figure 6. The force caused by a connected
particle is trying to push the particle away, but the collision response
process moves the particle back and eventually into the dead end.

In order to solve this problem we introduced additional edge tests
into the collision response mechanism. The center pceof each edge
of the particle system is checked for proximity with the object. If
necessary the same procedure as described in section 4.2 is applied.
The resulting correction vector rn + rt is added to each of the two
particles forming the edge. In most cases not all edges have to
be tested. Only if one of the two particles of a edge is in close
proximity to the object a check has to be made.

As a pleasing side effect, we do not only free some of the parti-
cles from their concave prison, but we are also able to decrease ε
considerably without introducing any artifacts. By testing edges in
their center we virtually increase the sampling density of our collid-
ing surface which in turn allows to be closer to the object surface.

Unfortunately, our method has the drawback that in the worst
case the number of collision queries increases by a factor of three.
But since the problem of stuck particles occurred quite often in our
test scenarios and the overall precision increases we strongly sug-
gest to implement this edge test.

2Where 〈. | .〉 denotes the dot product.

International Conference Graphicon 2003, Moscow, Russia, http://www.graphicon.ru/



Figure 6: The collision response can fail if only particles are consid-
ered: The particle in the middle is dragged into the concave region
as a result of collision response.

4.4 Enhancing friction

The model for friction described above is very simple and does
not reflect real friction behavior. A better way would be to use
Coulomb’s model for friction. This model distinguishes between
static and kinetic friction and, more importantly, takes into account
the force pressing two objects together, i.e. the force due to fric-
tion is proportional to the force in normal direction of the surface
(Ff = c f FN ). The latter property is clearly missing in the formulas

we described above. In practice, we experienced particles sliding
slowly over vertical surfaces, an effect certainly not intended.

Therefore we derived a more elaborate model of friction, which
does not affect performance too much and uses only the change of
positions of the particles. For sake of simplicity we treat static and
kinetic friction alike. In order to approximate the forces needed for
friction computation we assume that the forces are proportional to
the changes in position of a particle. Therefore, we can use ∆xn as
an approximation of the force in normal direction of the surface and
∆xt for the force in tangential direction. We get

β =−max(
‖∆xt‖− c f ‖∆xn‖

‖∆xt‖
,0) (5)

as scaling factor for the tangential movement where β = 0 means
no movement and β = 1 no friction. In the case that no tangential
movement occurs, i.e. ‖∆xt‖ = 0, the computation of the above
equation can be skipped. For the correction vector in tangential
direction follows

rt = (β −1)∆xt. (6)

This enhanced friction model increases the realism of the simulated
objects without introducing much additional computations. Also,
no changes in prior steps of the simulation loop have to be made,
which eases implementation.

4.5 Multiple distance fields

In most virtual environments not only one object is contained, but
many objects — some of them moving — have to be considered.
We propose to use two stages of collision detection. First, one could
use some space partitioning or bounding volume tree to find out
which objects are in proximity to the simulated object. Then, our
distance field algorithm is applied only to nearby objects for precise
collision detection.

Another problem are all objects which are not fully rigid and
therefore can not be animated by affine transformations, e. g. par-
tially deformable objects like human avatars or kinematic chains
like a robot arm. In these cases we use one distance field per rigid
object. During collision detection we use bounding boxes to find all
nearby objects. For these we compute all distances di. For further

Figure 7: Four snapshots taken from an animation of a tablecloth
draped over a rod which is bend in the center

computations only the distance field with the smallest di is consid-
ered. In Figure 7 several snapshots of a tablecloth draped over a
bending rod are shown.

5 Results

We validated our method for collision detection by integrating it
into a cloth animation system. It is able to produce real-time ani-
mations of complex pieces of cloth consisting of around 1000 par-
ticles. During animation cloth dynamics, self collisions and col-
lisions between the cloth and the environment are handled with a
time step of 0.01s. In Figure 9 (a) several snapshots of a table-
cloth draped over a head are shown. The head consists of around
293000 triangles and the distance field was sampled at a resolution
of 168×272×199. Table 8 shows that only half of the time of one
simulation step is used up for collision detection. The rest of the
time can be used for dynamics and self collision handling, which
are treated separately [7]. Table 8 also shows that computing the
normal is not time-critical. Also, our enhanced friction model is
just slightly slower than the simple one.

In order to demonstrate the precision of our algorithm a male
avatar wearing a trouser is shown in Figure 9 (b) and (c). The gar-
ment was automatically pre-positioned by the algorithm described
in [9]. After setting the friction coefficient to zero, the trouser be-
gins to slide down the legs slowly. We have not noticed any jumping
particles or jitter effects. Since the distance function is continuous
the particles can slide smoothly along the surface. The discontinu-
ities of the normals at neighboring grid-points were not visible at
all.

In Figure 1 a sequence of an animated tablecloth, which is taken
from the accompanying video, is shown. The user, which is moving
the tablecloth around with the mouse, gets the impression of drag-
ging real cloth around. The interaction is done by mapping mouse
movements to the xy plane and by using the mouse-wheel to change
the z values. The mesh of the tablecloth consists of 1300 particles.
Since the original Buddha model is too complex to render it at in-
teractive rates with Java3D, the mesh was replaced by the marching
cubes reconstruction with 390000 triangles. Since our collision de-
tection algorithm is independent of the number of triangles, we are
still able to achieve interactive simulation and rendering.
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Figure 8: Comparison of collision detection and response timings
during a simulation run of 2 seconds (tablecloth draped over a head,
see Figure 9 (a)). When testing edges for collision the timings in-
crease as predicted by a factor of three. Dropping the computation
of normals for collision response does not gain much.

The implementation was carried out in Java and uses Java3D for
the visualization. The system runs on a dual Intel XeonTM proces-
sor at 2.0 GHz. We did not yet parallelize our animation algorithm.
Only the rendering routines of Java3D are using the second proces-
sor.

6 Conclusion

We have proposed an algorithm for rapid collision detection and
response between rigid and deformable objects. The algorithm is in
particular suited for physically based modeling of cloth as we have
shown in several examples. We also believe that other areas like
hair simulation may benefit from our method. Since our algorithm
is very efficient, we are able to produce real-time animations of
cloth.

Our method is extremely robust since due to the signed distance
field we can distinguish between inside and outside. If for any rea-
son a particle is within the object — maybe due to slightly wrong
initial position or just a jump in the collision objects’ movement —
it will be brought back to the surface by the next collision response
procedure. This method will only fail if the particle is deeper in the
object than the pre-computed distance shell.

We believe that it is even possible to use our algorithm as a basis
for a collision detection hardware. First, the actual algorithm is
quite easy to implement and only a few conditional branches have
to be made during its execution. Second, since no hierarchies are
involved, each execution of a proximity query takes about the same
time. This is crucial when implementing some pipelining scheme,
which in turn is a must for an efficient hardware implementation.

Currently, we are investigating more complex examples of de-
forming rigid bodies like moving human avatars. We hope that our
algorithm can be extended for real time animation of garment on
avatars. Also the storage scheme of the distance field needs to be
optimized in order to support high sampling rates and simultane-
ously low memory footprint. Possible directions are hierarchies like
23N -trees [14] or ADF’s [6]. The impact of the increased distance
query times of those hierarchies has to be investigated.
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