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An assessment of self-similarity in the inertial sublayer is presented by considering the wall-normal

velocity, in addition to the streamwise velocity component. The novelty of the current work lies in

the inclusion of the second velocity component, made possible by carefully conducted subminiature

×-probe experiments to minimise the errors in measuring the wall-normal velocity. We show that

not all turbulent stress quantities approach the self-similar asymptotic state at an equal rate as the

Reynolds number is increased, with the Reynolds shear stress approaching faster than the streamwise

normal stress. These trends are explained by the contributions from attached eddies. Furthermore,

the Reynolds shear stress cospectra, through its scaling with the distance from the wall, are used to

assess the wall-normal limits where self-similarity applies within the wall-bounded flow. The results

are found to be consistent with the recent prediction from the work of Wei et al. [“Properties of

the mean momentum balance in turbulent boundary layer, pipe and channel flows,” J. Fluid Mech.

522, 303–327 (2005)], Klewicki [“Reynolds number dependence, scaling, and dynamics of turbulent

boundary layers,” J. Fluids Eng. 132, 094001 (2010)], and others that the self-similar region starts

and ends at z+ ∼ O(
√
δ+) and O(δ+), respectively. Below the self-similar region, empirical evidence

suggests that eddies responsible for turbulent stresses begin to exhibit distance-from-the-wall scaling

at a fixed z+ location; however, they are distorted by viscous forces, which remain a leading order

contribution in the mean momentum balance in the region z+ . O(
√
δ+), and thus result in a departure

from self-similarity. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4974354]

I. INTRODUCTION

A large amount of effort has been invested in under-

standing wall-bounded turbulent flows, primarily due to its

importance in many applications. One of the challenges asso-

ciated with the study of wall turbulence is that it contains a

range of length scales. The smallest scale corresponds to the

viscous length scale, ν/Uτ , where ν and Uτ are the kinematic

viscosity and friction velocity
(

Uτ =
√
ν/(∂U/∂z)

�
�
� z=0

)

. Here,

U and z are the streamwise mean velocity and wall-normal dis-

tance with origin at the wall, respectively, and we shall use x

and y for the streamwise and spanwise directions. The largest

scale is typically taken to be the turbulent boundary layer thick-

ness δ, or the centreline height for pipe and channel flows.3

Another possible choice for a length scale is z—the distance

from the wall.4,5

Turbulent motions are usually expected to scale with one

of these three length scales (ν/Uτ , z, δ) or with the homo-

geneous turbulence length scales (Kolmogorov length scale

and Taylor microscale), or a combination of these. To make

the notion of turbulent length scales more precise, it is usual

to consider the streamwise spectra φij(kx, z) of the velocity

components at different wall-normal location, where kx is

the streamwise wavenumber and i, j = 1, 2, 3 or u, v, w. In

this paper, we shall specifically consider the spectra of u, w

velocities and the cospectra of Reynolds shear stress (φuu,

φww, φuw). It should be noted that the integral of φuu, φww,

and φuw over kx results in the turbulent stresses u2, w2, and

uw, respectively. Here, capitalisation and overline denote time

averaging. In contrast to the multitude of available length

scales, for velocity scale, Uτ alone characterises the velocity of

the turbulent motions, and + denotes the scaling of velocities

with Uτ .

The situation is indeed complicated if we want to under-

stand the scaling of φij(kx, z) with respect to the various length

scales over the full range of kx and z. However, if we con-

centrate on arguably the most important wall-normal region

in the boundary layer, the inertial sublayer (also known as the

logarithmic layer), and the energy containing motions, the sit-

uation simplifies, since the effects of viscosity are negligible.

Consequently, the viscous length scale (ν/Uτ) does not fea-

ture in the dynamics, while the homogeneous length scales

(Kolmogorov length scale and Taylor microscale) are found

to be relevant only for the fine-scale motion with negligible

contribution to the overall turbulent stresses. Hence, the dom-

inant length scales in these cases are z and δ (some evidence

for this will be given in Sec. III). The scaling of turbulent

motions with z has been employed in a number of differ-

ent ways (e.g., attached eddy hypothesis,5,6 vortex clusters,7

and the Lβ hierarchy8), and collectively we refer to them as

the distance-from-the-wall scaling. We note that the inertial

sublayer corresponds to a region that is sufficiently far away

both from the wall and the edge of the boundary layer or the

centreline in internal flows.

Most attention has been paid to u-motions primarily

because of its ease in measurement, where Perry, Henbest,

and Chong9 show that there are two regions in wavenumber

space for φuu, with one scaling with z and the other with δ, and
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TABLE I. Experimental parameters for ×-probe measurements.

x U∞ ν/Uτ Uτ δ

(m) (ms−1) Reτ (µm) (ms−1) (m) ∆t+ TU∞/δ l+x l+z ∆s+y

2 15.2 2600 28 0.569 0.071 0.513 18 000 14 14 7

7 15.2 5100 30 0.526 0.153 0.436 19 000 13 13 7

18 14.8 10 600 32 0.484 0.338 0.377 18 000 12 12 6

in-between them the overlap region displaying a k−1
x spectrum.

It is interesting to note that there has been a large effort in

searching for the k−1
x region, and this has proven to be mostly

elusive, mainly because of the need for high Reynolds numbers

(Re) coupled with the simultaneous need to make measure-

ments in the inertial sublayer (which physically gets very

close to the wall with increasing Re). In addition, as Davidson,

Nickels, and Krogstad10 mention, the k−1
x behaviour in the one

dimensional spectra is likely contaminated by aliasing from

three dimensional effects. Therefore, the u-motions show a

mixed scaling in z and δ rather than a pure distance-from-the-

wall scaling. In contrast, the w motions do not scale with δ,

and in this paper we will show that the w and uw-motions

exhibit collapse in the distance-from-the-wall (or z-) scaling

more readily compared to the u motions. Furthermore, we shall

also provide a phenomenological explanation for the mixed

scaling of φuu and the pure z-scaling of φww and φuw using

inviscid vortex-eddy calculations with their sizes increasing

linearly with distance from the wall. This also enables us to

demonstrate how finite and asymptotically high Re affect the

scaling of these spectra.

The uw-motions are important as they quantify momen-

tum transport across the boundary layer and are central to

theories that describe the mean flow. For example, the orig-

inal theories3,4 to derive a logarithmic mean velocity profile
(

U+ = (1/κ) ln(z+) + A, where κ is the von Kármán constant

and A the geometry dependent intercept
)

in the inertial sub-

layer involve assuming that −uw+ = l mixingUτ dU+/dz+. Here

the mixing length lmixing is assumed to scale with distance-

from-the-wall, lmixing = κz, which along with the approxima-

tion that −uw+ = 1 in the inertial sublayer leads to the log law

in U. Despite the known limitations of the underlying theory,

the log law has a strong experimental support and an important

consequence of the formulation is that the uw-motions must

follow z-scaling. To date, evidence for this has been unclear.

In the rest of the paper, we will give evidence for this z-scaling

of the uw-motions and also show that φuw follows the z-scaling

precisely between the wall-normal locations where U exhibits

a log behaviour. This confirms that U and −uw are intimately

related to each other via z-scaling.

The obvious difficulties with obtaining an unambiguous z-

scaling for the w spectra and uw cospectra are the requirement

of high Re, which in turn leads to difficulties in reaching posi-

tions close to the wall, not to mention the issues related with

measuring both u and w simultaneously with sufficient accu-

racy and resolution. In the present case, we overcome these

difficulties by carrying out measurements in the High Reynolds

Number Boundary Layer Wind Tunnel (HRNBLWT), which

has a working section of 27 m in length, producing a boundary

layer of approximately 30 cm thickness at the measurement

station of x = 21 m. The facility is complimented with a new

custom-made subminiature×-probe for the simultaneous mea-

surement of u and w to reach close to the wall and still maintain

sufficient resolution.11,12

II. BOUNDARY LAYER MEASUREMENT SYSTEMS
AND TURBULENT STRESS DISTRIBUTIONS

All experiments reported in this paper have been con-

ducted in HRNBLWT,13 located at the University of Mel-

bourne. Measurements are taken at 2, 7, and 18 m downstream

of the tripped inlet with a nominal free-stream velocity (U∞)

of 15 ms−1. Here, the friction velocity is only a weak function

of the streamwise distance for a fixed free-stream velocity.

Therefore, the same probe can be used to measure at different

streamwise locations (and hence at different Re), while still

ensuring that the sensor size across multiple Re is matched to

within a single viscous unit.

Details of the experimental conditions are given in Table I.

The value for Uτ and δ given in Table I have been obtained

by fitting the mean velocity profile to a composite velocity

formulation.14 The sampling interval ∆t is chosen so that it

is sufficiently low to capture the smallest energetic length

scale15 (i.e., ∆t+ < 3), while the total sampling time T cor-

responds to approximately 20 000 boundary-layer turnover

times (TU∞/δ). Figure 1 shows the custom ×-probe used,

and its dimensions are 0.4 × 0.4 mm (lx × lz) in the x and z

directions with the wire separation of 0.2 mm (∆sy) in the y

direction.

FIG. 1. A schematic of ×-probe showing sensor lengths l and spacing ∆sy.
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FIG. 2. Profiles of (a) streamwise variance, (b) wall-normal variance, and (c) Reynolds shear stress at multiple Re. Open and solid symbols correspond to

×-probe and single hot-wire measurements, where blue circle: Reτ ≈ 2500, red square: Reτ ≈ 5000, and green diamond, black triangle: Reτ ≈ 10 000. The

vertical lines denote the observed spread in the statistics during the experiment repeats (4%, 5%, and 7% for u2, w2, and uw, respectively). The dashed and

dotted-dashed lines correspond to DNS statistics16 at δ+
99
= 1310 and 1990, respectively, while the solid line in (c) denotes the Reynolds shear stress formulation

obtained using a composite mean velocity profile14 at Reτ ≈ 10 000.

A. Turbulent stress results

The streamwise variance (u2), wall-normal variance (w2),

and Reynolds shear stress (−uw) obtained using the ×-probe

are presented in Figures 2(a)–2(c), respectively. Also shown

are profiles obtained by Sillero, Jiménez, and Moser16 at δ+
99

= 1310 and 1900 from DNS, as dashed and dotted-dashed

lines, respectively (the equivalent Reynolds number is

Reτ ≈ 1700 and 2500 if δ based on the composite profile is

used instead). At the highest Re, a u2 distribution (denoted by

black triangle in Figure 2(a)) obtained using a single-normal

hot-wire with l+ ≈ 15 (where l corresponds to the wire length)

is also shown, along with a Reynolds shear stress formula-

tion (solid grey line in Figure 2(c)) from the composite fit of

Chauhan, Monkewitz, and Nagib14 fitted to the measured U

profile.

Comparison of the current Reτ ≈ 2500 profiles against

DNS at a matched Re shows good agreement, at least for

z+ > 150. In the region z+ < 150, u2 from the ×-probe is

attenuated due to spatial resolution effects.17,18 A good col-

lapse is observed at Reτ ≈ 10 000 where the single hot-wire

and ×-probe have comparable spatial resolutions. Further-

more, as evident in Figure 2(a), the u2 distribution in the

inertial sublayer displays a logarithmic relation as a func-

tion of z. This behaviour is consistent with the u fluctuations

obeying the z-scaling, as initially predicted by Townsend5

using the attached eddy hypothesis. The logarithmic rela-

tion u2
+

=−A1 ln(z/δ)+B1 (indicated by the dotted line in

Figure 2(a)), where A1 = 1.25 as reported by Marusic et al.19

and Meneveau and Marusic,20 agrees well with the current

dataset.

At a fixed z+ location, a marginal decrease in w2
+

is

observed in Figure 2(b) with increasing Re in the region

z+ < 500; however the differences remain less than 5% of the

measured values and are within the experimental uncertainty.

Furthermore, the near-wall Re trends from the experiments

are not replicated by the profiles from DNS where a nomi-

nal collapse of the w2
+

statistics is observed up to z+ = 100

instead (cf. dashed and dotted-dashed lines in Figure 2(b)).

Recent near-wall high resolution Particle Image Velocimetry

measurements (with a window size of 5 × 5 viscous length

scales) performed at Reτ ≈ 8000 by de Silva et al.21 indicates

that the collapse of w2
+

in this region extends to high Re. This

suggests that the current dataset suffers from a slight variation

in attenuation or amplification of the w2 statistics across Re

(although the spatial resolution is kept nominally constant).

These errors are presumed to be related to calibration errors.

It should be noted that the transition from amplified to attenu-

ated w2 recorded by the ×-probe compared to DNS at z+ ≈ 30

is characteristic of that observed for this particular ×-probe

dimension,12 which is due to finite sensor separation effects.

A good estimate of the −uw profile can be constructed

using the mean momentum equation if the U distribution as a

function of z and a friction factor relation as a function of the

development distance are known.22 Hence, the formulation

at Reτ ≈ 10 000 shown in Figure 2(c) has been obtained in

such a manner. The challenges associated with measuring an

accurate Reynolds shear stress are evident when the direct

measurements of −uw in the literature23 are surveyed, with

discrepancy of up to 15% between the measured and inferred

(from the U profile) values common.

III. SCALING OF THE SPECTRA AND COSPECTRA
OF TURBULENT MOTIONS

Figures 3 and 4 show the u, w spectra, and uw cospec-

tra from multiple z positions at Reτ ≈ 10 000, pre-multiplied

by the streamwise wavenumber, kx. Here, λx = 2π/kx corre-

sponds to the wavelength of the energetic modes. Furthermore,

in the pre-multiplied representation, the total area under the

curve when integrated against ln kx (or ln λx) is equal to the

turbulent stress. It should be noted that Taylor’s frozen tur-

bulence hypothesis24 is utilised here to convert the hot-wire

signals from the temporal to spatial domain. That is, turbu-

lent motions at all length scales are assumed to convect at

a constant velocity that is equal to the local mean veloc-

ity. While this is a common practice for hot-wire measure-

ments, strictly speaking the convention velocity is scale depen-

dent,25 meaning some scale-redistribution of energy occurs in

the present spectra. Furthermore, del Álamo and Jiménez25

observe that while the convection velocity is highly scale
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FIG. 3. Pre-multiplied spectra and cospectra at Reτ ≈ 10 000 for (a) streamwise velocity, (b) wall-normal velocity, and (c) Reynolds shear stress. The scaling

of uw cospectra with z is observed at selective wall heights, indicated using solid lines; while dashed (z+ ≈ 150) and dotted (z+ ≈ 0.2δ+) lines correspond to

locations outside the self-similar region. The arrow indicates the direction of increasing wall position, with the colour shading in (a)–(c) corresponding to the

same z location.

FIG. 4. As Figure 3, however the abscissa is now normalised by the wall-height, z. The solid grey lines correspond to spectra from Kunkel and Marusic.27

dependent and substantially different from the mean veloc-

ity close to the wall, away from the wall (in the inertial region)

the local mean velocity provides a good approximation at

most energetic scales. Hence, the redistribution of energy in

Figure 3 corresponds to a small fraction of the overall energy

(accounting for ∼5% uncertainty in the measured spectra25);

however, we cannot entirely rule out its influence here. The

abscissa in Figures 3(a)–3(c) is shown normalised in viscous

and δ length scales (here the ratio between the two is a constant

since only one Re case is shown). Moreover, the same spectra,

but now with λx normalised by the wall height, z, are shown

in Figure 4.

In δ-scaling (cf. Figure 3), a collapse is only observed for

the u velocity and is limited to very large scales (λx > 5δ).

Meanwhile, Figure 4(a) shows that the u motions exhibit

z-scaling in the range O(1) . λx/z . O(10). However, the

overlap region where the z and δ-scaling (cf. Figure 3(a))

are simultaneously satisfied is difficult to observe and

FIG. 5. The expected distributions of the pre-multiplied spectra and cospectra at (a)–(c) an asymptotic state (Reτ ∼O(106)) and (d)–(f) a limited scale separation

(Reτ ∼O(104)), following the attached eddy hypothesis. Left column ((a) and (d)): streamwise velocity spectra, centre column ((b) and (e)): wall-normal velocity

spectra, right column ((b) and (d)): Reynolds shear stress cospectra; shown at varying z locations within the inertial sublayer.
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consequently, no clear plateau region for kxφuu, correspond-

ing to a k−1
x scaling law, is visible. On the other hand, a good

collapse of the w and uw motions in λx & O(z) regimes is

observed at selective z locations when λx is normalised by z (cf.

Figures 4(b) and 4(c)), an indication that the w and uw con-

taining motions in these regions follow a pure z-scaling. The

dominant modes for the w spectra and uw cospectra occur at

λx ≈ 2z and 15z, respectively, as indicated in Figures 4(b) and

4(c), and are in good agreement with DNS datasets of Jiménez

and Hoyas,26 albeit at a lower Re.

It should be noted that the analysis presented here is based

on data in the region z+ ≥ 150, where the w2 and uw statis-

tics are found to be more robust to the calibration errors.

Also shown in Figure 4 are the spectra measured by Kunkel

and Marusic27 at very high Re (Reτ ∼ O(106)) in the iner-

tial sublayer (z/δ ∼ O(10−3)) from the atmospheric surface

layer measurements (shown as solid grey lines). Although a

higher degree of uncertainty is introduced due to the chal-

lenges associated with measuring in the atmospheric surface

layer (which includes estimating Uτ and thus shifting where

the solid grey lines are located on the ordinate of Figure 4),

similar to our laboratory measurements a good degree of col-

lapse is observed for φww and φuw but not for φuu across two

decades of Re when the wavelength is normalised by the z

location.

IV. AN EXPLANATION BASED ON THE
PHENOMENOLOGY OF THE ATTACHED EDDY MODEL

In this section, we attempt to identify the physical mecha-

nism that leads to the w and uw containing motions exhibiting

the pure z-scaling more readily at a lower Re than the mixed

scaling for the u velocity. For this purpose, the attached eddy

hypothesis of Townsend5 and Perry and Chong6 is used to

extract the spectra from an idealised flow field where self-

similarity is strictly enforced. In this frame work, a repre-

sentative eddy that captures the bulk features of the aver-

age contribution from coherent structures with an identical

characteristic height, H, is used to construct the flow field.

Hence, the flow is modelled as a collection of representative

eddies, where each eddy is scaled accordingly by different

scaling factors and is then randomly distributed in the plane

of the wall. As an illustration, Figures 6(a)–6(d) show a rep-

resentative eddy packet, together with its contribution to the

streamwise velocity, wall-normal velocity, and Reynolds shear

stress obtained from Biot-Savart calculations of the vortex

rods.28 It should be noted that here our aim is not to cap-

ture the instantaneous flow features present in the real flow,

which are unlikely to resemble the representative eddy, but

rather to obtain the bulk statistics contributed by these flow

features.

The attached eddy hypothesis is an inviscid model, and

hence a finite slip velocity is permitted at the wall. The slip

velocity is restricted to the wall-parallel plane, while the wall-

normal velocity (w) at the wall is enforced to be zero, to

preserve the no-penetration condition. This means that in the

vicinity of the wall, the w contribution from the head of the

eddy, where the flow is highly vortical (in the spanwise direc-

tion), diminishes much more rapidly compared to the other

two components; and thus the motions become increasingly

restricted to the wall-parallel plane in the near-wall region.

Consequently, as shown by Perry and Marusic29 (and also evi-

dent from Figures 6(b)–6(d)), the u velocity contribution from

an attached eddy extends all the way to the wall while the w and

uw contributions are restricted to z ∼ H. Since the total veloc-

ity is a summation of contributions from a range of attached

eddy sizes, the largest energetic scale in u increases relative

to z as the wall is approached, while the largest w and uw

containing motions remain fixed.

A. Attached eddy calculations

Figures 5(a)–5(f) show results from attached eddy calcu-

lations using simpleΛ eddies in a packet configuration (where

multiple eddies align coherently in the streamwise direction)

for the representative eddy (cf. Figure 6(a)). The calcula-

tions involve integrating the spectral contributions from the

representative eddy for each z location,9 where the bounds

of integration depend on z. The top row, Figs. 5(a)–5(c),

results correspond to an asymptotic prediction at a very high

Re (Reτ ∼ O(106)), while the bottom row, Figs. 5(d)–5(f),

corresponds to predictions at Re close to the experiments.

The wall heights shown in Figures 5(a)–5(c) correspond to

O(10−4) . z/δ . O(10−3) or O(102) . z+ . O(103). Hence,

the highest z location shown here coincides with that of the

atmospheric surface layer measurements shown in Figure 4,

while the lowest z location is an order of magnitude closer to

the wall and no experimental data from Kunkel and Marusic27

exist at this height. It should be noted that the acquisition of the

very long time-series is not possible in atmospheric measure-

ments due to the limited periods of neutral stability. Therefore,

the spectra for large wavelengths (λx/z ∼ O(103)) have a

limited number of ensembles, which leads to an increased

uncertainty in the energetic content measured at these wave-

lengths, and it is not possible to resolve the very long wave-

lengths. The predictions shown in Figures 5(d)–5(f) are for

O(
√
δ+) . z+ . O(0.1δ+), similar to the experimental results

which are shown in Figure 4. Although results from only a

single representative eddy are shown here, we find that the

Re trends exhibited are retained regardless of the representa-

tive eddy shape chosen (including a singleΛ eddy instead of a

packet ofΛ eddies). See the work of Baidya et al.28 for details.

B. Spectral behaviour in the asymptotical limit

Perry, Henbest, and Chong9 show that in the asymptotic

limit the u spectra are expected to follow z- and δ-scaling.

Hence, for a given wall height z, all the eddies in the inertial

sublayer with height ≫ O(z) contribute an identical energy

content to the u velocity, leading to an inversely proportional

distribution for φuu as a function of the streamwise wavenum-

bers (i.e., φuu ∼ k−1
x ). The attached eddy calculations indeed

exhibit a plateau like behaviour for the pre-multiplied u spec-

tra (the k−1
x law appears as a plateau in the pre-multiplied

representation) at Reτ ∼ O(106), as shown in Figure 5(a).

Furthermore in the asymptotic limit, the plateau approaches

a value A1 and variation in u2 as a function of z occurs solely

due to an extension of the k−1
x plateau region as the wall is

approached.9 Therefore, A1 also corresponds to the slope of
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FIG. 6. Velocity contributions from a representative eddy. (a) A packet of Λ hairpin vortices. Corresponding contributions to (b) streamwise velocity, (c) wall-

normal velocity, and (d) Reynolds shear stress. The solid lines denote vortex rods, while dashed lines indicate contours of ��(∆u+)
2�
�,
�
�(∆w+)

2�
�,
�
�∆u+∆w+�� = 0.6

(only the negative ∆u, the positive ∆w, and the negative ∆u∆w contours are shown).

the logarithmic behaviour in u2 with respect to z (cf. Figure

2(a)). On the other hand, the w spectra and the uw cospec-

tra at multiple z positions remain identical in terms of λx/z,

as shown in Figures 5(b) and 5(c), since unlike the u spectra

they only exhibit z-scaling. It should be noted that the attached

eddy model used here does not account for fine-scale detached

eddies that exist in the real flow.29 These additional contribu-

tion from the detached eddies is responsible for deviations

from z-scaling observed in the u and w spectra for the λx < z

regime, evident in Figures 4(a) and 4(b). Furthermore, the fine-

scale detached eddies are near isotropic29,30 with a minimal

contribution to the Reynolds shear stress. Thus, a good col-

lapse of the uw cospectra in z-scaling still holds for the λx < z

regime (cf. Figure 4(c)). Here, only a brief description of the

attached eddy hypothesis relevant to the present work is pro-

vided, and the reader is referred to Ref. 9 and Ref. 29 for a full

description.

C. Finite Re effects

One of the requirements for the k−1
x law in the u spec-

tra is the existence of a range of scales which simultaneously

satisfy z- and δ-scaling, where the energetic content across

the z positions collapses when λx is normalised by z and δ,

respectively.9 Hence, even when the entire u contributions are

from eddies that scale with z, such as the case for the attached

eddy calculations shown in Figure 5(d), a plateau region in

kxφuu will not necessarily eventuate. This is due to the inade-

quate scale separation existing between the smallest and largest

length scales at a finite Re, and hence no wall location exists

where z ≪ δ such that the u contributions from the eddies

of height ∼ O(δ) are universal irrespective of z, while also

simultaneously being sufficiently far away from the wall to

be fully inertial (z ≫ Uτ/ν). Furthermore, in a real boundary

layer velocity contributions from eddies that do not follow the

attached eddy hypothesis do exist (e.g., fine-scale detached

eddies9 and superstructures31,32), and these additional contri-

butions can lead to further departure from the ideal k−1
x law

behaviour in the u spectra.

Conversely, the wall-normal velocity and Reynolds shear

stress contributions from the energetic eddies are localised

to z positions close to the characteristic eddy height. This is

because the blocking effect of the wall means that the motions

become increasingly constrained in the wall-parallel plane,

with minimal w (and subsequently modest −uw) contribution,

as the wall is approached. Hence, the w contributions from the

eddies that do not scale with the wall height make up a small

portion of the cumulative w2 and −uw, unlike the u contri-

butions to the u2 statistic. Therefore, the wall-scaling is more

evident in the w and uw containing motions or the active region
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of the flow. This leads to φww and φuw that resemble the self-

similar asymptotic state even at a finite Re, as demonstrated

in Figures 5(e) and 5(f). Therefore, the empirical observation

that φww and φuw resemble the asymptotic state, even when the

scale separation present in the flow is insufficient to exhibit the

k−1
x law in the u spectra, is consistent with the attached eddy

hypothesis.

Figures 5(e) and 5(f) show that at a finite Re, a small

(compared to the u spectra) but nevertheless persistent devia-

tion occurs in the w spectra and uw cospectra with increasing z

locations, and that these deviations are larger in the uw cospec-

tra than in the w spectra. These differences arise from the

no penetration condition that exists at the wall, and hence

in the vicinity of the wall, the attached eddy contributions

follow w2 ∝ (z/H)2 and −uw ∝ z/H relationships.5 Here

H corresponds to the characteristic height of the eddy. A

good agreement between Figures 4(b), 4(c), 5(e), and 5(f)

suggests that the experimental w spectra and uw cospectra

can be well described in terms of the z-scaling and finite Re

effects. Further, the uw cospectra are harder to converge than

the w spectra due to the highly intermittent nature of instan-

taneous Reynolds shear stress contributions. Hence, we can

expect a larger scatter in the measured uw cospectra com-

pared to the w spectra (for a given sample size and duration),

which leads to larger deviations existing between multiple uw

cospectra measurements compared to the w spectra. Inspection

of the w spectra and uw cospectra from experiments, shown

in Figures 4(b) and 4(c) (where both have been computed

using an identical routine), indeed indicates that the w spec-

tra are smoother and therefore better converged than the uw

cospectra.

V. STREAMWISE, WALL-NORMAL SPECTROGRAMS,
AND REYNOLDS SHEAR STRESS COSPECTROGRAM

Figure 7 shows pre-multiplied φuu, φww, and φuw, plot-

ted against the wall distance and wavelength for various Re.

For the w spectrogram (cf. Figures 7(d)–7(f)), the inertial sub-

layer corresponds to a region where the contours follow the

λx ∝ z lines, with the most dominant energy density occur-

ring at λx ≈ 2z (shown as a dotted-dashed line in Figures

7(d)–7(f)). Therefore, unlike the u spectrogram (cf. Figures

7(a)–7(c)) which exhibits two distinct dominant energetic

sites,31,32 the w spectrogram is ridge-like with near constant

w contribution across all z locations residing in the inertial

sublayer.

For the uw cospectrogram, two distinct peaks are observed

outside the self-similar region at z+ ≈ 50, λ+x ≈ 1000 and

FIG. 7. Pre-multiplied spectrograms and cospectrogram at (a), (d), and (g): Reτ ≈ 2500, (b), (e), and (h): Reτ ≈ 5000, and (e), (f), and (i): Reτ ≈ 10 000. Top row

((a)–(c)): streamwise velocity spectra, middle row ((d)–(f)): wall-normal velocity spectra, and bottom row ((g)–(i)): Reynolds shear stress cospectra. In (d)–(f),

the circles indicate the location of the peak kxφww contributions at a particular wall-height, while the dotted-dashed lines correspond to the relationship λx = 2z;

both within the region 150 ≤ z+ ≤ 0.15δ+. Symbols + and × denote the location of two dominant energetic sites in the u spectrogram and uw cospectrogram.
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z/δ ≈ 0.25, λx/δ ≈ 2, and is denoted using symbols + and

×, respectively, in Figures 7(g)–7(i). These peaks are thought

to be associated with the inner and outer peak in the u spec-

trogram (cf. Figures 7(a)–7(c)) and therefore arise due to the

near-wall cycle and very large-scale motions33 or superstruc-

tures.31,32 Thus, the peak associated with the large-scale con-

tributions moves outwards with Re in viscous units as shown in

Figures 7(g)–7(i). Furthermore, we find that similar to the u

spectra, both the w spectra and the uw cospectra display Re

invariance for the small-scale motions in the near-wall region

(λ+x . O(104) and z+ . O(102)) when scaled in viscous units,

and thus it is highly likely that a single physical mechanism

(i.e., the near-wall cycle) is responsible for these energetic u

and w contributions.

A. Limits of the inertial sublayer region

Classically, the inertial sublayer is thought to start at a

fixed viscous unit away from the wall (typically z+ ∼ 100)

and end at a fraction of the boundary layer thickness3,34

(z/δ ∼ 0.15). Indeed, the available experimental data suggest

that the mean streamwise velocity profile follows a logarithmic

law in the inertial sublayer.19 However, as higher Re data have

become available, the start of the inertial sublayer reported has

also increased, with z+ = 600 documented at a very high Re

regime in the Superpipe facility.35

More recently, Wei et al.1 have argued that rather than

considering balance of stresses, as is the case in the classi-

cal view, the gradient of stresses is the significant quantities

since they appear in the mean momentum equation (see also

Ref. 2 for a concise review). Subsequently, Wei et al.1 showed

that contributions due to the viscous stress gradient are signif-

icant starting from the wall to the z location where the peak

Reynolds shear stress occurs. They also inferred that the start

of the inertial sublayer scales as z+ ∼ √δ+. Furthermore, the

available literature36,37 suggests that the z location where the

maximum −uw occurs moves outwards under viscous scaling

with increasing Re. Following these developments, Marusic

et al.19 simultaneously re-examined the universality of the log

law in both the U and u2 statistics with respect to z, as predicted

by z-scaling using very high Re experiments. This allowed

them to overcome the difficultly in determining the z limits of

inertial sublayer solely using a U profile, which deviates very

slowly from the log law. Consequently, they find that z+ ∼ √δ+
scaling is consistent with the starting z location where the log

behaviour in U and u2 is simultaneously fulfilled.

Here, in order to determine the z limits of the inertial

sublayer, we will utilise the attached eddy results from Sec.

IV, which suggest that a good collapse of the entire ener-

getic w2 and uw contents occur in the inertial sublayer when

scaled with z. In other words, the deviations observed from the

asymptotic state serve as a measure to determine the z loca-

tions where self-similarity holds. Although for a synthetic flow

with a perfect z-scaling, the w spectra were shown to exhibit the

best collapse and hence provide the most accurate assessment

of self-similarity, in the real flow an additional contribution

from fine-scale detached eddies that are not accounted for in

the perfect z-scaling model exists (cf. Figures 4(b) and 5(b))

as illustrated in Figure 8. However, these fine-scale detached

eddies are near isotropic,29 and hence their contribution to the

Reynolds shear stress is minimal. Thus, for the uw cospec-

tra, the entire energy-containing range exhibits the z-scaling

in the inertial sublayer, making it the most appropriate quan-

tity (out of all the turbulent stresses) to provide an assessment

of self-similarity.

1. Assessment of the deviations from self-similarity

In order to quantify deviations from the self-similarity, we

will therefore utilise the quantity ∆ kxφuw, which is defined as

∆ kxφuw(z, λx) = kxφuw(z, λx) − kxφuw(zref, λx zref/z), (1)

where zref is located at the geometric centre of the self-

similar region. In other words, ∆ kxφuw corresponds to a dif-

ference between the measured uw cospectra (cf. Figure 9(a))

and a uw cospectrogram where the wall self-similarity (i.e.,

z-scaling) is satisfied across the entire boundary layer (cf.

Figure 9(b) and the term kxφuw(zref, λx zref/z) in (1)), as

illustrated in Figure 9. This procedure iteratively determines

the appropriate limits for the start (zi) and end (zo) of the

FIG. 8. A summary of various scaling for turbulent stress spectra and cospectra in the inertial sublayer at high Re. The overlap region in the u spectra leads to a

u2
+ ∼−A1 ln(z/δ) + B1 behaviour.
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FIG. 9. Assessment of the self-similarity using deviation from a perfect z-scaling for Reτ ≈ 10 000. (a) uw cospectra from the experiments, (b) a reference uw

cospectrum satisfying a perfect z-scaling, and (c) differences between (a) and (b).

inertial sublayer (and hence zref, since zref=
√

zizo) such that the

uw cospectra within the limits zi < z < zo satisfy the

∆ kxφuw(z, λx) ≃ 0 condition. Furthermore, regardless of the

initial zi and zo guesses, the procedure is observed to converge

to the same z limits.

Although the quantity∆ kxφuw shown in Figure 9(c) is suf-

ficient for an assessment of self-similarity, some of∆ kxφuw ≃ 0

regions in the figure are due to near zero uw content at a

particular z and λx location (e.g., z+ = 104 and λ+x = 102).

Hence, in Figures 10(a)–10(c), the contour maps of −∆ kxφuw

have been weighted by the −kxφuw value to enhance the dif-

ferences, ∆ kxφuw, where the uw contribution is dominant. In

other words, uw cospectra as functions of z and λx (cf. Figures

7(g)–7(i)) are used to blend the conventional one dimensional

colour map (such as the one used in Figure 9(c)) from the origi-

nal to white depending on how the −kxφuw value changes from

the maximum value to zero to create a two dimensional colour

map. For example, at (z+, λ+x ) ≈ (50, 103) and (104, 102), the

pre-multiplied Reynolds shear stress cospectra are near the

maximum and zero, respectively, and therefore while the first

location retains the non-modified colour, the second location

is near white.

The markers 1–3 and A–B in Figures 10(a)–10(c) denote

regions of low and high Reynolds shear stress compared to

the self-similar asymptotic state, respectively. Also shown are

contours corresponding to −∆ k+x φ
+

uw = −0.035 and 0.035 as

dotted-dashed and dotted lines, used here as a criteria to deter-

mine the z-limits of the inertial sublayer. Here, the threshold

selected corresponds to the estimated uncertainty in the mea-

sured spectrogram, which is equal to the maximum deviation

from a polynomial curve with respect to log λx used to fit the

measured spectra. Furthermore, although the coefficients (i.e.,

3 and 0.15, corresponding to the vertical dashed lines in Figure

10) are dependent on the threshold used, the z+ ∼ √δ+ and δ+

scaling for the start and end of the self-similar region are,

respectively, retained.

The regions 1 and 2 correspond to locations where −uw

is no longer constant, leading to a negative −∆ kxφuw. These

regions remain fixed in viscous and outer units, respectively,

as shown in Figures 10(a)–10(c). Meanwhile, the regions of

positive −∆ kxφuw, A and B, are associated with the peak in

the uw cospectra and hence they also scale with viscous and

outer scaling, correspondingly. Finally, at an increased Re,

an additional region with insufficient Reynolds shear stress

FIG. 10. Deviations in the weighted Reynolds shear stress cospectra (−∆ k+x φ
+

uw
�
�weighted) from the geometric centre of the inertial sublayer at (a) Reτ ≈ 2500,

(b) Reτ ≈ 5000, and (c) Reτ ≈ 10 000. The dotted-dashed and dotted lines denote contour levels at −0.035 and 0.035, while the vertical dashed lines indicate

locations z+ ∼ 3
√
δ+ and 0.15δ+.
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contribution (denoted by 3) compared to the self-similarity

state emerges below the inertial sublayer, leading to z+ ∼ √δ+
scaling for the start of the inertial sublayer. The relatively

large streamwise length scales associated with the region 3

compared to z and the fact that the corresponding w spectra

for the region exhibit a near perfect z-scaling (cf. λx > 10z

regime in Figure 4(b)) suggest that this region arises from the

direct influence of the large δ-scaled features in the u spectra

which become increasingly prominent at high Re. Interest-

ingly, region 3 is also related to the δ-scaled vortex-stretching

motions.38 Furthermore it should be noted that the attached

eddy hypothesis6 predicts a −uw+ = 1 − ( z
δ

) ε distribution,

with the constant ε ≪ 1, for the Reynolds shear stress in the

inertial sublayer. This means that the uw cospectra increasingly

deviate from the perfect z-scaling with increasing z, even in

the inertial sublayer, and this may be the reason why the region

2 start to encroach the z/δ = 0.15 line with increasing Re as

observed in Figure 10(c). However, with an increase in Re,

a higher portion of z locations satisfies −uw+ ≃ 1, since the

start of the inertial region approaches zero in the z/δ normal-

isation. We also find that, in the inertial sublayer, the integral

− ∫ ∞0 ∆ k+x φ
+

uw d ln k+x decreases with increasing z, which is

consistent with the mean momentum balance1 and the attached

eddy hypothesis.6

From Figures 10(a)–10(c), it is evident that although

the uw cospectra depart from self-similarity observed in the

regions z+ < 3
√
δ+; the dominant energetic mode in the w

spectra still exhibit the λx ∝ z relation much closer to the

wall. In fact, the wall location where the dominant w mode

starts obeying z-scaling is fixed in viscous units (z+ ≈ 100)

for all three Re cases examined here as shown in Figures

7(d)–7(f). Thus, although self-similarity is only retained for

3
√
δ+ . z+ . 0.15δ+, the observation suggests that the eddies

which are responsible for the turbulent stresses begin to exhibit

scaling with the distance from the wall at a fixed z location in

viscous units, as initially postulated by Perry, Henbest, and

Chong.9 However, below z+ < 3
√
δ+, the eddies become dis-

torted and depart from self-similarity since the viscous force

remains a leading order contribution in the mean momentum

equation in this region.

VI. SUMMARY AND CONCLUSIONS

We demonstrate that in the inertial sublayer, the u velocity

scales both with z and δ, therefore exhibiting a mixed scal-

ing. Meanwhile, a major fraction (> 80%) of w2 containing

motions scale with respect to z, with the rest of contribution

occurring from near isotropic fine-scale detached eddies. Fur-

thermore, since the near isotropic fine-scales and very large

δ-scaled motions have negligible contribution to the Reynolds

shear stress, a pure z-scaling is observed in the uw cospectra

across the range of energetic scales. These scaling laws are

also illustrated in Figure 8.

We find that the w spectra and the uw cospectra both fol-

low the self-similar asymptotic state more closely compared to

the u spectra at the same scale separation. This is because the

scale separation between z and δ affects the behaviour of the u

spectra much more severely than for φww and φuw. Hence, the

flow consisting of self-similar eddies do not necessarily need

to exhibit the asymptotical k−1
x prediction in the u spectra at

a finite Re, and this is demonstrated in this paper through the

use of the attached eddy framework.5,6

The experimental data presented adhere to the trends pre-

dicted using the attached eddy hypothesis at limited scale sepa-

ration, namely, no plateau region in pre-multiplied u spectra but

collapse of w spectra and uw cospectra when the wavelength is

normalised by the wall height at selective z locations. We also

show that the structures with dominant w contributions exhibit

z-scaling, starting from z+ ∼ O(100) and ending at O(0.1δ+).

However, the self-similar region (a near perfect z-scaling of uw

cospectra) is constrained to 3
√
δ+ . z+ . 0.15δ+; and thus

the start of the inertial sublayer is found to change in viscous

units, in contrast to the classical view. The z+ ∼ √δ+ scaling

for the start of the inertial sublayer is due to the viscous forces

becoming a leading order contribution in the mean momen-

tum balance below this region, which leads to the distortion of

eddies with height < 3
√
δ+ (in viscous units), and hence the

departure from self-similarity.
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