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Abstract— This paper describes the use of Kalman filtering
in distance keeping for underwater vehicles. The vision-based
distance keeping module has been mounted on a micro-ROV
equipped with a camera. Distance from a plane-like obstacle is
determined on the basis of the laser dot projections within the
frame. Since these measurements are not reliable a Kalman filter
is designed - unknown dynamic model parameters are determined
using the self-oscillation experiments which prove to be simple
and time preserving. Finally, an I-PD controller is designed based
on the Kalman filter estimates. The main task of the controller
is to keep the vehicle perpendicular to the surface at a desired
distance.

I. INTRODUCTION

Distance keeping for underwater vehicles has important
application in practice, especially during inspection missions.
These modules can be of great help for the operator while
performing an inspection mission (dams, ship hulls, etc.) and
are essential in fully autonomous applications. In addition to
that, distance keeping can be used as an obstacle avoidance
module. The main task of distance keeping algorithms is to
ensure that the vehicle keeps either a predefined distance
from a fixed object (during inspections) or follows a moving
object keeping a safe distance. Distance keeping sensors which
can be found in underwater technologies are usually sonars,
distance lasers and normal lasers. The greatest advantage of
sonars is that they provide accurate and detailed information
on the shape as well as the position of an obstacle. However,
their cost might be a problem especially if low-cost solutions
are needed. Distance lasers are somewhat more appropriate
cost-wise but the measurements provided are not as reliable.
Normal lasers ar the cheapest option (even though at least
two are necessary) but they reliability is the poorest. Also,
they are commonly used with vision-based algorithms in order
to determine the distance from an object. The latter type of
sensor will be used in this paper. Some prior implementations
of similar technology can be found in [1], [2], [3]. Due to low
reliability of laser sensors, Kalman filter (KF) is an essential
addition.

Kalman filtering is often used in underwater vehicles’
applications. The reasons for this are numerous, [4]:

• sensors that are used often have course quantization levels
and/or are noisy,

• available sensors’ data have to be fused in order to obtain
more confident signal values,

Fig. 1. VideoRay ROV with vision-based distance keeping sensor

• control algorithms demand higher update frequency than
the sensors’ sampling frequency,

• estimation of unmeasurable states is needed for control
purposes (velocities), etc.

In underwater applications Kalman filter equations must in-
clude vehicle dynamics since, which cannot be neglected.
This paper will demonstrate tuning Kalman filter parameters
(dynamic model parameters) based on self-oscillation experi-
ments. In [5], [6] these experiments have been used for tuning
low-level controllers for underwater vehicles without using
Kalman filter estimates. The method has also been applied
on autonomous catamaran Charlie (heading and line following
controllers) what is reported in [7]. The proposed methodology
has been tested on a VideoRay ROV equipped with a vision-
based laser distance sensor as shown in Fig. 1. The paper is
organized as follows. The introductory section continues with
the description of the mathematical model of distance keeping
for underwater vehicles. Section 2 derives the Kalman filter
while Section 3 describes the self-oscillation method used to
determine surge and yaw dynamic model of the vehicle. The
proposed nonlinear controller is described in Section 4 while
experimental results are presented in Section 5. The paper is
concluded with Section 6.
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Fig. 2. Distance keeping scheme

A. Mathematical Model

The mathematical model of distance keeping is derived
based on Fig. 2 and is given by the following equations:

u̇ = − ku|u|
mu|u|

u|u| + 1
mu|u|

τX (1)

ṙ = −kr|r|
Ir|r|

r|r| + 1
Ir|r|

τN (2)

ϕ̇ = r + vϕ (3)

ψ̇ = r + vϕ (4)

ḋ = −u cosϕ+ vd (5)

v̇ϕ = 0 (6)

v̇d = 0 (7)

where u is surge speed, r yaw rate, ψ heading, τX surge
thrust, τN yaw moment, ϕ angle and d distance relative to
the plan-like surface. Ir and kr|r| are total yaw inertia and
drag respectively, while mu and ku|u| are total surge mass and
drag respectively. Equations (1) and (2) represent the dynamic
behavior of the vehicle while (3), (4) and (5) are kinematic
equations augmented with states vϕ and vd which represent
constant disturbance that may act upon the vehicle. They can
also be interpreted as terms which include all the unknown
dynamics of the system. A detailed derivation of dynamic
models of underwater vehicles can be found in [8] and [9].

B. Vision-Based Laser Distance Module

The vision-based laser distance module has been developed
for underwater vehicles for the purpose of calculating current
distance from a plane-like surface. It is placed below the
vehicle and is projecting two laser dots on the surface. The
integrated camera detects the dots in the field of vision and
based on the relative distance of the two dots, Δx, distance
from the surface, d, is calculated. Since d = f(Δx) is a
nonlinear function, calibration has to be performed.

An algorithm for finding the two dots has been developed
which computational complexity does not depend on the
acquired image dimensions. It is based on searching only a
limited area of the image around the dots which have been
found in the previous step. This significantly reduces the time
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Fig. 3. Timeline of measurements and estimations

required for image analysis comparing to other algorithms that
search the whole image obtained from the integrated camera at
every step. The algorithm is briefly described in the following:

a) Search the whole image (n x m pixels) and find two laser
dots.

b) Calculate d = f(Δx).
c) Set two square search areas (n∗ x m∗ pixels, n∗ < n,
m∗ < m) around each laser dot.

d) Search the two rectangles (n∗ x m∗ pixels) and find two
laser dots.

e) Calculate d = f(Δx).
f) If laser dots are found, go to c).
g) If laser dots are not found, go to a).

The square search areas are sized so that under normal
conditions (normal vehicle speeds) the dots will not disappear
between two searching steps. If the dots disappear, the vehicle
is either moving too fast (the square search areas should be
larger) or something occludes laser dots and they are not
visible any more.

II. KALMAN FILTER EQUATIONS

The signals that can be measured in the mentioned case
are compass heading, ψ, distance from obstacle, d, and angle
with regard to the obstacle, ϕ, (two latter are obtained from
the vision-based distance sensor). The motivation for the use
of Kalman filter is dual. Firstly, estimation of unmeasurable
yaw rate, r and surge speed u, which are needed for controller
design. Secondly, estimation of the distance d from the surface
when measurements are not available: vision-based laser mod-
ule works with frequency of 2 Hz while control is performed
at 10 Hz and therefore estimation is needed between two
available measurements, see Fig. 3. Also, the vehicle might
get too close or too far from the plane-like surface which
leads to laser dots disappearing from the image - estimation
in these cases is crucial for system operation.

Given the fact that the mathematical model of the vehicle
given with (1) – (7) is nonlinear, extended Kalman filter (EKF)
in its discrete form is used, see [4] and [10]. If the state vector
is yk =

[
uk rk ϕk ψk dk vϕ,k vd,k

]T
, discrete-

time EKF prediction and correction equations are derived
from the mathematical model and are presented in Table I.
The minus in the superscript denotes the prediction. A is
the Jacobian matrix in the form given with (8). Covariance
matrices are preset as Q = 0.1I7x7, R = diag{0.5, 10, 0.1}
and P0 = 1000I7x7.



TABLE I

KALMAN FILTER EQUATIONS

Prediction equations

u−
k

= uk−1 + Tβ1uk−1|uk−1| + Tβ2τX,k

r−
k

= rk−1 + Tα1rk−1|rk−1| + Tα2τN,k

ϕ−
k

= ϕk−1 + Trk−1 + Tvϕ,k

ψ−
k

= ψk−1 + Trk−1 + Tvϕ,k

d−
k

= dk−1 − Tuk−1 cosϕk−1 + Tvd,k−1

v−
ϕ,k

= vϕ,k−1

v−
d,k

= vd,k

P−
k

= AkPk−1A
T
k +Q

Correction equations

Kk = P−
k
HT

k

[
HkP

−
k
HT

k +Rk

]−1

x̂k = x̂−
k

+Kk

[
yk −Hkx̂

−
k

]
Pk = [I −KkHk]P−

k

Ak = I7x7 +T

⎡
⎢⎢⎢⎣

2β1|uk| 0 0 0 0 0 0
0 2α1|rk| 0 0 0 0 0
0 1 0 0 0 1 0
0 1 0 0 0 1 0

− cos ϕk 0 0 uk sin ϕk 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎦ (8)

Measurement matrix, Hk, which appears in correction equa-
tions has a form H1,k when measurements from the vision-
based laser module are available, and H2,k when measure-
ments are not available (at times between two measurements,
or when laser dots are not found), see (9) and (10).

H1,k =

⎡
⎣ 0 0 1 0 0 0 0

0 0 0 1 0 0 0
0 0 0 0 1 0 0

⎤
⎦ (9)

H2,k =

⎡
⎣ 0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 1 0 0 0

⎤
⎦ (10)

The unknown dynamic model parameters which appear in
Kalman equations will be identified using the procedure de-
scribed in the following section.

III. IDENTIFICATION BY USE OF SELF-OSCILLATIONS

(I–SO)

The idea of using self-oscillations to determine system
parameters was introduced in [11]. Since then, the method
has been applied in process industry for tuning controllers.
First application of the method in marine control was reported
in [5], [6] and [12], where it was applied for identification
of an underwater vehicle dynamic model. Since then, it has
been applied for heading controller tuning of marine surface
vehicles, see [7] for details.

The I-SO experiment was done in closed loop which
consists of a nonlinear element, the process and a unity
feedback as shown in Fig. 5. The method is based upon
forcing the system into self-oscillations – the magnitude Xm

and frequency ω of the obtained self-oscillations can be used

to determine the process’ parameters. The link between the
space of process’ parameters and the space of magnitudes and
frequencies of self-oscillations is the Goldfarb principle given
with (11), (see [13]).

GP (jω) = − 1
GN (Xm)

= − 1
PN (Xm) + jQN (Xm)

(11)

where GN (Xm) = PN (Xm) + jQN (Xm) is the describing
function of the nonlinear element, and GP (jω) is the process
frequency characteristic. A relay with hysteresis is most com-
monly used for inducing self-oscillations and its describing

function parameters are P (Xm) = 4C
πXm

√
1 −

(
xa

Xm

)2

and

Q(Xm) = − 4C
πX2

m
xa, where C is relay output and xa is

hysteresis width. This element is used since it is insensitive
to noise and can cause self-oscillations in any process whose
Nyquist characteristic passes through the third quadrant. A
matrix algorithm for determining unknown parameters of a
general static transfer function can be found in [14]. The same
reference includes modifications for astatic systems, systems
with delays and discrete-time systems. When dealing with
discrete-time systems, the value at which the relay switches
might not be xa but some value x∗a > xa. In this case,
the self-oscillations should be analyzed a posteriori and x∗a
should be determined from the experiment and used in further
calculations.

Identification by use of self-oscillations can also be used on
a class of nonlinear systems as it will be demonstrated below,
see also [5] and [6]. For equation

αẍ = −βẋ|ẋ| + τ, (12)

which describes yaw and surge dynamics, it is possible to de-
rive expressions for unknown parameters based on magnitude,
Xm, and frequency, ω, of self-oscillations. In 12 τ is surge
force or yaw moment while α and β are parameters that have
to be identified.

If the system is in oscillatory regime (due to the pres-
ence of the nonlinear element as in Fig. 5), and under the
assumption that the oscillations are symmetric, output x(t)
and its derivations can be written as x(t) = Xm sin(ωt),
ẋ(t) = Xmjω sin(ωt) and ẍ(t) = −Xmω

2 sin(ωt). Unity
feedback implies that τ = −GN (Xm)x(t). By expanding the
nonlinear term into a Fourier series and retaining only the
first harmonic, the expressions for calculating α and β can be
derived:

α =
PN

ω2
(13)

β = −3π
8

QN

Xmω2
(14)

These equations can be used to determine unknown parameters
in both yaw and surge dynamic models.

1) Identifying yaw model: For yaw model, equation (12)
should be rewritten with x = ψ, τ = τN , α = Ir and β =
kr|r|. If the self-oscillation method is used on determining the
unknown parameters, the input to the relay with hysteresis is



Fig. 5. Nonlinear element in a closed loop

ψREF (t)−ψ(t) while the output is desired yaw moment τN .
The inherent double integrator structure will ensure that the
oscillations are symmetric around any ψREF .

2) Identifying surge model: For surge model, equation (12)
should be rewritten with x = u, τ = τX , α = mx and β =
ku|u|. For determining the surge model two approaches can be
followed. If surge speed u can be measured, then the input to

the nonlinear element is
t∫
0

(uref (t) − u(t)) dt. Introducing an

extra integrator ensures symmetric self-oscillations around any
uREF (where usually uREF = 0). Another approach, which
is used in this paper, is using dREF (t) − d(t) as an input to
the nonlinear element. Since ḋ = −u cos(ϕ) ≈ −u if ϕ ≈ 0,
there is no need for introducing an extra integrator – only
small angle with respect to surface has to be maintained. For
both approaches the output of the nonlinear element is desired
surge force τX .

The main disadvantage of the self-oscillation identification
method is that the identified parameters are always uncertain.
The reason for this is the fact that higher harmonics are
neglected in the analysis leaving the derived expressions for
the unknown parameters approximate. The main assumption in
the self-oscillation analysis is that the process filters out higher
harmonics effectively – this is the case for inertial systems, see
[13]. A detailed analysis of errors that are introduced in I–SO
method and methods on how to minimize them can be found in
[5]. On the other hand, the I–SO method found it’s application
in tuning marine vehicles’ controllers due to the fact that it
is easily implementable, feasible in field conditions and time
conservative.

IV. CONTROLLER DESIGN

The control scheme is given in Fig. 4. Underwater vehicle is
presented with a general dynamic and kinematic block while
the sensors that are used are magnetic compass (giving ψ
measurements) and laser based distance module (giving ϕ and
d measurements). Kalman filter outputs are used in both angle
and distance controllers.

The main objective in the paper is to develop a distance
keeping controller. However, from (5) it is clear that the angle
relative to the surface and the distance are coupled. This
coupling can be resolved if the vehicle is kept at a constant
angle, which is chosen to be 0. This is the reason why an angle
ϕ controller should be developed also. Setting ϕREF = 0
ensures that ϕ ≈ 0. That is why, prior to activating the distance
d controller, angle ϕ controller is activated first.

Both angle and distance controllers which were imple-
mented are of an I-PD form with a modification used for com-
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Fig. 6. The self-oscillation experiment for yaw degree of freedom

pensating the nonlinear term of the process (12). The controller
(15) is appropriate because smooth output is produced even for
abrupt changes of the referent signal. For the angle controller
xREF = ϕREF = 0, x = ϕ̃, ẋ = r̃ and τ = τN , while for the
distance controller xREF = dREF , x = d̃, ẋ = −ũ cos ϕ̃ and
τ = τX . Tilde symbol denotes the Kalman filter estimates.

τ (t) = KI

t∫
0

[xREF (t) − x (t)] dt−KPx (t) −KDẋ (t)

(15)
Parameters of both controllers are set so that the closed loop
transfer function for corresponding feedback loop is equal
to the model function Gm (s) = 1

a3s3+a2s2+a1s+1 which is
stable. In that case, the controller parameters are given with
KI = α

a3
, KP = a1

a3
α and KD = a2

a3
α − β |ẋ (t)|, where α

and β are determined from the self-oscillation experiments.
It is clear that the controller parameters are time varying. A
detailed stability analysis of the closed loop is given in [6]
and the main result is that the structural and robust stability
can be ensured by limiting the derivation channel action.

V. EXPERIMENTAL RESULTS

A. Yaw DOF Self-Oscillations

The self-oscillation experiment for yaw degree of freedom
is shown in Fig. 6. Relay switching was set to xa = 10◦, but
the a posteriori analysis showed it was in fact x∗a = 12.62◦

(because of the discrete-time nature). The relay output is more
or less symmetric which indicates that the disturbance during
the experiment was negligible. The self-oscillation parameters
from the experiment are Xm = 22.1◦ and ω = 0.997s−1.

B. Surge DOF Self-Oscillations

After the angle controller is set using the parameters from
the yaw degree self-oscillation experiment, surge degree of
freedom can be identified. The experimental results are shown
in Fig. 7 with relay switching set to xa = 10cm, but the
a posteriori analysis showed it was in fact x∗a = 12.33cm.
In this case, relay output is somewhat asymmetric which is
a result of influence of the tether that presents significant
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disturbance. It can also be shown that this asymmetry does
not affect significantly the precision of determining the surge
model parameters. The self-oscillation parameters from the
experiment are Xm = 16.22cm and ω = 0.393s−1.

C. Distance Keeping

Fig. 8 demonstrates the responses of the closed loop system
to the ramp and step referent distance change and constant
angle ϕREF = 0 with the I-PD control algorithm. It can
be seen that the Kalman filter estimates the distance value
well in between the measurements. Also, surge (uEKF ) and
yaw (rEKF ) speed estimates are smooth and show that the
disturbance was significant during the experiments (mostly due
to the influence of the tether). However, the controller preforms
well in transient as well as the steady state. The case where
measurements are not available for quite some time are shown
in Fig. 9. At times t = 435s and t = 455s the laser dots from
the laser-based distance module become unavailable due to a
disturbance and they appear back at t = 440s and t = 460s,
respectively. During this time, the Kalman filter estimated the
behavior of the vehicle properly and control was not lost.
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VI. CONCLUSION

The work presented in this paper describes the use of self-
oscillation experiments for tuning Kalman filter parameters.
The process that is observed is a distance keeping for un-
derwater vehicles based on a laser system which projects
two dots on a surface. The measurements obtained from this
system were used to determine the distance and the angle
with respect to the surface. Since the refresh frequency of the
laser system is lower than that of the control system, Kalman
filtering is needed. A discrete extended Kalman filter has
been designed in order to improve control. A novel approach
for determining unknown parameters of nonlinear systems
was applied to determine dynamic equations of the Kalman
filter. The implemented controller was nonlinear of I-PD type
which ensured the smooth controller output. The results show
that the proposed procedure is feasible in practice and gives
satisfactory results.
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