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Abstract

Convolutional neural networks for semantic segmentation suffer from low performance at
object boundaries. In medical imaging, accurate representation of tissue surfaces and vol-
umes is important for tracking of disease biomarkers such as tissue morphology and shape
features. In this work, we propose a novel distance map derived loss penalty term for se-
mantic segmentation. We propose to use distance maps, derived from ground truth masks,
to create a penalty term, guiding the network’s focus towards hard-to-segment boundary
regions. We investigate the effects of this penalizing factor against cross-entropy, Dice, and
focal loss, among others, evaluating performance on a 3D MRI bone segmentation task from
the publicly available Osteoarthritis Initiative dataset. We observe a significant improve-
ment in the quality of segmentation, with better shape preservation at bone boundaries
and areas affected by partial volume. We ultimately aim to use our loss penalty term to
improve the extraction of shape biomarkers and derive metrics to quantitatively evaluate
the preservation of shape.
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1. Introduction

The segmentation of medical images enables the quantitative analysis of anatomical struc-
tures. In both 2D and 3D medical imaging data, state of the art segmentation performance
has been achieved using Convolutional Neural Networks, with U-Net (Ronneberger et al.,
2015), V-Net (Milletari et al., 2016), and variants thereof. In this work, the original V-Net
architecture was chosen as the end-to-end encoder-decoder architecture, because of its pe-
culiar capability of learning a residual function within each down- and up- sampling stage.
This alleviates the problem of overfitting and vanishing gradients, with the added benefit of
faster convergence (He et al., 2016). The loss function proposed in (Milletari et al., 2016),
is the baseline of our experiments. V-Net aims to minimize the soft Dice loss, derived from
the Dice coefficient

Dice =
2
∑N
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Figure 1: (a) Ground truth segmentation and (b) distance map, bone boundaries in white

where the sum runs over all the p ∈ P and g ∈ G volume voxels of the generated segmen-
tation and the relative ground truth masks respectively.

We conducted an initial experiment using a V-Net architecture to segment knee bones
in 3D MRIs. In agreement with (Milletari et al., 2016) we observed superior segmentation
performance when using Dice loss compared to the weighted log-likelihood loss. Irrespective
of choice of loss function, most errors were located at the proximity of bone boundaries.
This work proposes a simple strategy to penalize segmentation errors at object boundaries
utilizing distance maps generated on the segmentation ground truth. The approach is
similar to (Kervadec et al., 2018). Nevertheless, we train with a distance based loss penalty
from the beginning, while (Kervadec et al., 2018) proposes a fine tuning like strategy.
Furthermore, we extend the approach to a 3D and multi-class context, and we are driven by
different motivations: in (Kervadec et al., 2018), the goal is to deal with highly imbalanced
dataset, whereas our focus is accurate segmentation of object boundaries. We also conduct
a more thorough comparison with other state of the art attention-based losses. Finally,
application of our method to highly imbalanced datasets is straightforward.

2. Methods and Experiments

The Osteoarthritis Initiative (OAI) dataset is comprised of knee MR scans from 4,796 unique
patients scanned at 10 different time points, MR acquisition described in (Norman et al.,
2018).Forty unique patients were manually segmented obtaining ground truth masks for
the distal femur, proximal tibia, and patella. These were used to evaluate our proposed
method with a 25/5/10 train/valid/test split. Error-penalizing distance maps (Figure 1)
were generated by computing the distance transform on the segmentation masks and then
reverting them, by voxel-wise subtracting the binary segmentation from the mask overall
max distance value. This procedure aims to compute a distance mask where pixels in
proximity of the bones are weighted more, compared to those located far away. An identical
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procedure was conducted on the negative version of the segmentation mask to calculate a
distance map inside the bones. To account for differences in bone size, with the femur
being 1.6 and 16 times larger than tibia and patella respectively, inner distance maps for
each bone were independently computed and subsequently combined. The generated maps
Φ were utilized to penalize prediction errors during training. In practice, the aim is to
minimize the “penalized” multi-class cross entropy loss L in Equation (2),

L =
1

N

N∑

i=1

(1 + Φ) ⊙

K∑

j=1

−yj log ŷj (2)

where the two sums run over the i samples and the j classes, and ⊙ is the Hadamard product.
Adding 1 to Φ has the effect of mitigating the vanishing gradient issue. We benchmarked
the proposed penalizing term against commonly used loss functions, including soft-dice
loss, focal loss (Lin et al., 2017), and the confident predictions penalizing loss proposed
in (Pereyra et al., 2017). A V-Net architecture was trained using mini-batch Gradient
Descent with Adam Optimizer (Kingma and Ba, 2014) (learning rate 10−4) and random
in-plane rotations as augmentations. MATLAB (Matlab, 1760) and Tensorflow 1.12 (Abadi
et al., 2016) were run on an Intel R©Xeon (R) Gold 6130 CPU @ 2.10GHz, four GPUs and
376GB of RAM.

Figure 2: Posterior view of distal femur and proximal tibia for a single test patient, predicted
segmentation’s absolute distance from ground truth. 0 is a perfect segmentation.

3. Results and Conclusions

Predicted segmentation masks were post-processed by applying 3D morphological closing
and extraction of the three largest connected components. To demonstrate the utility of our
loss penalty term, we compare it to other successful methods in Figure 2 and Figure 3, using
error maps and the following metrics: global Dice score (G-DSC), boundary Dice score (B-
DSC), and its relaxed version which expands boundaries by a certain tolerance. Our method
produces high-quality segmentations, with accurate results even in regions with significant
partial voluming (intercondyle notch, tibial condyles). B-DSC of our proposed loss shows
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a significant improvement in edge detection (28.83 ± 4.45% vs Dice loss 26.73 ± 5.40%
vs (Pereyra et al., 2017) 25.81±3.02% vs focal loss 26.70±4.27%). This superior performance
is maintained globally (G-DSC) (96.42±0.80% vs Dice loss 96.34±1.21% vs (Pereyra et al.,
2017) 95.96±1.30% vs focal loss 95.00±1.00%). We observed that guiding the network with
a shape-aware loss function is a promising method to improve segmentation performance.
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Appendix A. Additional Results
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Figure 3: Performance comparison of the proposed distance map penalizing loss term
against the Dice Loss function, confident predictions penalizing loss and the fo-
cal loss. (a) Global Dice Score Coefficient G-DSC, (b) Boundary Dice Score
Coefficient B-DSC, and (c-f) relaxed B-DSC tolerance 1 to 4 voxels are reported.
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