
Research Article

Distance Measurement Methods for
Improved Insider Threat Detection

Owen Lo , William J. Buchanan , Paul Griffiths, and Richard Macfarlane

Edinburgh Napier University, Edinburgh, UK

Correspondence should be addressed to William J. Buchanan; w.buchanan@napier.ac.uk

Received 24 August 2017; Revised 6 December 2017; Accepted 13 December 2017; Published 17 January 2018

Academic Editor: Gerardo Pelosi

Copyright © 2018 Owen Lo et al.
is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Insider threats are a considerable problem within cyber security and it is o�en di�cult to detect these threats using signature
detection. Increasingmachine learning canprovide a solution, but thesemethods o�en fail to take into account changes of behaviour
of users. 
is work builds on a published method of detecting insider threats and applies Hidden Markov method on a CERT data
set (CERT r4.2) and analyses a number of distance vector methods (Damerau–Levenshtein Distance, Cosine Distance, and Jaccard
Distance) in order to detect changes of behaviour, which are shown to have success in determining dierent insider threats.

1. Introduction


e act of an insider threat involves malicious activity which
occurs from within an organization or company and is
conducted by a member of such an entity. We propose that
a greater interest in this area of research has been noted
in recent years due to high pro�le public cases of individuals
who have committed acts of data leakage along with organi-
zations which have been set up speci�cally to publish such
data.

In this work, we demonstrate capabilities of detecting
insider threats against a synthetic dataset which is referred
to as the CERT Insider 
reat Dataset. We apply distance
measurement techniqueswhich have been used in the past for
text [1, 2] and speech analysis [3, 4] alongside more computer
information oriented tasks such as similarity hashing and
data mining [5, 6]. We begin by �rst reviewing related works
in this �eld of research.

For Machine Learning (ML) there are typically two main
phases [7]: training and testing, with a common set of steps
of de�ning the features and classes within the training data
set. Next a subset of attributes is located for classi�cation, and
a learning model is applied on the training data. With the
learning model, the rest of the data is then �tted back and
the success rate determined. 
e basic process that we have
in applying machine learning to cyber security is as follows
[8]:

(i) Information sources: this involves de�ning the sources
of information that would be required to capture the
right information.

(ii) Data capturing tools: this involves creating the so�-
ware agents required to process the required data.

(iii) Data preprocessing: this involves processing the data
into a format which is ready for the analysis part.

(iv) Feature extraction: this involves de�ning the key
features that would be required to the analysis engine.

(v) Analysis engine: this involves the creation of an analy-
sis engine which takes the features and creates scoring
to evaluate risks.

(vi) Decision engine: this takes the scoring systems from
the analysis stage and makes a reasoned decision on
the level of risk involved.

SIEM (Security Information and Event Management) tools,
such as Splunk, analyse security logs using well-de�ned
schemas, but new log �le analysis can be di�cult without the
required schema. Nimbalkar et al. [9] thus de�ne a frame-
work which uses a semantic description of a schema and
content in RDF (Resource Description Framework). 
is
activity is typically de�ned in the form of user activity,
network tra�c, process activity, and so on. 
eir method
involves normalising the security logs into columns and rows
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and then uses regular expression-based and dictionary-based
classi�ers. 
ese are then used to map into domain-speci�c
ontologies (such as the Uni�ed Cybersecurity Ontology [10])
and more general ones (such as DBpedia [11]).


e two main approaches used within the detection of
threats is within signature detection, where we match against
well-known patterns of malicious behaviour, or anomaly
detection, where we de�ne a normal behaviour pattern, and
then detect deviations away from this. For machine-focused
threats, such as for viruses and worms, the signaturemethods
are best, but for the detection of human focused zero-day
threats and for others, such as for fraud and data the�, the
anomaly detection methods normally work best [7].

Withinmachine learning there are o�en twomain phases:
training and testing. 
is involves de�nition of attributes
(features) and classes from training data and then reducing
these to a subnet which can be used within the classi�cation
process. A model is then created with the training set, where
the model is then used on the complete data set in order to
understand the success rate. 
is output may be in the form
of a metric or a decision. When it is a decision we typically
de�ne a confusion matrix approach where we measure the
predicted values against the actual values.

Within a decision engine, we o�en use the concept of
correct guesses (true) and incorrect ones (false). So a true
positive is where we determine that an event was correctly
detected, while a false positive is where a true event was
not detected (and thus missed by the system). Within IDS
(Intrusion Detection Systems) there is o�en a balance to be
struck when tuning the systems so that users do not get
swamped by too many false alerts (false-positives) or from
too many fake alerts.

2. Related Works

Recent work in the application of data analytic techniques
against the CERT dataset include [12–15]. 
e work of [13]
focuses on the CERT r6.2 dataset and uses Deep Neural
Networks (DNN) and Recurrent Neural Networks (RNN) to
calculate an anomaly score of each individual user. 
eir
results demonstrate that insider threat activity, using their
implementation, would produce an average score in the 95.53
percentile range.


e work of [12] applies another well-known machine
learning technique, Hidden Markov Models, to the detection
of insider threats. 
is work focuses on the CERT r4.2
dataset and it demonstrates a case study against malicious
user ''MCF0600'' that produces a low value for negative log
likelihood during the week malicious activity that occurs.

In [14], the authors of this research implement a frame-
work named RADISH and demonstrate capabilities in using
both �-Nearest Neighbour (�-NN) and �-Dimensional Tree
(�-� tree) in detection of insiders against theCERT r2 dataset.

eir results show that �-NN is generally more accurate and
faster in comparison with �-d tree. Additionally, the work
of [15] uses both the CERT dataset and bespoke synthetic
dataset generated to evaluate their approach which is based
on grouping of users based on role and applying Principal
Component Analysis (PCA) to detect outliers in user activity.

Other related works, which do not use the CERT dataset
but are applicable to this research area, include [16] which
also uses the �-NNalgorithmagainst access logs. In this work,
deviation from normality is the metric used to detect insider
threatswhich is derived by comparing resource access activity
of users against each other (the higher the deviation is, the
more likely the user is performing malicious activity). Lastly,
the work of [17] makes use of physiological signals (EEG
and ECG) and demonstrates capabilities of dierentiating
betweenmalicious and normal users during the act of insider
threats.


e work presented in this paper diers from the related
works described as we focus on applying distance measure-
ments against the CERT dataset in place of more 'heavy'
weight algorithms such as Neural Networks, Deep Learning
[13], and HMM [12]. Traditionally, distance measurements
have been applied to text analysis [1, 2] and speech based
matching [3, 4]. Our workmost closely matches classi�cation
techniques such as �-NN and PCA as applied by [14] and
[15], respectively. However, in the case of our distance mea-
surement implementations, we only consider one set of prior
data rather than attempt to classify 'normal' and 'anomalous'
behaviour based on the whole range of available data. 
us,
we hypothesise in this work that insider threat activity is non-
deterministic and learning of extended prior activity does not
always enable an increased accuracy in the prediction of a
malicious user.

Our methodology for extrapolation of data from the
CERT dataset is derived from [12] where the same approach
was used for evaluation againstHMM.
us, since our dataset
will be presented in the same structure as the work of [12],
we chose to benchmark our distance measurement results
against the HMM technique to enable a more meaningful
evaluation to take place where we assess the eectiveness of
our proposed techniques against previous work. Full evalua-
tion against every single other machine learning technique is
currently out of the scope of this paper butmay be considered
in future work. 
e next section �rst gives overview of the
CERT dataset.

3. CERT Dataset


is section provides an overview of the CERT r4.2 dataset
which is used for our evaluation of distance measurements in
the detection of malicious users.

3.1. Overview. 
e CERT dataset [18] consists of synthetic
data mixed in with benign data. We focus on release version
r4.2 of the dataset within the scope of this paper. 
e r4.2
dataset contains both benign and malicious user activity.

ere are 7 primary groups of �les which are generated from
1000 simulated users. A description on the contents of each
�le is provided in Table 1; further details can be obtained
from the CERT website at [19]. In terms of insider threats,
version r4.2 of the dataset consists of three primary scenarios
described as follows:

(1) User who did not previously use removable drives or
work a�er hours begins logging in a�er hours, using a
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Table 1: CERT r4.2 �le description.

Filename Description

device.csv
Connection and disconnection of
removable devices (e.g., USB hard drive)
is described in this �le.

email.csv Contains logs of user emails.

�le.csv File access activity is provided in this �le.

logon.csv
Relates to user activity based on logging
on and logging o on computing devices.

psychometric.csv
Provides personality and job satisfaction
variables for each of the 1000 simulated
users.

LDAP


is folder contains a set of LDAP �les
which describe the ontology of each
simulated user (their role, email,
department, supervisor, etc.).

removable drive, and uploading data to wikileaks.org
and leaves the organization shortly therea�er.

(2) User begins sur�ng job websites and soliciting
employment from a competitor. Before leaving the
company, they use a thumb drive (at markedly higher
rates than their previous activity) to steal data.

(3) System administrator becomes disgruntled and
downloads a keylogger and uses a thumb drive to
transfer it to his supervisor’s machine. 
e next day,
he uses the collected keylogs to log in as his supervisor
and send out an alarmingmass email, causing panic in
the organization. He leaves the organization imme-
diately.

In this paper, our focus is on capabilities of detecting
anomalous insiders using distance measurement techniques
through analysis of only user activity. In other words, we do
not take into consideration the personality of each simulated
user, nor the contents of each activity, nor the ontology of
the users. 
us, our focus is on extrapolation of data from
the �les device.csv, email.csv, �le.csv, and logon.csv only.
We have chosen to focus on the CERT 4.2 dataset as our
data extrapolation methodology is derived from the existing
work of [12]. Additionally, the CERT r4.2 dataset contains a
high number of insider threats (in comparison with previous
datasets) which is well suited to this work since our goal is to
assess the viability of distance measurements in comparison
with the HMM approach.
e data extrapolation is described
in the following section.

3.2. Data Extrapolation of CERT Dataset. 
e methodology
applied to data extrapolation is derived from the work of [12].
For each of the four �les of interest (device.csv, email.csv,
�le.csv, and logon.csv), we parse the �le and retain the
username, date and time of the activity, and the string
description of the activity. Next, for the string description of
the activity we replace this with a numeric value ranging from
1 to 7 for ease of analysis in the later stages of this work.
Table 2 provides details on the activity and its corresponding
numerical label. Finally, each entry is labelled with the week

Table 2: Numeric labels for activities.

Activity Numerical label

User logs on to a device. 1

User logs o a device. 2

User connects a removable device. 3

User disconnects a removable device. 4

User browses the web. 5

User sends or receives email. 6

User performs �le manipulation tasks. 7

Figure 1: Parsed result of CERT CSV �les.

in which the activity occurred (relative to the �rst log entry).

e parsed result of the �rst 10 entries is shown in Figure 1.


e source code of this data extrapolation is provided in
Algorithm 1. 
e extrapolation process, and other examples
in this paper, were performed using the R programming
language [20]. 
e R packages ''lubridate'' [21] and ''readr''
[22]were used for date/time related tasks and reading of coma
delimited �les.

4. Analytic Techniques

In this section, we describe the techniques we chose to imple-
ment in this work including HMM, Damerau–Levenshtein
(DL) Distance, Jaccard Distance, and Cosine Distance. 
e
HMM analysis technique is a replication of results originally
from the work of [12] while the distance measurement
techniques, in its application against the CERT data, forms
our contribution in this paper.

4.1. Hidden Markov Models. A Markov model is a stochastic
system which determines the probability of events based on
the current state of the system. A Hidden Markov Model
(HMM) works on the same concept with the exception
being that the state of the system is only partially observable
(as opposed to complete transparency in a Markov model).
To calculate probability of events, HMM will monitor any
observable outputs of a system to determine probabilities. As
de�ned by [23]:

“An HMM is a doubly stochastic process with an
underlying stochastic process that is not observ-
able (it is hidden), but can only be observed
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library(lubridate)

library(readr)

#Read Each File ############################

logon <- read csv("∼/r4.2/logon.csv", col types = cols(id = col skip(), pc

= col skip()))

device <- read csv("∼/r4.2/device.csv", col types = cols(id = col skip(),

pc = col skip()))

http <- read csv("∼/r4.2/http.csv", col types = cols(content = col skip(),

id = col skip(), pc = col skip(), url = col skip()))

email <- read csv("∼/r4.2/email.csv", col types = cols(attachments =

col skip(), bcc = col skip(), cc = col skip(), content = col skip(), from

=col skip(), id = col skip(), pc = col skip(), size = col skip(), to =

col skip()))

file <- read csv("∼/r4.2/file.csv", col types = cols(content = col skip(),

filename = col skip(), id = col skip(), pc = col skip()))

http["activity"] = "Http"

email["activity"] = "Email"

file["activity"] = "File"

###############################################

#Assign Tags to Each Activity ################

# Logon = 1, Logoff = 2, Connect = 3, Disconnect = 4, Http = 5, Email = 6, File = 7

logon$activity = replace(logon$activity, logon$activity=="Logon", 1)

logon$activity = replace(logon$activity, logon$activity=="Logoff", 2)

device$activity = replace(device$activity, device$activity=="Connect", 3)

device$activity = replace(device$activity, device$activity=="Disconnect", 4)

http$activity = replace(http$activity, http$activity=="Http", 5)

email$activity = replace(email$activity, email$activity=="Email", 6)

file$activity = replace(file$activity, file$activity=="File", 7)

##############################################

#Data Frame Conversion and Join ##############

logon <- as.data.frame(logon)

device <- as.data.frame(device)

http <- as.data.frame(http)

email <- as.data.frame(email)

file <- as.data.frame(file)

join <- mapply(c, logon, device, http, email, file, SIMPLIFY=FALSE)

join <- as.data.frame(join)

##############################################

#Parse and Sort data by Date/Time ############

join$date <- as.POSIXct(join$date, format = "%m/%d/%Y %H:%M:%S")

join <- join[order(join$date),]
join$week <- (as.numeric(join$date-join$date[1]) %/% 604800) + 1 #Label the

weeks starting at week 1

##############################################

Algorithm 1: CERT data extrapolation code.

through another set of stochastic processes that
produce the sequence of observed symbols.”

In machine learning, HMM are used in numerous areas
of learning including the detection of insider threats. A
recent paper by [12] has demonstrated the capabilities of this
technique in the detection of insider threat through experi-
mentations against the CERT dataset (dataset r4.2) [19]. 
e
work of [12] involved training their Hidden Markov Model
against the �rst �ve weeks of each individual user before
applying the model against a user’s future activity.

HMM uses probability to determine an unknown set
of sequences through the observation of a known set of

sequences. More speci�cally, a HMM can be used to solve
three primary problems:

(1) Given a set of sequences, and the computed Hid-
den Markov model, what is the probability of this
sequence?

(2) Given a set of sequences, how do we de�ne a model
which best �ts this sequence?

(3) How do we adjust the model parameters to best �t a
sequence?

In the application of HMM against the CERT dataset, the
work of [12] has applied the �rst and third solutions to detect
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Figure 2: HMM result for CERT user MCF0600 based on method-
ology by [12].

Figure 3: Malicious Activity for user ''MCF0600''.

insider threats. 
eir work has shown that by learning prior
weeks of each individual user’s activity (with the assumption
that the �rst �ve weeks of data for each user in the CERT
dataset consist of benign activity) and applying the �rst
solution, one is capable of producing a likelihood ofmalicious
activity based on prior activity. A version of their work (no
random restarts to maximise the likelihood of a sequence)
was replicated for this paper and proves to be valid for the
scenario they depicted against user ''MCF0600'' where a peak
in the negative log probability correlates with the insider
threat for this user (Figure 2).

One dierence which should be noted is that our imple-
mentation here shows that the insider threat occurs at Week
38 rather than Week 39 as described in [12]. 
e reason for
this is attributed to the fact that we may have processed the
date time (relative to a week) in a dierent manner. How-
ever, inspection of our parse dataset does demonstrate that
Week 38 contains user activity for the dates 20/9/2010 until
23/9/2010 for user ''MCF0600'' and correlates with when the
insider threat occurred as de�ned by the CERT answer �le.

e �rst 10 entries of where insider threat activity begins for
''MCF0600'' are shown in Figure 3 as evidence that our week
label matches the threat.

Although the work of [12] has demonstrated capability
in using Hidden Markov Models (HMM) for detection of
insiders in the CERT dataset, it was acknowledged and
observed that the computation time to generate a Hidden
Markov Model (i.e., the training phase) can be quite slow as
the number of data variables increases. Furthermore, deeper
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Figure 4: Box plot for user MCF0600.

analysis of the user MCF0600 demonstrates that this simu-
lated users activity is uniform until the very week in which
insider threat occurs as shown in the box plot in Figure 4
which may mitigate the need for more complex learning
algorithms. For every single week, the box plot shows that
the median activity for MCF0600 is activity 5 (browsing the
web). 
e only variation in user activity begins at Week 38
which is the week where simulated malicious activity occurs.
Additionally the �nal week of activity, Week 42, produces
some variation in activity.
is is due to the far lower number
of activities which occur in this �nal week in comparisonwith
previous weeks. We found that the �nal week of the majority
of users demonstrated this trend.

In the subsections which follow, we demonstrate distance
measurement techniques which show potential in the detec-
tion of insider threats within the CERT r4.2 dataset which
works both faster and more e�ciently in comparison with
HMM.


e source code for producing the HMM result using the
R programming language is provided in Algorithm 2 while
the source code for the box plot is in Algorithm 3. 
e R
package ''HMM'' was used for Hidden Markov Model related
computations [24].

4.2. Distance Measurements. In the past, distance measure-
ments have been applied to text [1, 2] and speech based
matching [3, 4]. More recently, the use of such techniques
in cryptography and data mining has been of value, namely,
similarity hashing techniques which allow for approximate
matching of data [5, 6]. A wide variety of algorithms have
been proposed in this area of research (a description of each
is outside the scope of this paper); however, the fundamental
aspect of each algorithm remains the same: how similar or
dissimilar two ormore sets of data are given a distancemetric.

Given the fact that the CERT r4.2 dataset consists of
user activity which may be described as discrete values
(ranging from 1 to 7 based on the extrapolation technique
from an earlier section of this paper), we believe there is
capability of using distance measurements to assess and
detect anomalous behaviour which may be identi�ed as
insider threats.Within the scope of thework carried out in the
remaining sections of this paper, we focus on three distance
measurement techniques including Damerau–Levenshtein
Distance, Cosine Distance, and Jaccard Distance.
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library(HMM)

library(readr)

############## Data Parsing Phase ##############

cert r4 2 dataset <- read csv("∼/cert r4.2 dataset.csv") #Load the dataset.

Remember to change the path to file location on own machine.

username = "MCF0600"

allWeeks <- split(cert r4 2 dataset[cert r4 2 dataset$user %in%
username,]$activity, cert r4 2 dataset[cert r4 2 dataset$user
%in% username,]$week) #Filter dataset to only include data relevent to chosen user.

indx <- sapply(allWeeks, length) #Convert the allWeeks variable into DataFrame.

res <- as.data.frame(do.call(cbind,lapply(allWeeks, 'length<-',max(indx))))
#################################################

############## HMM Phase ########################

hmm = initHMM(c(1,2,3,4,5,6,7,8,9,10), c(1,2,3,4,5,6,7)) #Initiate a 10

state HMM with 7 labels (which represent activities of user.)

model = baumWelch(hmm, na.omit(unlist(res[1:5])), maxIterations=20,

pseudoCount =0.1, delta = 0.01) #Train our model with the first 5 weeks of user activity.

vector = c()

for (i in 6:length(res)) #For the remaining weeks of activity...

{
#Calculate probability of a given observed sequence with respect to our model

logForwardProbabilities = forward(model$hmm, na.omit(unlist(res[i]))) #

... calculate the probability of week i occurring against model...

like <- ((logForwardProbabilities))

lenthOfLike <- (length(like)/10)

answer <- sum(like[,lenthOfLike])

vector[i - 5] <- answer #... store result of probability in vector...

model = baumWelch(model$hmm, na.omit(unlist(res[1:i])), maxIterations=20,

pseudoCount =0.1, delta=0.01) #... and update model with week i.

}
######### Plot Result #########

plot(6:(length(res)), vector[1:(length(vector))] ∗ -1, type="l",

xlab="Week", ylab="-Log Probability", main=paste("HMM for", username, sep=" "))

Algorithm 2: HMM implementation code.

library(readr)

cert r4 2 dataset <- read csv("∼/cert r4.2 dataset.csv") #Load the dataset.

username = "MCF0600"

allWeeks <- split(cert r4 2 dataset[cert r4 2 dataset$user %in%
username,]$activity, cert r4 2 dataset[cert r4 2 dataset$user
%in% username,]$week) #Filter dataset to only include data relevant to chosen user.

indx <- sapply(allWeeks, length) #Convert the allWeeks variable into DataFrame.

res <- as.data.frame(do.call(cbind,lapply(allWeeks, 'length<-',max(indx))))
boxplot(res[6:length(res)], main=paste("Boxplot for", username,

sep=" "), xlab="Week", ylab="Activity")

Algorithm 3: Box plot code for user MCF0600.

(1) Damerau–Levenshtein Distance. 
e DL (Damerau–Lev-
enshtein) Distance, which has been traditionally applied to
string values, de�nes the minimum number of operations
required for one value to be changed to the other value. 
e
operations allowed in the DL algorithm include insertion,
deletion, and replacement of values. Furthermore, transpo-
sition of adjacent values is included too. As an example,
the strings 'ca' and 'abc' would have a Damerau–Levenshtein
Distance of 2 since 'ca' -> 'ac' -> 'abc'. In other words, a

transposition (swap 'c' with 'a') and insertion operation
(insert 'b') is required.


e DL Distance, in most examples given, is generally
applied to string values but this technique, and other distance
techniques which follow, can also be applied directly to inte-
ger values. For example, the integer sequence {3, 1} applied
against {1, 2, 3} would also result in a distance metric of
2 since {3, 1} -> {1, 3} -> {1, 2, 3}. 
us, we have capabilities
to apply this distance measurement technique to our insider
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DL Distance for MCF0600
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Figure 5: Damerau–Levenshtein Distance for user MCF0600.

threat dataset since our activity values are discrete from range
1 to 7. 
e equation for DL Distance is presented as follows:

lev�,� (�, �)

=

{{{{{{{
{{{{{{{
{

max (�, �) if min (�, �) ,

min

{{{{
{{{{
{

lev�,� (� − 1, �) + 1
lev�,� (�, � − 1) + 1
lev�,� (� − 1, � − 1) + 1 (� ̸= ��)

otherwise,
(1)

where  and � are our two sets of data and � and � are the
length of each respective sets of data.

Figure 5 presents the DL Distance result for user
MCF0600. 
e labelled data point (Week 38) demonstrates
the highest distance from prior activity and correctlymatches
the week in which the insider threat occurred. 
e distance
metric is calculated as the current week against the prior week
(i.e., distance between Week 38 against Week 37).


e R package 'stringdist' [25] was used for calculation
of the DL Distance. 
e source code for this implemen-
tation is provided in Algorithm 4. 
e 'stringdist' package
features numerous other algorithms for calculation of dis-
tance between values. We investigate some of the distance
measurement techniques which are of interest in analysis and
detection of insider threats in the CERT r4.2 dataset in the
next section.

(2) Jaccard Distance. Jaccard similarity coe�cient is a mea-
sure of similarity between two sets of data. 
e similarity
coe�cient is calculated by dividing the number of shared
values (in both sets of data) against the total number of shared
and unshared values in both sets of data. As an example,
consider the two sets of integers {3, 1} and {1, 2, 3}, the Jaccard
similarity coe�cient would be 0.66 since two integers are
the same and there are three shared and unshared values in
total (2/3). 
e Jaccard Distancemetric measures the dissim-
ilarity between two sets of data and is calculated by simply
subtracting 1 from the coe�cient value [26].
us, our Jaccard
Distance for the integer sets {3, 1} and {1, 2, 3} is 0.33. 
e
greater the distance value, the more dissimilar the two sets

Jaccard Distance for MCF0600
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Figure 6: Jaccard Distance for user MCF0600.

of data are.
e equations for Jaccard coe�cient and distance
are presented as follows:

Jaccard Coe�cient = |� ∩ �|
|�| + |�| − |� ∩ �|

Jaccard Distance = 1 − Jaccard Coe�cient,
(2)

where � is the �rst set of variables to be compared against �,
the second set of variables.

Figure 6 presents the result of MCF0600 when we
calculate the Jaccard Distance for each consecutive week of
user activity. Similar to previous results, we see a spike in
anomalous activity atWeek 38which correlateswithwhen the
insider attack occurred.
e result here is produced using the
''stringdist'' [25] package using the same source code as shown
in Algorithm 4 with the method option switched to 'jaccard'
instead of 'dl'.

(3) Cosine Distance. Cosine similarity is a measurement of
similarity between two sets of data relative to the angle of
Cosine between the two datasets. A similarity value of 1
means the two sets of data are the same. In the ''stringdist''
[25] implementation, Cosine similarity is calculated by �rst
counting the number of occurrences in which each value is
observed for both sets of data. Next, the sum of the product
of the two sets of counts is then divided by each set of
normalised counts multiplied together. An example of cal-
culating Cosine similarity using the data {1, 2, 3, 4, 5} and
{1, 2, 3, 4, 4} follows:

(1) 
e count of occurrences would be {1, 1, 1, 1, 1} and
{1, 1, 1, 2, 0}, respectively (the last value is 0 since 5 is
not observed in the second set of data).

(2) 
e sum and product of these two counts would result
in the value of 5.

(3) 
e square root and normalised �rst set of occur-
rences is calculated to be 2.24.

(4) 
e square root and normalised second set of occur-
rence is calculated to be 2.65.

(5) Multiplying the results of steps (3) and (4) results in
5.92.

(6) Finally, we divide 5 (from step (2)) over 5.92 (step (5))
to get to produce a Cosine similarity value of 0.84.
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library(readr)

library(stringdist)

cert r4 2 dataset <- read csv("∼/cert r4.2 dataset.csv") #Load the dataset.

Remember to change the path to file location on own machine.

username = "MCF0600"

allWeeks <- split(cert r4 2 dataset[cert r4 2 dataset$user %in%
username,]$activity, cert r4 2 dataset[cert r4 2 dataset$user
%in% username,]$week) #Filter dataset to only include data

relevent to chosen user.

indx <- sapply(allWeeks, length) #Convert the allWeeks variable

into DataFrame.

res <- as.data.frame(do.call(cbind,lapply(allWeeks, 'length<-',max(indx))))
########## Distance Calculation #############

w <- c()

for (i in 6:length(res))

{
if (i <= length(res))

{
di <- seq dist(na.omit(res[i]), na.omit(res[i-1]), method="dl")

w[i - 5] <- di

}
}
highestDist = 0;

for (result in w)

{
if ((result) > highestDist)
{

highestDist = result

}
}
hd week = match(highestDist, w) + 5

plot(6:(length(res)), w[1:(length(w))], type="l", xlab="Week",

ylab="DL Distance ", main=paste("DL Distance for", username, sep=" "))

text(x=hd week, y=highestDist, label=hd week)

Algorithm 4: Damerau–Levenshtein distance calculation code.

With a value of 0.84, the Cosine similarity of the two example
sets of data can be considered similar to each other (the closer
to 0 the more similar they are). In Cosine Distance, the value 1
is simply subtracted fromCosine similarity to provide uswith
an inverse result (i.e., the greater the distance value, the more
dissimilar two sets of data may be considered). 
e equation
for Cosine similarity and distancemetric is presented next for
reference:

Cosine Similarity = ∑��=1 � ���
√∑��=1 �2�√∑��=1 �2�

Cosine Distance = 1 − Cosine Similarity,
(3)

where � and � are our two sets of respective data.
Figure 7 provides the Cosine Distance result for user

MCF0600 when we calculate the current week of the
users activity against their previous week. Similar to the
Damerau–Levenshtein Distance and Jaccard Distance result,
the week where insider attack occurs (Week 38) demonstrates
the highest level of Cosine Distance. 
e result here is
produced using the ''stringdist'' [25] package using the same

Cosine Distance for MCF0600
38
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Figure 7: Cosine Distance for user MCF0600.

source code as shown in Algorithm 4. 
e method is set to
'cosine'.

4.3. Summary. We have demonstrated in this section that
HMM and distance measurement techniques both have
capability of detecting an insider threat when applied against
malicious users within the CERT r4.2 dataset. 
e results
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presented up to this point have focused speci�cally on user
“MCF0600” as a form of baseline to validate whether each
of the techniques has capability to detect insider threat based
on analysis of user activity. In the section which follows, we
present full evaluation ofHMMand each of the three distance
measurement techniques against all known attackers within
theCERT r4.2 dataset.
e goal of this evaluation is to provide
a comparative benchmark on the ability of each technique in
its capability to detect insider threats.

5. Evaluation

5.1. Design. To evaluate the eectiveness of HMM and the
three distance measurement techniques described in this
work,we apply each algorithm to all knownmalicious users in
the CERT r4.2 dataset. In total, there are 70 malicious users.

e insiders are known due to the answer �le (provided by
CERT) which forms our ground truth for evaluating whether
the correct activity is detected as a threat for each malicious
user.

Prior to conducting the experiment, we wished to assess
whether the techniques we applied would answer the follow-
ing questions: (1)Would certain techniques better detect cer-
tain malicious activity scenarios? and (2) Which technique,
overall, would produce the highest detection rate? Answering
the �rst question would be of value in assessing whether
certain distancemeasurement techniques are better at detect-
ing speci�c types of malicious activity (i.e., Scenario 1, 2,
or 3 as described earlier) while answering the second ques-
tion, naturally, demonstrates how eective the algorithm is
in detecting insider threats overall.

5.2. Implementation. For each of the 70 malicious users
within the CERT r.4.2 dataset, we �rst query their related
answer �le and extract all the dates in which malicious
activity is stored. We calculate the distance measurement
of user activity by comparing Week�+1 against Week�. Each
distance result is stored until all weeks have been analysed for
each individual user. For each distance measurement result,
we retain the highest value and correlate it with the week
and date time in which the user activity occurred. Finally, the
date/time value with the highest distance is compared against
the answer �le provided by CERT to see if there is a match.
In this experiment, a match signi�es that malicious activity
was detected for the correct week of user activity while
no match means no malicious activity was detected. 
e
implementation source code for distance measurements is
given in Algorithm 5.

For HMM, we apply the methodology as originally
described by [12] in which each users activity is �rst trained
on a week-by-week basis and the negative log likelihood of
activity for the current week is computed.We retain the week
in which the lowest log likelihood value is noted and aim to
correlate this with a week found in themalicious users answer
�le. If amatch occurs, we can determine that HMM is capable
of detecting malicious activity for the chosen user while no
match implies it failed.
e implementation source for HMM
is given in Algorithm 6. 
e results of this evaluation are
provided in the next section.

Table 3: Detection rate for each distance measurement technique.

DL Jaccard Cosine HMM

Scenario 1 9 18 12 18

Scenario 2 16 1 20 28

Scenario 3 2 6 1 2

Detection rate 0.39 0.36 0.47 0.69

Table 4: Total detection rate of combined distance measurements.

DL, Jaccard, and Cosine

All true-positives 56

Total detection rate 0.8

5.3. Results. 
e detection ratio (number of malicious user
detection cases over the total number of malicious users)
is presented in Figure 8 while Table 3 gives the number of
true-positives per scenario for each technique. Additionally,
Table 4 gives the total detection rate of insider threats
when combining all three distance measurement techniques.
Analysis and discussion of results follow in the next section.

6. Results and Discussion

From the individual detection capabilities of each scenario
(Table 3), both Jaccard Distance and HMM demonstrated
the greatest capability in the detection of Scenario 1, while
HMM was best suited in detection of Scenario 2. Jaccard
Distance also scores highest once again in the detection of
Scenario 3. For overall detection rate (i.e., the number of
insiders detected regardless of scenario), theHMMtechnique
produces the highest detection ratio at 0.69 (48/70) while
Jaccard Distance produces the lowest detection ratio of the
three techniques tested at 0.35. For each individual scenario,
Jaccard Distance and HMM have the greatest capability in
the detection of Scenario 1 with 18 true-positives (out of 30
in total) while HMM has the greatest capability in detection
of Scenario 2 with 28 true-positives (out of 30 in total).
Lastly, Jaccard Distance one again has the greatest capability
in detection of Scenario 3 with 6 true-positives out of a total
of 10.

From the results presented, one may prematurely con-
clude that HMM is considered the best of the four techniques
demonstrated in this work due to possessing the highest
detection rate but deeper analysis of the full individual results
(see Table 5) shows that there is still value in the dis-
tance measurement techniques. Firstly, we note that each of
the three distance measurement techniques demonstrates
capability of uniquely detecting a speci�c malicious user
when the other two techniques fail. In the case of DL, 5
unique insiders were detected (examples include 'DCH0843',
'GHL0460', and'KLH0596') while no true-positives were
raised by the other techniques.

For Jaccard Distance and HMM, three unique insiders
were detected while Cosine Distance resulted in two unique
detection instances. Secondly, from a computational perspec-
tive, each of the three distance measurement techniques are
exceptionally faster than the use of HMM. We were able to
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library(readr)

library(stringdist)

usernames <- c()

scenarios <- c()

filenames <- c()

dlResults <- c()

jacResults <- c()

cosResults <- c()

files <-
list.files(

path = "∼/answers",
pattern = "*.csv",

full.names = T,

recursive = TRUE

)

for (fin files)

{
username <- regmatches(f, regexpr("-[A-Za-z0-9]+\\.", f))

username <- sub("-", "", username)

username <- sub("\\.", "", username)

usernames <- c(usernames, username)

scenario <- regmatches(f, regexpr("-[1-3]-", f))

scenario <- sub("-", "", scenario)

scenario <- sub("-", "", scenario)

scenarios <- c(scenarios, scenario)

filenames <- c(filenames, f)

}
for (i in 1:length(usernames))

{
dlResults temp <- c()

jacResults temp <- c()

cosResults temp <- c()

answerFile <-
read csv(filenames[i],

col names = FALSE,

col types = cols only(X3 = col guess()))

answerFile$X3 <-
as.POSIXct(answerFile$X3, format = "%m/%d/%Y %H:%M:%S", tz = "UTC")

user <- cert r4 2 dataset[cert r4 2 dataset$user == usernames[i], ]

m <-
match(answerFile$X3, user$date) #match answer file dates to user dates

week <-
user$week[m[1:length(m)]] #week in which the attack ACTUALLY occurred

#########Filter dataset to only include data relevant to chosen user. #######

allWeeks <-
split(cert r4 2 dataset[cert r4 2 dataset$user %in% usernames[i], ]$activity,

cert r4 2 dataset[cert r4 2 dataset$user %in% usernames[i], ]$week)
indx <-

sapply(allWeeks, length) #Convert the allWeeks variable into DataFrame.

res <-
as.data.frame(do.call(cbind, lapply(allWeeks, 'length<-', max(indx))))

#Reference:

http://stackoverflow.com/questions/15124590/column-binding-in-r

#################################################

Algorithm 5: Continued.
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for (i in 6:length(res))

{
if (i <= length(res))

{
dl <- seq dist(na.omit(res[i]), na.omit(res[i - 1]), method = "dl")

jacc <-
seq dist(na.omit(res[i]), na.omit(res[i - 1]), method = "jaccard")

cosine <-
seq dist(na.omit(res[i]), na.omit(res[i - 1]), method = "cosine")

dlResults temp <- c(dlResults temp, dl)

jacResults temp <- c(jacResults temp, jacc)

cosResults temp <- c(cosResults temp, cosine)

}
}
##### DL ########

highestDl = 0

for (result in dlResults temp)

{
if ((result) > highestDl)
{

highestDl = result

}
}
dl week = match(highestDl, dlResults temp) + 5 #Offet is +5

since our results start at week 6.

if (dl week %in% week)

{
dlResults <- c(dlResults, dl week)

}
else

{
dlResults <- c(dlResults, "FALSE")

}
##### Jaccard ########

highestJac = 0

for (result in jacResults temp)

{
if ((result) > highestJac)
{

highestJac = result

}
}
jac week = match(highestJac, jacResults temp) + 5

if (jac week %in% week)

{
jacResults <- c(jacResults, jac week)

}
else

{
jacResults <- c(jacResults, "FALSE")

}
##### Cosine ########

highestCos = 0

for (result in cosResults temp)

Algorithm 5: Continued.
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{
if ((result) > highestCos)
{

highestCos = result

}
}
cos week = match(highestCos, cosResults temp) + 5

if (cos week %in% week)

{
cosResults <- c(cosResults, cos week)

}
else

{
cosResults <- c(cosResults, "FALSE")

}
################

}
fullResults <-

data.frame(usernames, scenarios, filenames, dlResults,

jacRsults, cosRsults)

Algorithm 5: Distance measurement full evaluation code.

compute the distance for each individual technique in the
time frameofminuteswhile theHMMtechnique took greater
than 24 hours. As our data size of user activity increases
(likely in real-life situations) thus so will the time taken to
compute the datasets which may be a disadvantage in situa-
tions where computational resources are lacking.


e primary reason that distance measurements perform
faster, in comparison with HMM, is due to the low com-
plexity of such algorithms. In a distance measurement based
approach, one simply needs to compare one set of data against
a second set of data using the de�ned algorithm to calculate
similarity (or dissimilarity). 
us, in the scope of this work,
distance measurements will scale in a linear fashion relative
to the number of weeks that need to be analysed for each
individual user. HMM, on the other hand, requires one to
consider the number of hidden states and starting parameters
before performing a training phase to enable calculation of
likelihood probabilities to take place. 
e training phase for
the HMM is also required for each individual user and, in the
case of using random restarts in the Baum-Welch algorithm
(as performed by [12]), the time taken for each instance of
training may be di�cult to determine due to the random
nature of this algorithm.

Based on the �ndings described thus far, it may be
stated that no one technique is most suited in the detection
of insider threats within the CERT r4.2 dataset. Although
the HMM produces the highest detection ratio, none of
the techniques have a 100% accuracy rating. Furthermore,
given the low detection rate for each individual technique,
no signi�cant conclusion may be made on whether certain
techniques are best suited for speci�c insider scenarios. 
e
only exception to this statement is that HMM does show
greater potential in the detection of Scenario 2 type activities.

e results do demonstrate that there is potential in the use
of distance measurements if we choose to combine them

to come to a decision-making process (Table 4). By amal-
gamating the three distance techniques (i.e., if any of the
three techniques match a speci�c week where insider threat
occurs) we are capable of detecting up to 80% (56/70) of all
insiders in the CERT r4.2 dataset (as opposed to 0.69 for
HMM). Naturally, this amalgamation process may lead to a
potentially greater number of false-positives if we apply it to
benign datasets; thus future work is a consideration here.

7. Conclusions

7.1. Summary. 
is work has shown that distance measure-
ments, including DL, Jaccard, and Cosine Distance, all have
capability of the detection of insider threats within the CERT
r4.2 dataset. In terms of detection rate, our results show that,
out of 70 insiders, we are capable of producing a detection rate
of 0.39, 0.36, and 0.47 for DL, Jaccard, and Cosine Distance,
respectively. An aggregated score, through the combination
of all three techniques, produces a total detection rate of 0.8.

is is in comparison with 0.69 for the HMM technique as
originally described by [12]. Our �ndings demonstrate that
none of the techniques evaluated have capability to produce
a 100% accuracy rate but distance measurements do have
one noted advantage in place of more heavy weight machine
learning algorithms: speed. While the HMM took greater
than 24 hours to process all 70 malicious users’ data, the
distancemeasurements (both individual and combined) only
took minutes to process. 
e advantage of speed may be of
value in real-life scenarios whereby datasets of user activity
may be signi�cantly larger than the CERT dataset.

7.2. Limitations. In regard to real-life scenarios, we must
acknowledge that there are certain limitations in the results
presented in this, and most related works reviewed in this
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library(HMM)

library(readr)

library(stringdist)

usernames <- c()

scenarios <- c()

filenames <- c()

hmmResults <- c()

files <-
list.files(

path = "∼/answers",
pattern = "*.csv",

full.names = T,

recursive = TRUE

)

for (f in files)

{
username <- regmatches(f, regexpr("-[A-Za-z0-9]+\\.", f))

username <- sub("-", "", username)

username <- sub("\\.", "", username)

usernames <- c(usernames, username)

scenario <- regmatches(f, regexpr("-[1-3]-", f))

scenario <- sub("-", "", scenario)

scenario <- sub("-", "", scenario)

scenarios <- c(scenarios, scenario)

filenames <- c(filenames, f)

}
for (i in 1:length(usernames))

{
answerFile <-

read csv(filenames[i],

col names = FALSE,

col types = cols only(X3 = col guess()))

answerFile$X3 <-
as.POSIXct(answerFile$X3, format = "%m/%d/%Y %H:%M:%S", tz = "UTC")

user <-
cert r4 2 dataset[cert r4 2 dataset$user == usernames[i], ]

m <-
match(answerFile$X3, user$date) #match answer file dates to user dates

week <-
user$week[m[1:length(m)]] #week in which the attack ACTUALLY occurred

allWeeks <-
split(cert r4 2 dataset[cert r4 2 dataset$user %in% usernames[i], ]$activity,

cert r4 2 dataset[cert r4 2 dataset$user %in% usernames[i], ]$week)
#Filter dataset to only include data relevent to chosen user.

indx <-
sapply(allWeeks, length) #Convert the allWeeks variable into DataFrame.

res <-
as.data.frame(do.call(cbind, lapply(allWeeks, 'length<-', max(indx))))

############## HMM Phase ########################

hmm = initHMM(c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10), c(1, 2, 3, 4, 5, 6, 7))

#Initiate a 10 state HMM with 7 labels (which represent activities of user.)

model = baumWelch(

hmm,

na.omit(unlist(res[1:5])),

maxIterations = 20,

pseudoCount = 0.1,

delta = 0.01

) #Train our model with the first 5 weeks of user activity.

vector = c()

Algorithm 6: Continued.
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for (i in 6:length(res))

#For the remaining weeks of activity...

{
#What is the probability of a given observed sequence with respect to our model?

logForwardProbabilities = forward(model$hmm, na.omit(unlist(res[i]))) #... calculate the

probability of week i occurring against model...

like <- ((logForwardProbabilities))

lenthOfLike <- (length(like) / 10)

answer <- sum(like[, lenthOfLike])

vector[i - 5] <-
answer #... store result of probability in vector...

print(i) #Prints the current week to so we can see progress of computations in the console.

model = baumWelch(

model$hmm,
na.omit(unlist(res[1:i])),

maxIterations = 20,

pseudoCount = 0.1,

delta = 0.01

) #... and update model with week i.

}
########## Find Lowest Probability #############

probability = 0

for (result in vector)

{
if ((result) < probability)
{

probability = result

}
}
hmmWeek = match(probability, vector) + 5 #Find week which lowest probability occurred in. Offet is

+5 since our results start at week 6.

if (hmmWeek %in% week)

{
hmmResults <- c(hmmResults, hmmWeek)

}
else

{
hmmResults <- c(hmmResults, "FALSE")

}
}

fullResults <-
data.frame(usernames, scenarios, filenames, hmmResults)

Algorithm 6: HMM full evaluation code.

paper since evaluation are conducted against synthetic data-
sets. As shown in the box plot of user activity of 'MCF0600'
(Figure 4), there is signi�cant uniformity in this users actions
until the very week in which malicious activity occurs. We
feel it is unlikely real-life activity would conform to such
uniformity thus raising the question of how feasible all
techniques described in this work would perform in real-
life scenarios. Naturally, the ideal scenario would be to apply
such techniques against real-life data sets captured within
organizations but, due to con�dentiality and privacy matters,
this may not be ideal for researchers since comparison of
results would be di�cult if not impossible.

A second limitation related to distance measurements,
from the implementation we have applied, is that only the
prior week of a user’s activity is compared against the current

week (i.e., Week�+1 compared against Week�). We note that
this may have potential in producing false-positives in other
datasets if a user’s activity deviates greatly from one week to
another (under the assumption that their activity is benign).
Furthermore, the comparison of behaviour on week-by-week
basis may produce false-negatives if an attacker stretches out
their malicious behaviour in longer periods of time.

A third limitation of this work is that our evaluation is
only conducted against known malicious users within the
CERT 4.2 dataset. Since our current technique de�nes amali-
cious event based on the selection of the highest distancemet-
ric value, this approach would naturally raise a large amount
of false-positives against benign users as well. 
e work
of [12] solved this problem by applying thresholds to the
probability values produced by their HMM and we believe
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Table 5: Full evaluation results.

Username Scenario Answer �lename DL Jaccard Cosine HMM

AAM0658 1 r4.2-1-AAM0658.csv False 42 42 42

AJR0932 1 r4.2-1-AJR0932.csv 37 36 36 36

BDV0168 1 r4.2-1-BDV0168.csv False 30 False 31

BIH0745 1 r4.2-1-BIH0745.csv False False False False

BLS0678 1 r4.2-1-BLS0678.csv False False False False

BTL0226 1 r4.2-1-BTL0226.csv False 40 False 40

CAH0936 1 r4.2-1-CAH0936.csv False 32 False False

DCH0843 1 r4.2-1-DCH0843.csv 57 False False False

EHB0824 1 r4.2-1-EHB0824.csv 30 29 29 29

EHD0584 1 r4.2-1-EHD0584.csv 40 39 39 39

FMG0527 1 r4.2-1-FMG0527.csv False False False 53

FTM0406 1 r4.2-1-FTM0406.csv False 47 47 47

GHL0460 1 r4.2-1-GHL0460.csv 45 False False False

HJB0742 1 r4.2-1-HJB0742.csv False 46 False 46

JMB0308 1 r4.2-1-JMB0308.csv False 28 28 28

JRG0207 1 r4.2-1-JRG0207.csv False 55 55 55

KLH0596 1 r4.2-1-KLH0596.csv 59 False False False

KPC0073 1 r4.2-1-KPC0073.csv False 27 27 27

LJR0523 1 r4.2-1-LJR0523.csv False 30 30 30

LQC0479 1 r4.2-1-LQC0479.csv False 37 False 37

MAR0955 1 r4.2-1-MAR0955.csv False False False False

MAS0025 1 r4.2-1-MAS0025.csv False False False 39

MCF0600 1 r4.2-1-MCF0600.csv 38 38 38 38

MYD0978 1 r4.2-1-MYD0978.csv 51 False False False

PPF0435 1 r4.2-1-PPF0435.csv False False 58 False

RAB0589 1 r4.2-1-RAB0589.csv 37 False False False

RGG0064 1 r4.2-1-RGG0064.csv False 42 42 42

RKD0604 1 r4.2-1-RKD0604.csv False False False False

TAP0551 1 r4.2-1-TAP0551.csv False 42 False 42

WDD0366 1 r4.2-1-WDD0366.csv False 60 False False

AAF0535 2 r4.2-2-AAF0535.csv False False 33 32

ABC0174 2 r4.2-2-ABC0174.csv False False 50 49

AKR0057 2 r4.2-2-AKR0057.csv False False False 46

CCL0068 2 r4.2-2-CCL0068.csv 60 False 57 58

CEJ0109 2 r4.2-2-CEJ0109.csv False False 64 64

CQW0652 2 r4.2-2-CQW0652.csv False False 64 False

DIB0285 2 r4.2-2-DIB0285.csv False False 37 36

DRR0162 2 r4.2-2-DRR0162.csv 48 False 50 50

EDB0714 2 r4.2-2-EDB0714.csv 47 False 46 48

EGD0132 2 r4.2-2-EGD0132.csv 37 False 37 37

FSC0601 2 r4.2-2-FSC0601.csv False False False 62

HBO0413 2 r4.2-2-HBO0413.csv False False 63 63

HXL0968 2 r4.2-2-HXL0968.csv 40 False 35 41

IJM0776 2 r4.2-2-IJM0776.csv 32 False False 33

IKR0401 2 r4.2-2-IKR0401.csv False False 56 57

IUB0565 2 r4.2-2-IUB0565.csv 47 False 46 46

JJM0203 2 r4.2-2-JJM0203.csv False False 40 40

KRL0501 2 r4.2-2-KRL0501.csv 51 False False 53
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Table 5: Continued.

Username Scenario Answer �lename DL Jaccard Cosine HMM

LCC0819 2 r4.2-2-LCC0819.csv 28 False 30 30

MDH0580 2 r4.2-2-MDH0580.csv 58 False False 59

MOS0047 2 r4.2-2-MOS0047.csv False False False False

NWT0098 2 r4.2-2-NWT0098.csv False False 65 64

PNL0301 2 r4.2-2-PNL0301.csv 31 False False 30

PSF0133 2 r4.2-2-PSF0133.csv 31 False 31 37

RAR0725 2 r4.2-2-RAR0725.csv 28 False False 31

RHL0992 2 r4.2-2-RHL0992.csv 36 False 32 34

RMW0542 2 r4.2-2-RMW0542.csv 33 27 False 30

TNM0961 2 r4.2-2-TNM0961.csv False False 49 48

VSS0154 2 r4.2-2-VSS0154.csv False False False 43

XHW0498 2 r4.2-2-XHW0498.csv 36 False 33 37

BBS0039 3 r4.2-3-BBS0039.csv False 32 False False

BSS0369 3 r4.2-3-BSS0369.csv False False False False

CCA0046 3 r4.2-3-CCA0046.csv False False False False

CSC0217 3 r4.2-3-CSC0217.csv 23 23 23 23

GTD0219 3 r4.2-3-GTD0219.csv False False False False

JGT0221 3 r4.2-3-JGT0221.csv 28 28 False 28

JLM0364 3 r4.2-3-JLM0364.csv False 69 False False

JTM0223 3 r4.2-3-JTM0223.csv False 29 False False

MPM0220 3 r4.2-3-MPM0220.csv False False False False

MSO0222 3 r4.2-3-MSO0222.csv False 49 False False


is table gives the full results of evaluation against all 70 insiders against each of the three distance measurement techniques described in this paper. An entry
of “False” indicates that the technique failed to detect the correct week in which insider threat occurred while a numerical value denotes the week in which the
highest measurement value was detected for an attack.

a similar technique may be applicable in the case of using
distance measurements too. However, a thorough analysis of
threshold techniques is outside the scope of this paper.
Instead we provide a prototype of how thresholds may be
implemented alongside other areas of future work in the �nal
part of this paper.

7.3. Future Work. For future work, there may be value in
experimenting with dierent time windows of analysis (i.e.,
calculating distance measurements of greater than or less
than one week of user activity). We have focused on
calculating the distance between individual weeks of user
activity—there may be scope in analysing each individual
users pattern of activity and reducing or increasing this
window to produce greater detection rate. Secondly, we have
focused speci�cally on analysis of users who are known to be
malicious users and focused primarily on true-positives.
Analysis of benign users and evaluation on the number of
false-positives distance techniques produce would be of great
value in this work. It is likely that optimisation of the distance
measurement techniques demonstrated would be required in
order to ensure a low level of false-positives is produced
against benign users.

To reduce the number of false-positives, especially when
applying the proposed techniques against benign users, some
form of threshold will be required similar to the work of [12].

DL Jaccard Cosine HMM

Detection rate against CERT r4.2 malicious users
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Figure 8: Detection ratio results.

An illustrative approach to applying thresholds is to use the
�-score algorithm against the distance values produced for
each user on a week-by-week basis. Figures 9 and 10 provide
examples of a �-score 'smoothing' approach, originally writ-
ten by [27], against user’s 'MCF0600' and 'NGF0157' when
the Damerau–Levenshtein distance technique is used. User
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Figure 9: Applying �-score smoothing to DL distance (malicious
user MCF0600).

DL Distance for NGF0157

Z-score smoothing for NGF0157

20 30 40 50 60 7010

(Week)

20 30 40 50 60 7010

(Week)

100

400

D
L

D
is

ta
n

ce

−1.0

0.0

1.0

Z
-s

co
re

 

Figure 10: Applying �-score smoothing to DL distance (benign
User NGF0157).

'MCF0600' is considered a malicious user while 'NGF0157' is
a benign user within the CERT r4.2 dataset. By applying the
correct parameters (the parameters of lag = 30, threshold =
10, and in�uence = 0 were used) during the �-score smooth
process, we can retain any peaks in our data which may be
malicious behaviour while removing any peaks which are
considered benign—therefore reducing the number of false-
positives. Naturally, the choice of the correct parameters to
use for each user will need to be accounted for; thus, we leave
this task to future work.
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