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A B S T R A C T

A major recent development in observational cosmology has been an accurate measurement

of the luminosity distance–redshift relation out to redshifts z ¼ 0:8 from Type Ia supernova

standard candles. The results have been argued as evidence for cosmic acceleration. It is well

known that this assertion depends on the assumption that we know the equation of state for all

mass–energy other than normal pressureless matter; popular models are based either on the

cosmological constant or on the more general quintessence formulation. However, this

assertion also depends on a number of other assumptions, implicit in the derivation of the

standard cosmological field equations: large-scale isotropy and homogeneity, the flatness of

the Universe, and the validity of general relativity on cosmological scales (where it has not

been tested). A detailed examination of the effects of these assumptions on the interplay

between the luminosity distance–redshift relation and the acceleration of the Universe is not

possible unless one can define the precise nature of the failure of any particular assumption.

However a simple quantitative investigation is possible and reveals a number of

considerations about the relative importance of the different assumptions. In this paper we

present such an investigation. We find that the relationship between the distant-redshift

relation and the sign of the deceleration parameter is fairly robust and is unaffected if only one

of the assumptions that we investigate is invalid so long as the deceleration parameter is not

close to zero (it would not be close to zero in the currently favoured VL ¼ 1 2 Vmatter ¼ 0:7

or 0.8 Universe, for example). Failures of two or more assumptions in concordance may have

stronger effects.
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1 I N T R O D U C T I O N A N D B AC K G R O U N D

One of the most significant cosmological results of recent times has

been an accurate determination of the luminosity distance–redshift

relation (Schmidt et al. 1998; Perlmutter et al. 1999; Riess 1999;

Zehavi & Dekel 1999; Burrows 2000; Riess et al. 2000), from

measurements of Type Ia supernova standard candles out to

redshifts z , 0:8. The measurements are highly inconsistent with a

flat purely matter-dominated Universe and have consequently been

regarded as evidence for cosmic acceleration.

This assertion, however, depends intricately on other assump-

tions made, and does not necessarily follow from the measurement

of the luminosity distance–redshift relation. Suppose that we can

describe the expansion of the Universe by a scalefactor R(t) which

is a function of cosmic time t. The redshift z ¼ Rðt0Þ/RðtÞ2 1 is

then also a function of t (here t0 is the current age of the Universe).

The luminosity distance–redshift relation is (e.g. Weinberg 1972)

dLðzÞ ¼ Rðt0Þð1 1 zÞSk

ðRðt0Þ

Rðt0Þ=ð11zÞ

c dR

ðdR=dtÞR

� �
; ð1Þ

where c is the speed of light, k is an additional parameter describing

the curvature of the Universe ðk ¼ 11 for a closed Universe, k ¼ 0

for a flat Universe, and k ¼ 21 for an open Universe), and S is

defined so that S11ðxÞ ¼ sin x, S0ðxÞ ¼ x, and S21ðxÞ ¼ sinh x. The

deceleration parameter is (e.g. Weinberg 1972)

q0 ¼ 2

d2R

dt 2
R

dR

dt

� �2

���������
t0

: ð2Þ

If the Universe is accelerating q0 , 0. It follows from these

equations that a function R(t) constrained from a measurement of

dL(z) does not uniquely define a value of q0. In fact, it does not evenPE-mail: trentham@ast.cam.ac.uk
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uniquely define the sign of q0. This happens because q0 depends on

the second time derivative of R(t) but dL(z) only depends on lower

order derivatives and their integral. As a simple (albeit unphysical)

example, consider a function R(t) that can be expressed as a

polynomial in t with coefficients an such that RðtÞ ¼ Sant n where

the nth term contributes significantly more than the ðn 1 1Þth one. If

one then defines another function R0(t) that is identical to R(t) except

that the sign of the a2 coefficient is opposite, then both R(t) and R0(t)

generate almost identical dL(z) relations but deceleration parameters

with opposite signs.

It is conventional to draw a connection between the dL(z)

relation and the sign of the deceleration parameter as follows. One

assumes the Friedmann–Robertson–Walker metric (which follows

from the requirement of isotropy and homogeneity on the largest

scales), Einstein’s theory of general relativity, zero spatial

curvature ðk ¼ 0Þ and an equation of state so that the only

contributions to the stress–energy tensor in general relativity

comes from normal matter and the vacuum energy (the

cosmological constant). This latter assumption is frequently

examined (Caldwell, Dave & Steinhardt 1998; Garnavich et al.

1998; Efstathiou 1999; Maor, Brustein & Steinhardt 2000; Wang

et al. 2000) since it has no theoretical basis. If these assumptions

are made, the model forces a particular form of R(t) and

consequently a particular form of dL(z) and q0 in terms of VM and

VL, the cosmological densities of matter and the vacuum. The

deceleration parameter here has the particularly simple form

q0 ¼ VM/2 2 VL. Given the constraints imposed by the supernova

measurements, it is found that the only pairs of VM and VL that are

allowed force q0 , 0. Therefore the Universe is argued to be

accelerating.

However, any of the assumptions may turn out to be invalid.

Aside from the much examined assumptions regarding the

equation of state turning out to be untrue, it is also possible that

k – 0, that very large-scale inhomogeneities may exist (Célérier

2000), or even that general relativity may turn out to be invalid on

the very largest scales (where it has not been directly tested). If any

or all of these turn out to be true, we might no longer require an

accelerating Universe given the current (or even a far more precise)

measurement of the dL(z) relation; this possibility is investigated in

a simple quantitative way in this paper.

2 F R I E D M A N N M O D E L S

The formulation that is normally used to define the cosmological

parameters can be conceptually (albeit arbitrarily) divided into the

following four steps.

(i) The cosmic geometry is described by the four-dimensional

Riemann curvature tensor. If isotropy and homogeneity are

assumed, the resulting constraints on the Riemann tensor force the

space–time metric to have a specific form, given by the Friedmann–

Roberston–Walker metric. Implicit in this form is the parameter k,

which takes the value 0 or ^1. The existence of this parameter k

follows from the assumption that the Ricci scalar (the one-

dimensional fully contracted Riemann tensor) is not a function of

either time or position, which is required by homogeneity. If this

assumption about homogeneity and isotropy is made, then

observations of the position lpeak of the first Doppler peak in the

microwave background spectrum (e.g. de Bernardis et al. 2000)

that suggest a value of the total cosmological density VTOT close to

1 in units of the critical density then suggest that k ¼ 0.

(ii) From the metric, one can then compute explicitly the

curvature tensor and its contractions. From the equations of general

relativity, one can then compute the cosmological field equations.

Note that general relativity has not been verified observationally to

high precision on these cosmological scales (although it is clearly

very successful on smaller scales – see section 8 of Weinberg

1972), so its application here is very much an assumption.

(iii) If we then adopt an equation of state that relates density to

pressure for every contribution of mass density in the field

equations, we can then derive R(t) as a function of these

contributions. Some common strategies are to assume that (a) the

only contribution comes from normal pressureless matter; (b) part

of the contribution comes from normal matter and all the remaining

part comes from a cosmological constant; (c) part of the

contribution comes from normal matter and all the remaining

part comes from some material whose equation of state is defined

by the quintessence formulation of Caldwell et al. (1998).

(iv) From measurements of the luminosity distance–redshift

relation we constrain combinations of parameters that arise from

the considerations in (iii) above. For example, if one has specified

exactly two forms of mass density, both of which have known

equations of state, then one can constrain the relative mass

densities of the two components. [This would be true in case (b)

above.] If one makes a further assumption, like requiring a flat

universe ðk ¼ 0Þ, then one has another constraint and in

conjunction with the luminosity distance–redshift relation can

provide a precise determination of the model parameters.

Alternatively any related measurement like the value of lpeak will

have a similar effect. [Recall from (i) that in the context of these

models, the value of lpeak that was measured is operationally

similar to requiring k ¼ 0:� In practice, the constraints on the

model parameters in case (b) are tight since the constraints on the

mass densities in normal matter and in the cosmological constant

are almost orthogonal (see Efstathiou et al. 1999). From the

permitted values of the contributions of these mass densities, we

can then compute R(t) and hence q0, within the errors provided by

the measurements.

3 M O D I F I C AT I O N S T O F R I E D M A N N

M O D E L S

Clearly there are lots of assumptions involved. It is therefore useful

to examine each in detail and to see how relaxing each affects the

interplay between dL(z) and q0. Assessing the general case is

mathematically complicated and unconstrained. However, it is

possible to compute the consequences of relaxing the assumptions

in simple well-defined ways, and this is done in Table 1. The

approach is as follows.

(1) One of the assumptions described in the previous section is

relaxed (given in the first column of Table 1) and a modification of

the relevant equation is assumed. Each adjustment is described in

terms of a parameter e, which is a measure of how big the

modification is.

(2) The relevant modified Friedmann equation is derived (the

second column of Table 1).

(3) From this equation, we then compute the value of dLðz ¼ 1Þ

for various fiducial models, listed in Table 2 (note that Model C is

consistent with the observations described in Section 1, but Models

A and B are not). These represent the case e ¼ 0. We then ask:

what values of e generate value of dLðz ¼ 1Þ that differs by less

than 10 per cent from this fiducial value? These values are

presented in Table 3. A measurement of the luminosity distance at
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z ¼ 1 that is precise to 10 per cent requires observations slightly

deeper and more precise than those of Perlmutter et al. (1999), but

should be attainable with larger samples of supernovae observed

with large telescopes in the near future.

(4) We also compute the values of e that leave the sign of the

deceleration parameter within 10 per cent of its fiducial value and

that leave the sign of the deceleration parameter unchanged (the

third and fourth columns of Table 3).

If the values of e allowed in the second column of Table 3 all satisfy

the condition given in the fourth column of Table 1, then we can

conclude that a measurement of dLðz ¼ 1Þ precise to 10 per cent

does indeed constrain the sign of q0 (for example, this is true of the

case labelled ‘General Relativity’) for the relevant fiducial model.

An example of this calculation follows. Consider the last row in

the ‘density (curvature)’ section of the table i.e. the line labelled

‘C2’. Given the Friedmann equation, equation (1) now becomes

dLðzÞ ¼
cð1 1 zÞffiffiffiffiffi

|e |
p

H0

Sk

ffiffiffiffiffi
|e |
p

xzðeÞ
h i

ð3Þ

where k ¼ 11 if e . 0, k ¼ 21 if e , 0 and k ¼ 0 if e ¼ 0, and

xzðeÞ ¼

ðz

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 1 z0Þ2ð1 1 0:2z0Þ1 ð0:8 1 eÞz0ð2 1 z0Þ

p : ð4Þ

If e ¼ 0 (fiducial model C), then dLðz ¼ 1Þ ¼ 1:65c/H0. For a

value within 10 per cent of this ½1:48c/H0 , dLðz ¼ 1Þ ,

1:81c/H0�; equation (3) requires 20:50 , e , 0:18. Equation (2)

now becomes

q0 ¼ 20:7 2 e: ð5Þ

For the fiducial model q0 ¼ 20:7 and is negative. Values of e that

result in a value of q0 within 10 per cent of this value are

20:07 , e , 0:07, from equation (5). To keep q0 negative,

equation (5) requires e . 20:70. Therefore any changes in e that

are consistent with a measurement of dLðz ¼ 1Þ precise to 10 per

cent do not change the sign of q0, at least for this fiducial model and

form of perturbation.

Such numbers, although interesting, are of limited use since the

form of the modification that we use is so specific. We would,

however, make the following four comments.

(i) The choice of the fiducial model is important. For fiducial

models like Model B which have q0 close to zero, a small change in

dLðz ¼ 1Þ could be consistent with a model in which the sign of q0

changes. However, for model C, which is consistent with current

observation, the fiducial value of q0 is far enough away from zero

Table 1. Simple modifications to the Friedmann models.

Modification and form New Friedmann equationa

Isotropy and homogeneity
R, r e as standard
R, t e as standard
R, sine u ð2e 2 e cos 2u 1 2 sin2uÞe sin221eu 1 4r 2ð1 1 3 sineu 2 sin2euÞ _R 2 ¼ 32pGrr 2R 2

R, sine f ð2 2 e 2 e cos 2fÞe cosec2u sin221ef 1 4r 2ð1 1 3 sinef 2 sin2efÞ _R 2 ¼ 32pGrr 2R 2

Density (curvature)
VM 1 VL ¼ 1 1 e as standard

General relativity
Rmn 2 1

2
gmnR ¼ 8pGTmnðT

a
aÞ

e H 2 ¼ H2
0

R
R0

� �23ð11eÞ

Equation of state
P ¼ er (quintessenceb) H 2 ¼ VMH2

0
R
R0

� �23

1 ð1 2 VMÞH
2
0

R
R0

� �23ð11eÞ

The symbols have the following meanings: e is a parameter, defined individually in each case, that describes how we are
modifying the model; (t, r, u, f) are the time, radial, and two angular coordinates used to define the space–time metric
gmn; the two-dimensional contraction of the full four-dimensional Riemann curvature tensor is the Ricci tensor Rmn and its
contraction to one dimension is the Ricci scalar R; Tmn is the Einstein stress–energy tensor, implicit in which are the
density r and pressure P; R is the cosmic scalefactor, which depends on t, Ṙ is its time derivative and H¼ Ṙ/R; R0 and H0

(the Hubble constant) are the present-day values of R and H; VM is the cosmological density of normal matter obeying the
equation of state P ¼ 0 in units of the critical density; VL ¼ L=3H2

0 is the cosmological density in the cosmological
constant; G is the gravitational constant. Other symbols are defined elsewhere in the text; the speed of light c is set to unity
in all the equations in the table.
a Assuming k ¼ 0 and L ¼ 0.
b In order to define fully a quintessence model we need to state both the equation of state of the quintessent material
(parametrized by e here) and the density of this material. For the models we consider here, we fix the density of normal
matter to be VM ¼ 0:2 in units of the critical density and the density of the quintessent material to be Ve ¼ 0:8 so that the
total density is VTOT ¼ 1. The value of VM ¼ 0:2 is suggested by dividing the value of Vbaryon derived from big bang
nucleosynthesis constraints (e.g. Smith, Kawano & Malaney 1993) by the baryon fraction in rich galaxy clusters like
Coma (White et al. 1993). It is also the value suggested for Vdark matter by (see Trimble 1987) assigning an amount of dark
matter to each luminous galaxy (e.g. using the correlations of Kormendy 1990) and integrating over the galaxy luminosity
function (e.g. Ellis et al. 1996). Neither of these methods depend on the presence or absence of a form of mass density that
does not behave according to the equation of state P ¼ 0, like a cosmological constant. The value of VTOT ¼ 1 is
suggested by the measurements of the cosmic microwave background by de Bernardis et al. (2000).

Table 2. Fiducial models.

Model Parameters k dLðz ¼ 1Þ/ cH21
0 q0

A VM¼ 1 0 1.17 0.50
B VM¼ 0.2 21 1.41 0.10
C VM ¼ 0:2, VL ¼ 0:8 0 1.65 20.70
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that all of the modifications considered here do not change the sign

of q0 without changing dLðz ¼ 1Þ at the 10 per cent level.

(ii) Small dependences of the Ricci scalar on any metric

coordinates introduce small changes in the Friedmann equation.

Larger dependences that are power laws in either time or the radial

position coordinate also have negligible effect. Larger depen-

dences having other functional forms will have a bigger effect but

these will probably need to be fairly finely tuned if they are going

to affect the relationship between dL(z) and q0 and not have any

appreciable signature in either the galaxy distribution on large

scales or the cosmic microwave background.

(iii) Invalidating general relativity in the way defined in Table 1

does not seem to have a strong effect on the interplay between

dLðz ¼ 1Þ and q0. Values of e large enough to change the sign of q0

would cause a very substantial change in dLðz ¼ 1Þ [except for

Model B, but see point (i)].

(iv) Modifying the equation of state according to the

quintessence formulation has some effect on the interplay between

dLðz ¼ 1Þ and q0. Maor et al. (2000) consider the case of a time-

varying equation of state, which is outside the bounds of the simple

mathematical treatment presented here, and find that relaxing the

assumption of a constant equation of state can have very profound

implications for using dL(z) to determine q0 and more generally the

fate of the Universe.

In these calculations, we have concentrated on measurements of

dL(z) at z ¼ 1. In principle, measurements at higher redshifts would

help since ›dLðzÞ=›q0 increases as z increases. (Formally, this is

true only if the underlying cosmology is known a priori; see also

the discussion on this point in Maor et al. 2000.) But one would

then have additional systematic effects that would need to be

understood, like K-corrections of Type Ia supernovae, compli-

cations as a result of dust extinction (Riess et al. 2000) and possibly

even gravitational lensing by matter along our line of sight

(Metcalf & Silk 1999). More precise measurements at z ¼ 1 and

lower redshifts would also help, although these may be

fundamentally limited by intrinsic scatter in the peak luminosity

of Type Ia supernovae (see the references in the first paragraph of

Section 1).

4 S U M M A RY

To summarize, the relationship between dLðz ¼ 1Þ and the sign of

q0 is fairly robust given the analysis presented here unless the value

of q0 is close to zero. For the VL ¼ 1 2 VM ¼ 0:8 model currently

favoured by observation, the value of q0 is far enough away from

zero that this concern is not valid. This analysis is, however,

limited, in that it only considers modifications to the Friedmann

models of a very specific type, and those individually. The joint

effects of two or more modifications might be more dramatic, but at

this stage there are too many unconstrained ways to formulate

these effects for a detailed analysis to be productive. In the long

term, measurements like those of the cosmic microwave

background (Efstathiou et al. 1999), gravitational lensing statistics

(e.g. Waga & Frieman 2000) and galaxy number counts (Newman

& Davis 2000) will provide other constraints.

In order to address formally the question as to whether or not the

Universe is accelerating, it will be necessary to have measurements

which probe the second time derivative of R(t). However other, less

Table 3. Effects of modifications on observables.

Modification and form Values of e that are Values of e that Values of e that
consistent with a are consistent with the keep unchanged

measurement of dLðz ¼ 1Þ fiducial value of q0 the sign of q0

that is accurate to 10 per cent to within 10 per cent

Isotropy and homogeneity
R, r e any e any e any e
R, t e any e any e any e
R, sine u depends on (r, u ) depends on (r, u ) depends on (r, u )
R, sine f depends on (r, u, f ) depends on (r, u, f ) depends on (r, u, f )

Density (curvature)
VM 1 VL ¼ 1 1 e A: 20.45 , e, 0.63 20.10 , e, 0.10 e. 21.00

B: 20.30 , e, 0.41 20.02 , e, 0.02 e. 20.20
C1a: 20.18 , e, 0.54 20.14 , e, 0.14 e, 1.40
C2a: 20.50 , e, 0.18 20.07 , e, 0.07 e. 20.70

General relativity
Rmn 2 1

2
gmnR ¼ 8pGTmnðT

a
aÞ

e A: 20.19 , e, 0.22 20.03 , e, 0.03 e. 20.33
B: 20.89 , e, 0.52 20.03 , e, 0.03 e. 20.33
C: 20.39 , e, 0.36 20.23 , e, 0.23 e, 2.33

Equation of state
P¼ erb A: 20.295 , e, 0.27 20.04 , e, 0.04 e. 20.42

B: 20.79 , e, 20.21 20.34 , e, 20.33 e. 20.42
C: 21.41 , e, 20.65 21.06 , e, 20.94 e, 20.42

a For the fiducial model C, modifications that are introduced can be considered as modifications to the behaviour of
the matter component (line C1) or the cosmological constant component (line C2). Results are presented for both.
b Note that the value of e ¼ 0 is not ‘permitted’ for models B and C. This is because in neither case can the fiducial
model be described as an unmodified version of the model under consideration here. In fact, fiducial model C is
exactly equivalent to a modified model with e ¼ 21; this value of e is of course at the centre of the permitted range.
The reason that models A, B, and C give different constraints on e in the second and third columns is because
different fiducial models have been adopted. In the fourth column, where the limiting e does not depend on the
fiducial model, this limiting value is the same in all three cases.
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direct, measurements like the ones listed in the previous paragraph

and the supernova measurements will provide powerful hints if the

association between the luminosity distance–redshift relation and

the sign of q0 really does turn out to be only weakly model-

dependant.
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