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Graph theory and its wide applications in natural sciences and social sciences open a new era of research. Making the graph of
computer networks and analyzing it with aid of graph theory are extensively studied and researched in the literature. An important
discussion is based on distance between two nodes in a network which may include closeness of objects, centrality of objects,
average path length between objects, and vertex eccentricity. For example, (1) disease transmission networks: closeness and
centrality of objects are used to measure vulnerability to particular disease and its infectivity; (2) routing networks: eccentricity of
objects is used to find vertices which form the periphery objects of the network. In this manuscript, we have discussed distance
measurements including center, periphery, and average eccentricity for the Cartesian product of two cycles. ,e results are
obtained using the definitions of eccentricity, radius, and diameter of a graph, and all possible cases (for different parity of length
of cycles) have been proved.

1. Introduction

Applications of graph theory to computer science, physics,
chemistry, biology, social sciences, and statistics open up a
new dimension for researchers [1–5]. One of the attributes is
distance and its related measurements in the graph.
Weighted distance, topological distance, eccentricity, radius,
diameter, metric dimension, indices, etc., are such distance-
related terms and have received much attention of re-
searchers [6–8]. One of the fundamental questions related to
distance measurement is community detection and location
of their emergency facilitation within the network [9, 10].
,e study of networks such as (1) social networks like
Facebook, Twitter, LinkedIn, etc., and (2) biological net-
works like protein-protein interaction, gene transcription,
ecological networks, etc., and statistical inference on these
network models have been done extensively in [11, 12]. In
distance-based networks, several vertices can have different

closeness as well as exactly the same closeness with respect to
a particular facility like hospital, electricity, etc. [13–17]. In
this paper, we consider the distance measure, vertex ec-
centricity, and its associated definitions center and pe-
riphery. ,e indices related to vertex eccentricity are
discussed in [18, 19]. For an undirected graph, Goddard et al.
in [20, 21] have shown the following:

rad(M)≤ diam(M)≤ 2rad(M). (1)

Other proved results are

(1) rad(Km) � diam(Km) � 1 for m≥ 2
(2) rad(Cm) � diam(Cm) � ⌊m/2⌋

(3) rad(Kp,m) � diam(Kp,m) � 2, p, m≥ 2
(4) rad(Pm) � ⌈(m − 1/2)⌉, diam(Pm) � m − 1

Diameter of a tree, random graphs, and bridge graphs
are determined in [22, 23], respectively.
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,e eccentricity denoted by ec(x) of a node x in a
connected graph M is defined as

ec(x) � Max d(y, x): y ∈ V(M){ }. (2)

,e radius denoted by rad(M) of a connected graphM is
defined as

rad(M) � Min ec(x): x ∈ V(M){ }. (3)

,e diameter denoted by diam(M) of a graph is defined
as

diam(M) � Max ec(x): x ∈ V(M){ }. (4)

In [24], authors introduced average eccentricity denoted
by Avgec for a graph M with m number of vertices as

Avgec(M) �
1

m
∑

x∈V(M)
ecM(x). (5)

Buckley [25] defined the eccentric set of a nontrivial
connected graph and proved the criteria for a nonempty set of
positive integers to be an eccentric set of some graphs. Buckley
also defined central subgraphs embedding and proved that the
central subgraph of a tree is isomorphic to K1 or K2. Dan-
kelmann andOsaye [26] proved results on average eccentricity,
k-packing, and k-domination in graphs.,ey gave the bounds
for average eccentricity of a connected graph with indepen-
dence number. Additionally, they defined the other parameters
related to eccentricity: weight function, total weight function,
eccentric sequence of tree for given diameter, and k-star.
Dankelmann et al. in [27] prove the bounds for eccentricity
and average eccentricity of the graph, subgraph, and its
complement andwhen the graph is replaced by a spanning tree
or spanning graph. Yu et al. [28, 29] characterize the extremal
unicyclic graphs among other m-unicyclic graphs with min-
imal and second minimal average eccentricity. Ilic [30, 31]
discusses the graph transformations which change the ec-
centricity of a graph. He also solved four conjectures about
average eccentricity, clique number, domination, and inde-
pendent number using the system AutoGraphix.

In a graph M, x is an eccentric vertex to y when
ec(y) � d(x, y), y is the central vertex if ec(y) � rad(M),

and y is peripheral if ec(y) � diam(M). A subgraph ofM
induced by peripheral vertices is called periphery and
denoted by P(M). C(M) is the subgraph induced by
central vertices, also called the center of M. When all
vertices are central vertices and C(M) �M, then M is
called self-centered. Self-centered graphs were introduced
by Akiyama et al. in [32], and results were proved about
graphs Kp, pK2, ∪ ni�1Kpi

, and 〈V − S1〉G. Negami and Xu
[33] prove the existence of the cycle of length 4 or 5 in a
self-centered graph of radius 2, and conversely, if the
longest cycle among them for a block vertex has a cycle
length 4, then the block is self-centered and radius is 2.
Halina Bielak and Maciey syslo [26, 34] investigated that
every graph is not periphery of some graph. In graphs with
rad(G) � diam(G), the center of the graph becomes the
same as the graph itself [35].

,e paper is divided into two sections, the first section
describes center and periphery for the Cartesian product of
two cycles Cp and Cq for different parity of vertices using
definitions of eccentricity, radius, and diameter of a graph
with few figures. ,e second section proves results about
average eccentricity of the Cartesian product of two cycles
for different parity of number of vertices.

2. Center and Periphery for Cartesian
Product Cp□Cq

In this section, we will find results related to center and
periphery of the Cartesian product Cp□Cq for different
choices of p and q using the distance-related definitions
eccentricity, radius, and diameter. ,e graph of (C4□C3) is
shown in Figure 1.

Definition 1 (see [24]). ,e Cartesian product of two graphs
M and N denoted by M□N is defined as a graph with the
vertex set V(M) × V(N), where the two vertices (u, �u) and
(v,�v) are adjacent if and only if either u � v in M and �u is
adjacent to�v in N or u is adjacent to v inM and�u� �v in N.

,e vertex set and edge set of the Cartesian product of
graphs are defined as

V Cp□Cq( ) � x(r,s): 1≤ r≤p, 1≤ s≤ q{ },
E Cp□Cq( ) � x(r,s)x(r+1,s): 1≤ r≤p − 1, 1≤ s≤ q}∪ x(r,s)x(r,s+1): 1≤ r≤p, 1≤ s≤ q − 1{ }{ }. (6)

Theorem 1. 7e family of the Cartesian product Cp□Cq is
self-centered.

Proof. We will prove the result for some choices of p and q
as given in the following cases:

Case 1. When p ≡ 0(mod2), q ≡ 0(mod2), p≥ q.
Consider the cycle (x(1,1)x(1,2)x(1,3) . . .x(1,r) . . .x(1,p))
and choose an arbitrary vertex x(1,1) on this cycle:

d x(1,1), x(1,r)( ) � r − 1, 1≤ r≤p
2
+ 1,

d x(1,1), x(1,r)( ) � p
2
− 1, r �

p

2
+ 2,

d x(1,1), x(1,r)( ) � 1, r � p,

(7)
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also

d x(1,1), x(1,r)( ) � p + 1 − r,
p

2
+ 2≤ r≤p. (8)

In order to locate a vertex at an extreme distance from
x(1,1) in Cp□Cq, we have to consider values
1≤ r≤ (p/2) + 1. Since each x(1,r) is the neighbor of
x(2,r) and x(q,r), therefore, using equations (7) and (8),
we have

d x(1,1), x(q,r)( ) � d x(1,1), x(2,r)( ) � r, 1≤ r≤p
2
+ 1,

(9)

d x(1,1), x(q,r)( ) � d x(1,1), x(2,r)( ) � p + 2 − r, 2 +
p

2
≤ r≤p.

(10)

Further, x(2,r) is the neighbor of x(3,r) and x(q,r) is the
neighbor of x(q−1,r), and therefore equations (9) and
(10) give

d x(1,1), x(q−1,r)( ) � d x(1,1), x(3,r)( ) � r + 1, 1≤ r≤p
2
+ 1,

d x(1,1), x(q−1,r)( ) � d x(1,1), x(3,r)( ) � p + 3 − r,
p

2
+ 2≤ r≤p.

(11)

Moreover, x(3,r) is the neighbor of x(4,r) and x(q−1,r) is
the neighbor of x(q−2,r); therefore,

d x(1,1), x(q−2,r)( ) � d x(1,1), x(4,r)( ) � r + 2, 1≤ r≤p
2
+ 1,

d x(1,1), x(q−2,r)( ) � d x(1,1), x(4,r)( ) � p + 4 − r,
p

2
+ 2≤ r≤p.

(12)

Continuing the same procedure, after (q/2)th steps, the
vertex x((q/2),r) would be in the neighborhood of
x((q/2)+1,r) which implies

d x(1,1), x(1+(q/2),r)( ) � r + q
2
− 1, 1≤ r≤p

2
+ 1,

d x(1,1), x((q/2)+1,r)( ) � p − r + q
2
+ 1,

p

2
+ 2≤ r≤p.

(13)

,is means x((q/2)+1,(p/2)+1) is farthest from x(1,1).
,erefore, ec(x(1,1)) � (p/2) + (q/2).

Similarly, x((q/2)+2,(p/2)+1), x( (q/2) + 3, (p/2) + 1), x((q/
2) + 4, (p/2) + 1), . . . , x((q/2),(p/2)+1) are farthest from
x(2,1), x(3,1), x(4,1), . . . , x(q,1) in Cp□Cq, respectively.
Since the graph is symmetric, each vertex on either
cycle has the same eccentricity.

rad Cp□Cq( ) � diam Cp□Cq( ) � p
2
+
q

2
. (14)

Consequently, each vertex is a central vertex as well as a
peripheral vertex.

Case 2. When p ≡ 1, q ≡ 1(mod2), p≥ q.
Consider the cycle (x(1,1)x(1,2)x(1,3) . . .x(1,r) . . .x(1,p))
and select a vertex x(1,1) from it, and then

d x(1,1), x(1,r)( ) � r − 1, 1≤ r≤p − 1

2
+ 1. (15)

When values of r vary between (p − 1/2) + 2 and p, the
distance d(x(1,1), x(1,r)) varies between (p − 1/2) and 1:

d x(1,1), x(1,r)( ) � p + 1 − r,
p − 1

2
+ 2≤ r≤p. (16)

,us, to locate a farthest vertex from x(1,1) in Cp□Cq,
we only consider 1≤ r≤ (p − 1/2) + 1.

Each x(1,r) is the neighbor of x(2,r) and x(q,r). ,erefore,
using equations (15) and (16), we have

d x(1,1), x(q,r)( ) � d x(1,1), x(2,r)( ) � r, 1≤ r≤p − 1

2
+ 1,

(17)

d x(1,1), x(q,r)( ) � d x(1,1), x(2,r)( )
� p + 2 − r,

p − 1

2
+ 2≤ r≤p.

(18)

x(3,1)

x(2,1)

x(1,1)

x(1,2)

x(1,3)

x(1,4)x(2,4)
x(3,4)

x(2,3)

x(3,3)

x(2,2) x(3,2)

Figure 1: ,e Cartesian product (C4□C3).
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Further, x(2,r) is the neighbor of x(3,r) and x(n,r) is the
neighbor of x(q−1,r), and so equations (17) and (18)
imply

d x(1,1), x(q−1,r)( ) � d x(1,1), x(3,r)( )
� 1 + r, 1≤ r≤p − 1

2
+ 1,

d x(1,1), x(q−1,r)( ) � d x(1,1), x(3,r)( )
� p + 3 − r,

p − 1

2
+ 2≤ r≤p.

(19)

Moreover, x(3,r) is the neighbor of x(4,r) and x(q−1,r) is
the neighbor of x(q−2,i). Hence,

d x(1,1), x(q−2,r)( ) � d x(1,1), x(4,r)( )
� 2 + r, 1≤ r≤p − 1

2
+ 1,

d x(1,1), x(q−2,r)( ) � d x(1,1), x(4,r)( )
� p + 4 − r,

p − 1

2
+ 2≤ r≤p.

(20)

Continuing the same procedure, after (q − 1/2)th steps,
the vertex x((q−1/2),r) would be in the neighbor of
x((q+1/2),r). ,erefore,

d x(1,1), x((q+1/2),r)( ) � q − 1

2
+ r − 1, 1≤ r≤p − 1

2
+ 1,

d x(1,1), x((q+1/2),r)( ) � p − r + q − 1

2
+ 1,

p − 1

2
+ 2≤ r≤p.

(21)
It means that x((q+1/2),(p−1/2)+1) is farthest from x(1,1).
,erefore, ec(x(1,1)) � (p − 1/2) + (q − 1/2). Similarly,
x((q+3/2),(p−1/2)+1), x((q+5/2),(p−1/2)+1), x((q+7/2), (p − 1/2) +
1), . . . , x((q−1/2),(p−1/2)+1) are farthest vertices from
x(2,1), x(3,1), v(4,1), . . . , x(q,1), respectively.

Hence,
rad(Cp□Cq) � diam(Cp□Cq) � (p − 1/2) + (q − 1/2).

Case 3. Consider p ≡ 1(mod2), q ≡ 0(mod2), p≥ q.
,e vertices x(1,1) and x(1,r) on the cycle
(x(1,1)x(1,2)x(1,3) . . .x(1,r) . . .x(1,p)) have the following
distances:

d x(1,1), x(1,r)( ) � r − 1, 1≤ r≤p − 1

2
+ 1, (22)

d x(1,1), x(1,r)( ) � p + 1 − r,
p − 1

2
+ 2≤ r≤p. (23)

,is means to locate the farthest vertex from x(1,1) in
Cp□Cq, only these values 1≤ r≤ (p − 1/2) + 1 are
considered.

Since, each x(1,r) is the neighbor of x(2,r) and x(q,r),
therefore using equations (22) and (23), we have

d x(1,1), x(q,r)( ) � d x(1,1), x(2,r)( ) � r, 1≤ r≤p − 1

2
+ 1,

(24)

d x(1,1), x(q,r)( ) � d x(1,1), x(2,r)( )
� p + 2 − r,

p − 1

2
+ 2≤ r≤p.

(25)

Further, x(2,r) is the neighbor of x(3,r) and x(q,r) is the
neighbor of x(q−1,r). ,erefore, equations (24) and (25)
give

d x(1,1), x(q−1,r)( ) � d x(1,1), x(3,r)( )
� r + 1, 1≤ r≤p − 1

2
+ 1,

d x(1,1), x(q−1,r)( ) � d x(1,1), x(3,r)( )
� p + 3 − r,

p − 1

2
+ 2≤ r≤p.

(26)

Moreover, x(3,r) is the neighbor of x(4,r) and x(q−1,r) is
the neighbor of x(q−2,r). ,erefore,

d x(1,1), x(q−2,r)( ) � d x(1,1), x(4,r)( )
� r + 2, 1≤ r≤p − 1

2
+ 1,

d x(1,1), x(q−2,r)( ) � d x(1,1), x(4,r)( )
� p + 4 − r,

p − 1

2
+ 2≤ r≤p.

(27)

Continuing the same procedure, after (q/2)th steps, the
vertex x((q/2),i) would be in the neighbor of x((q/2)+1,i)
which implies

d x(1,1), x((q/2)+1,r)( ) � r + q
2
− 1, 1≤ r≤p − 1

2
+ 1,

d x(1,1), x((q/2)+1,r)( ) � p − r + n
2
+ 1,

p − 1

2
+ 2≤ r≤p.

(28)
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It means x((q/2)+1,(p−1/2)+1) is farthest from x(1,1).
,erefore, ec(x(1,1)) � (p − 1/2) + (q/2). Similarly,
farthest vertices from x(2,r), x(3,r), . . . , x(q,r) are
x((q/2)+2,(p−1/2)+1), x((n/2)+3,(p−1/2)+1), . . . , x((q/2),(p−1/2)+1),
respectively. Hence, rad(Cp□Cq) � diam(Cp□Cq) �
(p − 1/2) + (q/2).

Case 4. Consider p ≡ 0(mod2), q ≡ 1(mod2), p≥ q.
Since the graph is symmetric, by switching the roles of p

and q, we get the same case as Case 3. ,erefore, we have
discussed all the possible cases.

Now, it is concluded that the family of Cp□Cq is self-
centered for all possible values of p and q.

2.1. Illustration. Consider the graph C4□C3 shown in
Figure 2 in which eccentricity of every vertex is shown by
blue circled numbers. Clearly from Figure 2, all vertices
have eccentricity 3. ,erefore, the center and periphery
for C4□C3 is the graph itself.

3. Average Eccentricity of Cp□Cq, p≥ q
,ere are q circles in Cp□Cq and each has p vertices. ,us,
the total number of vertices in Cp□Cn is equal to the product
of p and q. ,e average eccentricity of Cp□Cq, p≥ q, will be
discussed in the following cases:

Case 1. For p, q{ } ≡ 0(mod2),

Avgec Cp□Cq( ) � 1

pq
∑

x∈V(M)
ecM(x)

�
1

pq
q p

p + q

2
( ){ }{ } � p + q

2
.

(29)

Case 2. When p, q{ } ≡ 1(mod2),

Avgec Cp□Cq( ) � 1

pq
∑

x∈V(M)
ecM(x)

�
1

pq
q p

p + q − 2

2
( ){{ } � p + q − 2

2
.

(30)

Case 3. When p ≡ 1 and q ≡ 0(mod2),

Avgec Cp□Cq( ) � 1

pq
∑

x∈V(m)
ecM(x)

�
1

pq
q p

p + q − 1

2
( ){ }{ } � p + q − 1

2
.

(31)

,erefore,

Avgec Cp□Cq( ) �

q

2
+
p

2
, p, q{ } ≡ 0(mod2),

q

2
+
p − 1

2
, p ≡ 1 and q ≡ 0(mod2),

q − 1

2
+
p − 1

2
, p, q{ } ≡ 1(mod2).


(32)

Case 4. When p ≡ 1 and q ≡ 0(mod2).

Since the graph is symmetric, by changing the roles of p
and q, we get Case 3.

,us, all cases have been discussed, and our result is
completed.

4. Conclusion

In this manuscript, we have discussed distance measure-
ments including center, periphery, and average eccentricity
for the Cartesian product of two cycles. ,e results are
obtained using the definitions of eccentricity, radius, and
diameter of a graph, and all possible cases (for different
parity of length of cycles) have been proved. One of the
attributes in applications of graph theory is distance and its
related measurements in the graph. Weighted distance,
topological distance, eccentricity, radius, diameter, metric
dimension, indices, etc., are such distance-related terms and
have received much attention of researchers. Along with the
distance, the graph operations make the structures some-
what similar to the practical situation. One can be interested
in researching the distance-related measurements for dif-
ferent graph operations: corona product, strong product,
lexicographic product, etc. ,e other direction might be of

(3)

(3) (3)
(3)

(3)

(3)

(3)
(3)(3)

(3)

(3)

(3)

x(3,1)

x(2,1)

x(1,1)

x(1,2)

x(1,3)

x(1,4)x(2,4)
x(3,4)

x(2,3)

x(3,3)

x(2,2) x(3,2)

Figure 2: Center and periphery of (C4□C3).
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extending these results for one point union of graphs with
nonisomorphic copies.
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