
Distance Metric Learning for RRT-Based

Motion Planning with Constant-Time Inference

Luigi Palmieri Kai O. Arras

Abstract—The distance metric is a key component
in RRT-based motion planning that deeply affects
coverage of the state space, path quality and planning
time. With the goal to speed up planning time, we
introduce a learning approach to approximate the
distance metric for RRT-based planners. By exploit-
ing a novel steer function which solves the two-point
boundary value problem for wheeled mobile robots,
we train a simple nonlinear parametric model with
constant-time inference that is shown to predict dis-
tances accurately in terms of regression and ranking
performance. In an extensive analysis we compare our
approach to an Euclidean distance baseline, consider
four alternative regression models and study the im-
pact of domain-specific feature expansion. The learn-
ing approach is shown to be faster in planning time
by several factors at negligible loss of path quality.

I. Introduction

Sampling-based methods have become a popular ap-
proach to motion planning particularly in high dimen-
sions or under complex constraints. Rapidly exploring
Random Trees (RRT) solve a single planning query by
growing and expanding a tree in the configuration space
towards newly sampled configurations. An optimal RRT
variant, named RRT* by Karaman and Frazzoli [1],
rewires the tree based on the notion of cost: under the
assumptions given in [2] for holonomic systems and in [3]
for nonholonomic systems the solution converges to the
optimum as the number of samples approaches infinity.
A key component in the extension of the tree in RRT is

the distance pseudo-metric, or cost-to-go pseudo-metric,
used to select the nearest vertex from where to grow the
tree. In RRT* this function has an even more important
role as it guides the rewiring procedure. To do so, the
pseudo-metric has to be computed as many times as
there are vertices in the near-neighbour ball [2] or near-
neighbour box [3].
For general kinodynamic systems, it is hard to deter-

mine the true cost-to-go function. It implies solving both
a two-point boundary value problem (2P-BVP), which
may be as expensive as solving a motion planning query
on its own, and an optimal control problem. This is
why, in the original RRT paper, LaValle and Kuffner [4]
suggested to use approximations of the optimal cost-to-
go as functions of path length, difference between initial
and final orientation, and translational and rotational ve-
locities. Such a near-optimal distance metric was shown

L. Palmieri, K.O. Arras are with the Social Robotics Lab,
Dept. of Computer Science, University of Freiburg, Germany.
{palmieri,arras}@cs.uni-freiburg.de.

Fig. 1. An example tree and path generated with our learned
distance metric. The robot starts at the bottom-left and plans a
path to the goal region marked in red. The first-solution path is
shown in green.

in [5] to enable a motion planner to entirely cover the
configuration space and to solve hard planning problems.

A number of different pseudo-metrics have been used
in previous work [6, 7, 8, 9, 10, 11]. Variants of the
Euclidean distance have been studied in [6, 7]. Amato
et al. [6] compare several distance metrics defined in
the configuration space and show that for nonholonomic
systems, the weighted Euclidean distance – commonly
used for holonomic systems – is unable to correctly cover
the space. They give recommendations on how to select
a metric based on efficiency and effectiveness. Kuffner
[7] defines a proper distance metric for the configuration
space of a 3D rigid body, the Lie group SE(3). The
author proposes a weighted metric with a translation
component that uses a standard Euclidean norm and
a scalar function that returns an approximate measure
of the distance between the initial and final orientation.
Distance metrics have been derived by linearizing the
system dynamics in [8, 9, 10]. Glassman and Tedrake
[8] describe how the Voronoi bias of RRT only applies
when a proper metric is defined for the case of an extend
function that forward simulates a dynamical system.
They use an affine quadratic regulator design and show
that it can be used to approximate the exact minimum-
time distance pseudo-metric at a reasonable computa-
tional cost. Perez et al. [9] use an optimal infinite-horizon
LQR controller to connect pairs of states. The method
linearizes the domain dynamics locally. In this case the
cost-to-go pseudo-metric is defined as the solution of the
Riccati’s equation used in the LQR extender. Webb and
van den Berg [10] use a finite-horizon optimal controller
as local planner. They can optimize a certain class of
cost functions that trades off time and control effort.

2015 IEEE International Conference on Robotics and Automation (ICRA)
Washington State Convention Center
Seattle, Washington, May 26-30, 2015

978-1-4799-6922-7/15/$31.00 ©2015 IEEE 637

A drawback of these linearization methods is that the
approximations are valid only as long as the linearization
is valid. When non-linearities increase, the accuracy of
the metric degrades. They may also suffer from high
computational costs and numerical issues.
Li and Bekris [11] approximate the optimal cost-to-

go pseudo-metric by an offline learning method: the
distance between two states is approximated by the cost
of an A* path between their closest sampled states on a
learned graph. The graph is generated off-line by using
forward propagation of the system dynamics. For speed-
ing up the method, they map the offline samples into a
higher-dimensional Euclidean space. The method makes
approximations on two levels: the graph is built using
a discretized set of controls, not solving the 2P-BVP,
and the mapping of the samples which compromises the
method’s ability to cover the state space.
A recent idea, which has been developed independently

by three research groups at the same time [12, 13, 14], is
to approximate the distance pseudo-metric by supervised
learning of a nonlinear regression model. Bharatheesha et

al. [13] approximate the optimal cost-to-go using locally
weighted projection regression (LWPR). The optimal
cost-to-go is obtained by iteratively solving a linear
quadratic regulator problem where nonlinear dynamics
are still linearized around a nominal trajectory instead
of a point. The learning approach is incremental which
makes that cost prediction scales with the increasing
number of nodes in the RRT tree. Allen et al. [14]
use locally weighted linear regression (LWR) to predict
optimal cost-limited reachable sets of dynamical systems
in real-time and a binary SVM classifier to learn the
nonlinear boundary between a state’s reachable and non-
reachable set. While achieving good regression accuracy,
inference times scale quadratically with the number of
LWR training samples and linearly with the number of
SVM support vectors, respectively.
In this paper, we extend our approach presented in

[12]. We approximate the cost-to-go metric by a sim-
ple, offline-learned regression model with constant-time
inference. We consider differential drive robots in the
configuration space R2×S

1, although the same approach
can be extended to systems with higher dimensions. Our
distance metric estimates the cost of local paths from a
novel extender called POSQ which solves the 2P-BVP
and produces smooth cusp-free trajectories [15]. POSQ
is able to connect any pair of 2D poses and produces
RRT trees that cover the entire state space. The latter
is not true for forward propagation approaches of dis-
cretized controls (motion primitives) as discussed in [8].
Furthermore, the POSQ extender makes no linearization
or approximation, is efficient to compute and was shown
to produce smoother paths in shorter time with smaller
trees than motion primitives and a spline-based extender
approach [15]. In this paper, with the goal of making
the planner even more efficient, we make the following
contributions:

Z
Yg

Xg

XR

YR
α

θ

φ
xnear

xrand

ρω v

Fig. 2. Robot and goal pose relations and notation

• We show how the distance pseudo-metric for the case
of the POSQ extender can be learned offline using
a set of domain-specific features and a simple ba-
sis function model with constant-time inference. In
addition of being very fast to compute, the learned
model is accurate in terms of regression and ranking
performance at negligible loss of path quality.

• In addition to [12], we present a comprehensive
comparison to an Euclidean distance baseline and
four alternative regression models namely neural
network regression, LWPR, SVM regression, and
random forest regression and analyze the impact of
domain-specific feature expansion.

• The comparison demonstrates that the Euclidean
distance – although fast to compute – is highly
inaccurate in terms of ranking and regression and
leads to paths of poor quality and length. The
experiments also show that our learning approach is
able to cover the state space in the same way than
the ground truth function.

The paper is structured as follows: in Section II we
briefly present the POSQ extender and in Section III we
describe how the distance metric is learned. Experiments
and their results are described in Section IV. Section V
concludes the paper.

II. The POSQ Extender

We briefly summarize the POSQ extend function as
introduced in [15]. The function solves the two-point
boundary value problem (2P-BVP) for differential drive
robots and generates smooth trajectories between any
pair of 2D poses. Within RRT, it connects randomly
sampled poses, xrand, with their nearest pose in the tree,
xnear. The method is an extension of the approach by As-
tolfi [16] and allows to describe – thanks to a coordinate
transform from Cartesian to polar – the kinematic model
of a wheeled mobile robot by the open loop model

ρ̇ = − cosα v

α̇ =
sinα

ρ
v − ω

φ̇ = −ω.

(1)

ρ is the Euclidean distance between xnear and the goal
pose xrand, φ denotes the angle between the x-axis of the

638

Fig. 3. Trajectories of the POSQ controller when steering the robot
from the center to the poses on the circle

robot reference frame (XR) and the one associated to the
desired position (Xg), and α is the angle between the y-
axis of the robot reference frame (YR) and the vector
connecting the robot with the desired position (Z), see
Fig. 2.
Considering the open loop model obtained by the

transform in Eq. (1), in [15], we propose the non-linear
feedback law

v = Kρ tanh(Kvρ)

ω = Kαα+Kφφ .
(2)

which produces paths of quasi-constant forward velocity
as opposed to the original law that causes the velocity
to strongly drop towards the goal. We could prove that
the new law assures asymptotically heading convergence
and system’s local stability. Eq. (2) generates smooth
trajectories x(t) and controls u(t), t ∈ [0, T], T > 0, that
connect any given pair of 2D poses by computing closed-
loop forward simulations based on the kinematic model
of a non-holonomic wheeled mobile robot (see Fig. 3).
Thanks to its ability to solve the 2P-BVP, trajectories
generated by POSQ can be readily characterized by a
cost which we seek to learn hereafter.

III. Our Approach

In RRT-based planning, a tree is grown by connecting
randomly sampled configurations xrand to their nearest
vertex xnear in the tree. For the selection of xnear, the
algorithm evaluates the distances from all or a subset
of tree vertices to xrand. The evaluation of this distance
metric is a frequent operation deep within every RRT
algorithm and a speed up at this point would have a
strong impact onto planning times.
The idea is, instead of computing an extension path

and then evaluating its cost, to learn a parametric re-
gression model that directly predicts the cost. This is fast
to compute and we can expect a speed up even though
the forward simulation by POSQ is already efficient to
implement. Formally, we have a regression model

y ≈ g(X , β) (3)

Fig. 4. The cost-to-go function C(0,x) for paths generated by the
POSQ controller.

with X being the set of independent variables (features
or attributes) and β the parameters of g. In this section,
we first define the class of distance metrics considered
here, design a set of features, choose a regression model
and a learning algorithm to fit its parameters.

A. The distance metric

Following [4], we consider a class of distance metrics
C(x1,x2) defined as a linear combination of path length
and sum of heading changes between states x1 and x2,

C(x1,x2) =

Ne−1
∑

i=0

wd||Pi+1 −Pi||+ wq (1− |qi+1 · qi|)
2
.

(4)
Pi are the Ne+1 intermediate points of the path and qi

the associated quaternions. The time needed to compute
this cost expression depends on the distance between x1

and x2 and the integration time step ∆t (leading to more
or fewer intermediate points Pi). Fig. 4 shows the cost
distribution for paths generated by the POSQ controller.

B. Features

Let the set of independent variables X be the vector
of features f that we define in this section. Naively, we
could directly use the inputs of the extend function, the
two poses x1 and x2, as features f = (x1, x2, y1, y2, θ1, θ2)
since they fully define the problem.
However, this choice encodes the relevant information

only very implicitly. We expect interesting interactions
between those features which we seek to make explicit by
performing feature expansion to obtain more meaningful
inputs. But instead of an uninformed, generic method
such as quadratic expansion or kernel methods, we can
take advantage of our domain knowledge to capture
those interactions. For example, it is obvious that the
Euclidean distance

√

(y2 − y1)2 + (x2 − x1)2 will be a
dominant feature for predicting the cost of paths that
connect x1 and x2. Finally, in multiple validation runs,
we have found a set of fourteen features to characterize
the cost-to-go function, see Table I. The features make
the geometry of POSQ paths under the cost model Eq. 4

639

Description Expression

Displacement in x ∆x = x2 − x1

Displacement in y ∆y = y2 − y1
Displacement in θ ∆θ = θ2 − θ1
Euclidean distance between poses d = ‖x2 − x1‖

x-projection of the orientation change cos∆θ

y-projection of the orientation change sin∆θ

Orientation change multiplied by Eu-
clidean distance

d∆θ

x-projection of the orientation change
multiplied by Euclidean distance

d cos∆θ

y-projection of the orientation change
multiplied by Euclidean distance

d sin∆θ

Angular difference between x1 and con-
necting line of the two poses

atan∆y
∆x

− θ1

Angular difference between x2 and con-
necting line of the two poses

atan∆y
∆x

− θ2

Ratio between the previous two features
atan(∆y/∆x)−θ1
atan(∆y/∆x)−θ2

Angular difference between x1 and con-
necting line multiplied by Euclidean dist.

d (atan∆y
∆x

− θ1)

Angular difference between x2 and con-
necting line multiplied by Euclidean dist.

d (atan∆y
∆x

− θ2)

TABLE I

Input features

more explicit and, as will be shown in the experiments,
facilitate the learning process.

C. Learning

We choose a basis function model (BFM) for learning
to predict path costs, fitted to the training set S =
{si}

N
i=1 using Levenberg-Marquardt. The model is de-

fined as

y =
M
∑

m=1

Φm(f , β) (5)

where M is the number of basis functions Φ. Given our
initial goal of speeding up planning time, this choice
appears promising for its simplicity and constant-time in-
ference, independent on the number of training samples.
Concretely, we choose quadratic basis functions given by

y =

Mf
∑

m=1

βm1
(fm − βm2

)2 (6)

where Mf is the number of features.
Training samples si = [fi, ci] are pairs of feature vec-

tors and ground truth costs. Here, we randomly generate
pose pairs (x1,x2) in the configuration space, compute
their 14-dimensional feature vector fi and determine the
corresponding ground truth cost from the POSQ extend
function, ci = C(x1,x2).

IV. Experiments and Results

In the experiments we compare our approach to an
Euclidean distance baseline, consider four alternative
regression models and study the impact of the domain-
specific feature expansion described above. We perform
two sets of experiments, first we evaluate the prediction
accuracy of the different methods in terms of regression

and ranking metrics, and second, we analyze how the
learned distance metrics impacts planning time, path
quality, and state space coverage. Concretely, we consider

• The proposed basis function model with the fourteen
domain-specific features (BFM) in Table I.

• The basis function model with naive features f =
(x1, x2, y1, y2, θ1, θ2) (BFM naive).

• A neural network model (NN) with two hidden
layers, 30 neurons in the first and 20 in the second
one. The architecture has been found through 5-fold
cross validation

• A random forest regression model (Rnd Forest) [17]
with 100 trees each with 5 terminal leaves. Both
hyperparameters have been found through cross
validation and provide a good trade off between
prediction time and accuracy.

• A ν-SVR model [18] with a RBF kernel Qij =
exp(−γ||xi − xj ||

2) with parameters C = 1e−8 and
γ = 1e−3 which have been found via cross validation.

• A locally weighted projection regression (LWPR)
model with Gaussian kernels and eight receptive
fields. Initial parameters and hyperparameter have
again been found through cross validation.

• We also consider the Euclidean distance (Eucl.
Dist.), the most commonly used distance metric, as
an approximation of the true cost.

A. Regression and Ranking Performance

To evaluate the prediction accuracy of the learned
regression models, we use the following metrics: median
of the residuals, mean squared error normalized by the
residuals’ variance (NMSE), and the coefficient of deter-
mination. We also determine the average runtime tpred
of a single prediction.

Note that although we framed our task as a regression
problem it is actually a learning-to-rank problem. When
searching the tree for the nearest state xnear given
xrand, we are actually interested in the correct ranking
of the tree vertices under the cost model rather than
the predicted costs as such. The typical strategy is then
to choose the best ranked (lowest cost) vertex as xnear.
Therefore, we also evaluate the model with respect to its
ability to correctly rank a set of states and use the fol-
lowing ranking metrics: Kendall τ coefficient, Kendall τd
distance and Spearman ρ coefficient [19]. Kendall τ and
Spearman ρ coefficients are both correlation measures
between two-ordinal level variables equal to 1 if the two
rankings agree perfectly and equal to −1 if they disagree
perfectly. Kendall τd distance measures the number of
disagreements between two ordered lists equal to 0 if the
two ranks are equal. Here, we consider the ranking of the
five best vertices.

We learn all models with the same 50,000 training
samples and validate with 10,000 samples in terms of
regression performance. For ranking, we predict the cost
and evaluate the metrics for a grid of poses over the entire

640

Regression Performance

Metric BFM BFM naive NN Rnd Forest ν-SVR LWPR Eucl. Dist.

Median residuals 0.030 7.8376 1.607 e−6 0.0054987 0.000261 0.6055 0.167

NMSE 0.005 0.8843 7.729 e−7 0.0011037 0.028991 0.0806 0.0118

Determination 0.999 0.8040 1 0.99976 0.99349 0.9821 0.9895

Runtime Performance

Metric BFM BFM naive NN Rnd Forest ν-SVR LWPR Eucl. Dist.

tpred [sec] 6.22 e−07 4.09 e−07 1.24 e−05 6.81 e−05 0.0012 1.87 e−05 3.853 e−07

Ranking Performance

Metric BFM BFM naive NN Rnd Forest ν-SVR LWPR Eucl. Dist.

τ 1 −0.2 1 1 1 0.40 −0.40

τd 0 0.6 0 0 0 0.30 0.70

ρ 1 −0.3 1 1 1 0.40 −0.50

TABLE II

Regression and ranking performance

Fig. 5. The three environments and example trees obtained with our approach. Left: open space scenario. Center: hallway scenario.
Right: random map scenario

configuration space without obstacles with a resolution
of 0.1m in x, y and π/4 rad in θ.

B. Regression and Ranking Results

The results for the regression and ranking metrics are
reported in Table II. The poor performance of the naive
feature approach clearly demonstrates the necessity to
design informative features for this learning task. Also
the Euclidean distance fails to approximate the true dis-
tance metric accurately in terms of both regression and
ranking error. Furthermore, the results show the relation
between a model’s ranking and regression performance:
less accurate regression does not prevent perfect ranking
(of the best five states). Among the four methods with
perfect ranking results, the BFM approach is a clear
winner with two orders of magnitude better runtime
performance. The worst model in this sense is ν-SVR
where inference time scales with the number of support
vectors which in our experiments exceeds 16,000.

C. Planning Performance

We now investigate how the learned regression model
impacts planning time as well as path quality and – fur-
ther below – coverage ability. To this end, we compare the
learned distance metric with two ground truth baselines,
the second best model in the previous experiment (NN),
and, due to its common usage, the Euclidean distance.
The baselines are the ground truth cost of the POSQ ex-
tender with the regular high-resolution integration time
of ∆t = 0.1 sec (POSQ 0.1) and a lower integration time
of ∆t = 0.5 sec (POSQ 0.5). The latter is to analyze the

performance of a faster but “rougher” version of POSQ
with fewer path points. For the sake of a fair comparison
the Euclidean distance uses a k-d tree data structure to
speed up nearest neighbor search.

We consider three simulated test environments (Fig. 5)
that stress different properties of a planner. The open

space scenario has no obstacles, it serves to study the
planner’s behaviour when the tree can grow freely. The
hallway scenario contains many areas of open space,
alternative paths to the goal and local minima. The
random map scenario contains 100 randomly placed
square obstacles. There are many homotopy classes, some
require more or less maneuvers along paths than others.
The map size in all scenarios is 50m× 30m.

To quantify planning performance we compute the
averages of the following metrics: time for a single ex-
tension (text), time to find a solution (Tpath), and path
length in meters (lpath). Smoothness, although being an
intuitive concept, is less straightforward to assess. We
compute three measures relevant in our context: let vmax

be the maximum magnitude of the robot velocity vector
v, ṽ = v(t)

vmax
the normalized velocity, and [t1, t2] the time

interval over which the movement is performed.

1) ηnmaJ , the average of the mean absolute jerk
normalized by vmax, for which the best value is
zero,

ηnmaJ = − 1
vmax(t2−t1)

∫ t2

t1

∣

∣

∣

d2
v

dt2

∣

∣

∣
dt,

2) ηspal, average of the speed arc length, for which the
best value is zero,

641

Open space scenario

Method text [s] Tpath [s] lpath [m] ηnmaJ ηspal ηpm

POSQ 0.1 0.01019 14.5215 47.6487 −7.32075 e−05 −0.802622 0.62

POSQ 0.5 0.006093 5.3704 50.4071 −6.77003 e−05 −0.73929 0.38

BFM 0.001325 1.0902 48.608 −6.44915 e−05 −0.759564 0.31

NN 0.003556 2.6722 48.2047 −6.71913 e−05 −0.777919 0.55

Eucl. Dist. 0.001353 0.1417 56.0124 −0.0034127 −2.28714 0.36

Hallway scenario

Method text [s] Tpath [s] lpath [m] ηnmaJ ηspal ηpm

POSQ 0.1 0.01082 92.9419 54.6069 −7.44230 e−05 −0.844397 0.90

POSQ 0.5 0.007975 70.6947 56.0821 −8.01868 e−05 −0.8833 3.23

BFM 0.00179 26.2349 61.5938 −4.28115 e−05 −0.9543 0.42

NN 0.005318 65.2463 63.3869 −7.22698 e−05 −1.01336 0.39

Eucl. Dist. 0.0007944 1.4498 83.0162 −0.00705978 −3.36954 0.52

Random map scenario

Method text [s] Tpath [s] lpath [m] ηnmaJ ηspal ηpm

POSQ 0.1 0.01180 37.7666 49.8373 −6.04633 e−05 −0.794841 0.45

POSQ 0.5 0.01089 20.88 50.129 −6.12429 e−05 −0.795457 0.68

BFM 0.003976 23.3264 53.2168 −6.85253 e−05 −0.844749 3.89

NN 0.003783 19.452 53.5202 −6.98598 e−05 −0.865452 0.33

Eucl. Dist. 0.001503 0.6197 61.7909 −0.00487451 −2.76645 2.63

TABLE III

Smoothness and efficiency results

ηspal = −ln

(

∫ t2

t1

√

(

1
t2−t1

)2

+
(

dṽ
dt

)2
dt

)

,

3) ηpm = |Vpeaks |, average number of peaks with

Vpeaks = {v(t) : dv
dt

= 0, d2
v

dt2
< 0} being the set

of local velocity maxima.

For each environment and method we perform 100 runs
and compute the average of all metrics. We use uniform
sampling in the entire state space. All experiments were
carried out in a C++ implementation on a single core
of an regular laptop with 2.70 GHz Intel i5 and 12 GB
RAM.

D. Planning Performance Results

The results, given in Table III, show the expected
speed advantage of the Euclidean distance over all other
methods but also that this cost metric produces by far
the longest and least smooth paths. Among the learned
distance metrics, the BFM model generally improves
both runtime metrics by several factors at a negligible
loss of path smoothness. This remains true even for the
“rough” version of the POSQ extender, POSQ 0.5.

The speed up in planning time of the learned distance
metric is most dramatic in the open space scenario. This
is because without obstacles, the other RRT heuristics
that influence tree growth (extend function, collision
checking and random state generation) have no effect and
the improvement is fully visible.

In the hallway scenario, the BFM approach is still able
to find a solution more than twice as fast while in the
cluttered random map environment, the learning method
is on par with the POSQ extender. The reason is that in
cluttered environments a lot of time is spent for collisions
checking and short extensions for which the acceleration
by the learning approach is less visible. Path smoothness

POSQ 0.1 POSQ 0.5 Basis fct. modelNeural Network Euclid. Dist.
0.25

0.3

0.35

Fig. 7. State space coverage means and standard deviations after
5,000 iterations.

remains largely unaffected, the values are all within the
same order of magnitude than the original approach.

E. State Space Coverage

Different distance metrics may lead to different state
space coverage behaviors [8]. We thus compare the ability
of our learning approach to cover the state space with the
previous four methods in the random map scenario. To
this end, we divide the entire state space into a grid of
3D cells and determine state space coverage as the ratio
of grid cells covered by the tree. We perform 100 runs of
5,000 iterations for each method.

The results are shown in the Fig. 7. The Euclidean
distance is best at covering the state space but it does so
because it fails to approximate the true cost and picks
incorrect (quasi random) nearest vertices. The resulting
trees lead to poor solutions in terms of path length and
quality (see Fig. 6 for example trees). Thanks to its good
approximation abilities, the learned distance metric does
not degrade in terms of state space coverage. On average,
its trees are able to cover the same amount of grid cells
than the baseline method.

642

Fig. 6. Example trees obtained using the Euclidean distance in the three scenarios. The initial pose of the robot is shown by a black
dot. Although state space coverage is good, the planner generates trees that lead to poor solutions in terms of path length and quality.

V. Conclusions

In this paper, we have presented a new learning ap-
proach to approximate the distance pseudo-metric (or
cost-to-go metric) for RRT-based motion planning for
wheeled mobile robots. Instead of computing local exten-
sion paths and then evaluating their cost when growing
the tree, we learn a parametric regression model that
directly predicts the cost. In a comparison with four
alternative regression models we could show that a simple
basis function model with constant-time inference is the
best choice in terms of regression and ranking accuracy
as well as planning time and path quality. The resulting
speed up in planning time is significant particularly
in less cluttered environments. Using a set of domain-
specific features, we have also demonstrated the need to
design informative features for this learning task.
Despite good results for planning time and state space

coverage, our experiments have shown the Euclidean
distance to be a poor choice for the approximation of the
true cost with respect to regression and ranking accuracy,
and consequently, path quality and length.
In future work, we will aim for higher dimensional

configuration spaces. We believe that for complex sys-
tems such as humanoids and mobile manipulators our ap-
proach will lead to an even more dramatic improvement
in planning time. Clearly, new features and a 2P-BVP
solver will be required. We also plan to incorporate the
learned model into RRT variants like RRT* or T-RRT.

Acknowledgement

The authors thank Frank Hutter for valuable discussions. This
work has been supported by the EC under contract number FP7-
ICT-600877 (SPENCER)

References

[1] S. Karaman and E. Frazzoli, “Incremental sampling-based
algorithms for optimal motion planning,” in Proc. of Robotics:
Science and Systems (RSS), 2010.

[2] ——, “Sampling-based algorithms for optimal motion plan-
ning,” in Int. Journal of Robotics Research (IJRR), vol. 30,
no. 7, 2011, pp. 846–894.

[3] ——, “Sampling-based optimal motion planning for non-
holonomic dynamical systems,” in Int. Conf. on Robotics and
Automation (ICRA), Karlsruhe, Germany, 2013.

[4] S. LaValle and J. Kuffner, J.J., “Randomized kinodynamic
planning,” in Int. Conf. on Robotics and Automation (ICRA),
Detroit, USA, 1999.

[5] P. Cheng and S. LaValle, “Reducing metric sensitivity in
randomized trajectory design,” in Int. Conf. on Intelligent
Robots and Systems (IROS), San Francisco, USA, 2001.

[6] N. Amato, O. Bayazit, L. Dale, C. Jones, and D. Vallejo,
“Choosing good distance metrics and local planners for prob-
abilistic roadmap methods,” IEEE Trans. on Robotics and
Automation (TRO), vol. 16, no. 4, pp. 442–447, Aug 2000.

[7] J. J. Kuffner, “Effective sampling and distance metrics for
3d rigid body path planning,” in Int. Conf. on Robotics and
Automation (ICRA), New Orleans, USA, 2004.

[8] E. Glassman and R. Tedrake, “A quadratic regulator-based
heuristic for rapidly exploring state space,” in Int. Conf. on
Robotics and Automation (ICRA), Anchorage, USA, 2010.

[9] A. Perez, R. Platt, G. Konidaris, L. Kaelbling, and T. Lozano-
Perez, “LQR-RRT*: Optimal sampling-based motion plan-
ning with automatically derived extension heuristics,” in
Int. Conf. on Robotics and Automation (ICRA), St. Paul,
USA, 2012.

[10] D. Webb and J. van den Berg, “Kinodynamic RRT*: Asymp-
totically optimal motion planning for robots with linear dy-
namics,” in Int. Conf. on Robotics and Automation (ICRA),
Karlsruhe, Germany, 2013.

[11] Y. Li and K. Bekris, “Learning approximate cost-to-go metrics
to improve sampling-based motion planning,” in Int. Conf. on
Robotics and Automation (ICRA), Shanghai, China, 2011.

[12] L. Palmieri and K. O. Arras, “Distance metric learning for
RRT-based motion planning for wheeled mobile robots,” in
IROS 2014 Workshop on Machine Learning in Planning and
Control of Robot Motion, Chicago, USA, 2014.

[13] M. Bharatheesha, W. Caarls, W. Wolfslag, and M. Wisse,
“Distance metric approximation for state-space RRTs using
supervised learning,” in Int. Conf. on Intelligent Robots and
Systems (IROS), Chicago, USA, 2014.

[14] R. E. Allen, A. A. Clark, J. A. Starek, and M. Pavone, “A ma-
chine learning approach for real-time reachability analysis,” in
Int. Conf. on Intelligent Robots and Systems (IROS), Chicago,
USA, 2014.

[15] L. Palmieri and K. O. Arras, “A novel RRT extend function
for efficient and smooth mobile robot motion planning,” in
Int. Conf. on Intelligent Robots and Systems (IROS), Chicago,
USA, 2014.

[16] A. Astolfi, “Exponential stabilization of a wheeled mobile
robot via discontinuous control,”Journal of Dynamic Systems,
Measurement, and Control, vol. 121, no. 1, 1999.

[17] L. Breiman, “Random forests,” Machine Learning, vol. 45,
no. 1, pp. 5–32, 2001.

[18] B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L.
Bartlett, “New support vector algorithms,” Neural Computa-
tion, vol. 12, no. 5, pp. 1207–1245, 2000.

[19] C. Spearman, “The proof and measurement of association
between two things,” Int. Journal of Epidemiology, vol. 39,
no. 5, pp. 1137–1150, 2010.

643

