# DISTANCE OF A BLOCH FUNCTION TO THE LITTLE BLOCH SPACE 

Maria Tjani

Motivated by a formula of $P$. Jones that gives the distance of a Bloch function to BMOA, the space of bounded mean oscillations, we obtain several formulas for the distance of a Bloch function to the little Bloch space, $\mathcal{B}_{0}$. Immediate consequences are equivalent expressions for functions in $\mathcal{B}_{0}$. We also give several examples of distances of specific functions to $\mathcal{B}_{0}$. We comment on connections between distance to $\mathcal{B}_{0}$ and the essential norm of some composition operators on the Bloch space, $\mathcal{B}$. Finally we show that the distance formulas in $\mathcal{B}$ have Bloch type spaces analogues.

## 1. Introduction

Let $U$ denote the open unit disk and $\partial U$ the unit circle in the complex plane. The Bloch space $\mathcal{B}$ of $U$ is the space of holomorphic functions $f$ on $U$ such that

$$
\|f\|_{\mathcal{B}}=\sup _{z \in U}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|<\infty
$$

It is easy to see that $\|f\|_{B}=|f(0)|+\|f\|_{\mathcal{B}}$ defines a norm that makes $\mathcal{B}$ a Banach space that is invariant under Möbius transformations and in fact for all $f \in \mathcal{B}$

$$
\left\|f \circ \omega \varphi_{a}\right\|_{\mathcal{B}}=\|f\|_{\mathcal{B}}
$$

where $\varphi_{a}(z)=(a-z) /(1-\bar{a} z), a \in U$ and $\omega \in \partial U$.
The little Bloch space $\mathcal{B}_{0}$ of $U$ is the closed subspace of $\mathcal{B}$ consisting of functions $f$ with

$$
\lim _{|z| \rightarrow 1}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|=0
$$

Examples of functions in $\mathcal{B}$ include all bounded holomorphic functions on $U$; but $\mathcal{B}$ contains unbounded functions $(\log (1-z) \in \mathcal{B})$. Other examples include certain lacunary series.

Let

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{\lambda_{n}}
$$

Received 13th March, 2006
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/06 \$A2.00+0.00.
where $\left(\lambda_{n}\right)$ is a sequence of integers satisfying

$$
\frac{\lambda_{n+1}}{\lambda_{n}} \geqslant \lambda>1
$$

$\lambda$ is a constant and $n \geqslant 1$. Then $f \in \mathcal{B}$ if and only if $a_{n}$ is a bounded sequence and $f \in \mathcal{B}_{0}$ if and only if $a_{n} \rightarrow 0$, as $n \rightarrow \infty$. See $[1,7,12]$ for more information on $\mathcal{B}$.

The motivation for this paper is a formula of Jones, (see [ 1 , Theorem 9] and [4, p. 503] for a proof), that gives the distance of a Bloch function to BMOA the space of bounded mean oscillations.

We obtain the following formulas for the distance of a Bloch function to $\mathcal{B}_{0}$ :
Theorem 3.5. For $f \in \mathcal{B}, p \geqslant 2$,

$$
\inf A_{p}(f) \leqslant \operatorname{dist}_{\boldsymbol{B}}\left(f, \mathcal{B}_{0}\right) \leqslant 6 \inf A_{p}(f)
$$

and

$$
\inf A(f) \leqslant \operatorname{dist}_{\mathcal{B}}\left(f, \mathcal{B}_{0}\right) \leqslant 6 \inf A(f)
$$

See (8), (9) below for the definitions of the sets $A_{p}(f), A(f)$ respectively.
We obtain as a corollary equivalent expressions for functions in $\mathcal{B}_{0}$ :
Corollary 3.6. For $f \in \mathcal{B}$, the following are equivalent:

1. $f \in \mathcal{B}_{0}$.
2. For all $\varepsilon>0, \Omega_{\varepsilon}(f)$ is a compact subset of $U$.
3. For some $p \geqslant 2$ and all $\varepsilon>0, \int_{\Omega_{c}(f)} 1 /\left(1-|w|^{2}\right)^{p} d A(w)<\infty$.
4. For any $p \geqslant 2$ and $\varepsilon>0$, there is a constant $c$ so that

$$
\int_{\Omega_{\varepsilon}(f)}\left|g^{\prime}(z)\right|^{p} d A(z) \leqslant c\|g\|_{\mathcal{B}}^{p}, \quad \text { for all } g \in \mathcal{B}
$$

See (1) below for the definition of the set $\Omega_{\varepsilon}(f)$.
We also show that
Theorem 3.9. For $f \in \mathcal{B}$,

$$
\underset{|z| \rightarrow 1}{\limsup }\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right) \leqslant \operatorname{dist}_{B}\left(f, \mathcal{B}_{0}\right) \leqslant 2 \limsup _{|z| \rightarrow 1}\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right)
$$

In Section 4 we give several examples of distances of specific functions to $\mathcal{B}_{0}$ for example,

$$
\operatorname{dist}_{\mathcal{B}}\left(\log (1-z), \mathcal{B}_{0}\right)=2=\|\log (1-z)\|_{\mathcal{B}}
$$

and

$$
\operatorname{dist}_{\mathcal{B}}\left(e^{(z+1) /(z-1)}, \mathcal{B}_{0}\right)=\frac{2}{e}=\left\|e^{(z+1) /(z-1)}\right\|_{\mathcal{B}}
$$

Let const. denote a positive and finite constant which may change from one occurrence to the next but will not depend on the functions involved.

In Section 5 we make a connection between distance to $\mathcal{B}_{0}$ and the essential norm of some composition operators $C_{\phi}$ on $\mathcal{B}$. We show the following:

Corollary 5.1. Let $\phi$ be a univalent self-map of $U$ so that $\phi(U)$ has pointwise order of contact 1 with $\partial U$ at the pont 1 . Then,

$$
\frac{1}{4} \operatorname{dist}_{\mathcal{B}}\left(\log (1-\phi), \mathcal{B}_{0}\right) \leqslant\left\|C_{\phi}\right\|_{e} \leqslant \text { const. } \operatorname{dist}_{\mathcal{B}}\left(\log (1-\phi), \mathcal{B}_{0}\right)
$$

In the last section we define the Bloch type spaces $\mathcal{B}_{\alpha}$ and the little Bloch type spaces $\mathcal{B}_{\alpha, 0}$ and we show that the distance formulas in $\mathcal{B}$ have $\mathcal{B}_{\alpha}$ analogues. The main results in the section are Theorem 6.1 and Corollary 6.4. Finally, we obtain as corollaries equivalent expressions for functions in $\mathcal{B}_{\alpha, 0}$ (see Corollary 6.3).

## 2. Preliminaries

For $f \in \mathcal{B}$ [12, Lemma 4.2.8] gives

$$
f(z)=f(0)+f^{\prime}(0) z+\int_{U} \frac{\left(1-|w|^{2}\right) f^{\prime}(w)}{\bar{w}(1-\bar{w} z)^{2}} d A(w), \quad z \in U
$$

where $d A(w)$ is the normalised area measure on $U$. For any $\varepsilon>0$ let $\Omega_{\varepsilon}(f)$ be

$$
\begin{equation*}
\Omega_{\varepsilon}(f)=\left\{z \in U:\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right| \geqslant \varepsilon\right\} \tag{1}
\end{equation*}
$$

Then write

$$
\begin{aligned}
& f(z)=f(0)+f^{\prime}(0) z+\int_{\Omega_{e}(f)} \frac{\left(1-|w|^{2}\right) f^{\prime}(w)}{\bar{w}(1-\bar{w} z)^{2}} d A(w) \\
&+\int_{U \backslash \Omega_{\varepsilon}(f)} \frac{\left(1-|w|^{2}\right) f^{\prime}(w)}{\bar{w}(1-\bar{w} z)^{2}} d A(w)
\end{aligned}
$$

$$
\begin{equation*}
=f(0)+f^{\prime}(0) z+f_{1}(z)+f_{2}(z) \tag{2}
\end{equation*}
$$

The result of Lemma A below is part of the proof of Jones' Theorem that Ghatage and Zheng give in [4, p. 512] but we include it for completeness.

Lemma A. Given $f \in \mathcal{B}$ and $\varepsilon>0$, then $f_{2} \in \mathcal{B}$ and

$$
\left\|f_{2}-f_{2}(0)-f_{2}^{\prime}(0) z\right\|_{B} \leqslant 6 \varepsilon
$$

Proof: Since $f_{2}$ is holomorphic on $U$,

$$
f_{2}^{\prime}(z)-f_{2}^{\prime}(0)=z \int_{0}^{1} f_{2}^{\prime \prime}(t z) d t
$$

for all $z \in U$. Thus,

$$
\begin{aligned}
\left(1-|z|^{2}\right)\left|f_{2}^{\prime}(z)-f_{2}^{\prime}(0)\right| & \leqslant\left(1-|z|^{2}\right)|z| \int_{0}^{1} \frac{1}{\left(1-|z|^{2} t^{2}\right)^{2}} d t \sup _{w \in U}\left(1-|w|^{2}\right)^{2}\left|f_{2}^{\prime \prime}(w)\right| \\
& \leqslant\left(1-|z|^{2}\right)|z| \int_{0}^{1} \frac{1}{\left(1-|z|^{2} t\right)^{2}} d t \sup _{w \in U}\left(1-|w|^{2}\right)^{2}\left|f_{2}^{\prime \prime}(w)\right| \\
& =|z| \sup _{w \in U}\left(1-|w|^{2}\right)^{2}\left|f_{2}^{\prime \prime}(w)\right| \\
& \leqslant \sup _{w \in U}\left(1-|w|^{2}\right)^{2}\left|f_{2}^{\prime \prime}(w)\right|
\end{aligned}
$$

Now for each $w \in U$,

$$
\begin{align*}
\left(1-|w|^{2}\right)^{2}\left|f_{2}^{\prime \prime}(w)\right| & =\left(1-|w|^{2}\right)^{2}\left|\int_{U \backslash \Omega_{e}(f)} \frac{6 \bar{u}\left(1-|u|^{2}\right) f^{\prime}(u)}{(1-w \bar{u})^{4}} d A(u)\right| \\
& \leqslant 6\left(1-|w|^{2}\right)^{2} \int_{U \backslash \Omega_{e}(f)} \frac{\left(1-|u|^{2}\right)\left|f^{\prime}(u)\right|}{|1-w \bar{u}|^{4}} d A(u) \\
& \leqslant 6 \varepsilon\left(1-|w|^{2}\right)^{2} \int_{U} \frac{1}{|1-w \bar{u}|^{4}} d A(u) \\
& =6 \varepsilon . \tag{4}
\end{align*}
$$

Therefore by (3), (4),

$$
\left\|f_{2}-f_{2}(0)-f_{2}^{\prime}(0) z\right\|_{B}=\sup _{z \in U}\left(1-|z|^{2}\right)\left|f_{2}^{\prime}(z)-f_{2}^{\prime}(0)\right| \leqslant 6 \varepsilon
$$

Note. Given $f, g \in \mathcal{B}$ and $z \in U$

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right| \leqslant\|f-g\|_{B}+\left(1-|z|^{2}\right)\left|g^{\prime}(z)\right| \tag{5}
\end{equation*}
$$

The result of Lemma B below is part of the proof of Theorem 3 in [4, p. 512] but we include it for completeness.

LEMMA B. If $f \in \mathcal{B}_{0}$ then $\Omega_{\varepsilon}(f)$ is a compact subset of $U$ for all $\varepsilon>0$.
Proof: Given $f \in \mathcal{B}_{0}$ and $\varepsilon>0$, since $\mathcal{B}_{0}$ is the closure in $\mathcal{B}$ of the polynomials ([13, p. 84]), choose a polynomial $g$ so that $\|f-g\|_{B}<\varepsilon / 2$. Then using (5) we obtain

$$
\begin{equation*}
\Omega_{\varepsilon}(f) \subseteq \Omega_{\varepsilon / 2}(g) \tag{6}
\end{equation*}
$$

We shall show that

$$
\begin{equation*}
\Omega_{\varepsilon / 2}(g) \subseteq D_{\varepsilon}=\left\{z \in U: \operatorname{dist}(z, \partial U)\left\|g^{\prime}\right\|_{\infty} \geqslant \frac{\varepsilon}{4}\right\} \tag{7}
\end{equation*}
$$

Let $z \in \Omega_{\varepsilon / 2}(g)$; then

$$
\left(1-|z|^{2}\right)\left\|g^{\prime}\right\|_{\infty} \geqslant\left(1-|z|^{2}\right)\left|g^{\prime}(z)\right| \geqslant \frac{\varepsilon}{2}
$$

So,

$$
(1-|z|)\left\|g^{\prime}\right\|_{\infty} \geqslant \frac{\varepsilon}{4}
$$

and (7) follows. The set $D_{\varepsilon}$ is a compact set. Indeed, if $\left\|g^{\prime}\right\|_{\infty}=0$ then $g$ is a constant function and $\Omega_{\varepsilon / 2}(g)=D_{\varepsilon}=\emptyset$; and if $\left\|g^{\prime}\right\|_{\infty} \neq 0$ then

$$
D_{\varepsilon}=\left\{z \in U: \operatorname{dist}(z, \partial U) \geqslant \varepsilon /\left(4\left\|g^{\prime}\right\|_{\infty}\right)\right\}
$$

which is clearly a compact subset of $U$. Therefore by (6) and (7) $\Omega_{\varepsilon}(f)$ is a compact subset of $U$ as well.

## 3. Distance formulas

In this section given $f \in \mathcal{B}, f_{1}$ and $f_{2}$ refers to the functions in (2). The distance in the Bloch norm of $f$ to a subset of $\mathcal{B}, X$, is denoted by $\operatorname{dist}_{\mathcal{B}}(f, X)$.

Lemma 3.1. If $f \in \mathcal{B}$ and there exists a function $g \in \mathcal{B}_{0}$ so that $\|f-g\|_{B} \leqslant \alpha$ for some $\alpha>0$, then $\Omega_{\varepsilon}(f)$ is a compact set for all $\varepsilon>\alpha$.

Proof: Fix $\alpha>0$, let $\varepsilon>\alpha$ then using (5) we obtain $\Omega_{\epsilon}(f) \subseteq \Omega_{\varepsilon-\alpha}(g)$. By Lemma B $\Omega_{\varepsilon-\alpha}(g)$ is a compact subset of $U$ therefore so is $\Omega_{\varepsilon}(f)$.

For $f \in \mathcal{B}$ and $p>0$, define $A_{p}(f)$ by

$$
\begin{equation*}
A_{p}(f)=\left\{\varepsilon>0: \frac{\chi \Omega_{e}(f)(z)}{\left(1-|z|^{2}\right)^{p}} d A(z) \text { is a finite measure }\right\} . \tag{8}
\end{equation*}
$$

And let $A(f)$ be

$$
\begin{equation*}
A(f)=\left\{\varepsilon>0: \Omega_{\varepsilon}(f) \text { is a compact subset of } \mathrm{U}\right\} \tag{9}
\end{equation*}
$$

Proposition 3.2. For $f \in \mathcal{B}$ and any $p>0$,

$$
\inf A_{p}(f) \leqslant \inf A(f) \leqslant \operatorname{dist}_{B}\left(f, \mathcal{B}_{0}\right)
$$

Proof: Suppose the right inequality is false; then there exist $\varepsilon_{1}$ and $\varepsilon_{2}>0$ so that

$$
\operatorname{dist}_{\mathcal{B}}\left(f, \mathcal{B}_{0}\right)<\varepsilon_{1}<\varepsilon_{2}<\inf A(f)
$$

Therefore there exists a function $g \in \mathcal{B}_{0}$ so that $\|f-g\|_{B}<\varepsilon_{1}$ and $\Omega_{\varepsilon_{2}}(f)$ is not a compact set. But by Lemma $3.1 \Omega_{\varepsilon_{2}}(f)$ must be a compact set, so we arrive at a contradiction. Thus the right inequality holds.

The left inequality follows since $A(f) \subseteq A_{p}(f)$, for all $p$.
Proposition 3.3. Let $X$ be a subspace of $\mathcal{B}_{0}$ that contains $\{a+b z: a, b \in \mathbf{C}\}$ and $f \in \mathcal{B}$. If there is some $p>0$ such that $f_{1} \in X$ for all $\varepsilon \in A_{p}(f)$, then

$$
\inf A_{p}(f) \leqslant \operatorname{dist}_{\mathcal{B}}(f, X) \leqslant 6 \inf A_{p}(f)
$$

Proof: By Lemma A

$$
\begin{equation*}
\left\|f-f_{1}-f(0)-f^{\prime}(0) z-f_{2}(0)-f_{2}^{\prime}(0) z\right\|_{B} \leqslant 6 \varepsilon \tag{10}
\end{equation*}
$$

Since $X$ contains all linear functions, $f_{1} \in X$ for all $\varepsilon \in A_{p}(f)$, (10) gives

$$
\operatorname{dist}_{\mathcal{B}}(f, X) \leqslant 6 \inf A_{p}(f)
$$

The left inequality follows from Proposition 3.2.
REmark. In the proposition above the right inequality holds for any subspace $X$ of $\mathcal{B}$ that contains $\{a+b z: a, b \in \mathbf{C}\}$.

A function $f$ holomorphic on $U$ belongs to the minimal Besov space $B_{1}$ if and only if $\int_{U}\left|f^{\prime \prime}(z)\right| d A(z)<\infty$. $B_{1}$ is a subspace of $B_{0}$, in fact $B_{1}$ is a subspace of $A(U)$ the Banach space of functions that are continuous on the closed unit disk and holomorphic on the open unit disk with the supremum norm. See [2] and [12] for more information on $B_{1}$.

PROPOSITION 3.4. For $f \in \mathcal{B}$ and $p \geqslant 2$,

$$
\inf A_{p}(f) \leqslant \operatorname{dist}_{\mathcal{B}}\left(f, B_{1}\right) \leqslant 6 \inf A_{p}(f)
$$

Proof: Let $\varepsilon \in A_{p}(f)$. We shall show that $f_{1} \in B_{1}$. Recall that

$$
f_{1}(z)=\int_{\Omega_{\epsilon}(f)} \frac{\left(1-|w|^{2}\right) f^{\prime}(w)}{\bar{w}(1-\bar{w} z)^{2}} d A(w)
$$

Then,

$$
\left|f_{1}^{\prime \prime}(z)\right| \leqslant \int_{\Omega_{\varepsilon}(f)}\left|\frac{\left(1-|w|^{2}\right) f^{\prime}(w)}{\bar{w}(1-\bar{w} z)^{4}} 6 \bar{w}^{2}\right| d A(w)
$$

and

$$
\begin{align*}
\int_{U}\left|f_{1}^{\prime \prime}(z)\right| d A(z) & \leqslant 6 \int_{U} \int_{\Omega_{e}(f)} \frac{\left(1-|w|^{2}\right)\left|f^{\prime}(w)\right|}{|1-\bar{w} z|^{4}} d A(w) d A(z) \\
& =6 \int_{\Omega_{\varepsilon}(f)}\left(1-|w|^{2}\right)\left|f^{\prime}(w)\right| \int_{U} \frac{1}{|1-\bar{w} z|^{4}} d A(z) d A(w) \\
& \leqslant 6\|f\|_{\mathcal{B}} \int_{\Omega_{e}(f)} \frac{1}{\left(1-|w|^{2}\right)^{2}} d A(w) \\
& \leqslant 6\|f\|_{\mathcal{B}} \int_{\Omega_{c}(f)} \frac{1}{\left(1-|w|^{2}\right)^{p}} d A(w)<\infty \tag{11}
\end{align*}
$$

for all $p \geqslant 2$. Therefore (11) and Proposition 3.3 imply the result.
The Besov space $B_{1}$ is a subspace of the little Bloch space $\mathcal{B}_{0}$ that contains all polynomials. Thus, the closure of $B_{1}$ in the Bloch norm is $\mathcal{B}_{0}$, since $\mathcal{B}_{0}$ is the closure of all polynomials in the Bloch norm. The next theorem follows from Proposition 3.2 and Proposition 3.4. Recall the definitions of $A_{p}(f)$ and $A(f)$ in (8), (9) respectively.

Theorem 3.5. For $f \in \mathcal{B}, p \geqslant 2$,

$$
\inf A_{p}(f) \leqslant \operatorname{dist}_{B}\left(f, \mathcal{B}_{0}\right) \leqslant 6 \inf A_{p}(f)
$$

and

$$
\inf A(f) \leqslant \operatorname{dist}_{\mathcal{B}}\left(f, \mathcal{B}_{0}\right) \leqslant 6 \inf A(f)
$$

Remark. The best bounds for $\operatorname{dist}_{\mathcal{B}}\left(f, \mathcal{B}_{0}\right)$ are $\inf A(f)$ from below, $6 \inf A_{2}(f)$ from above, as $A(f) \subseteq A_{p}(f) \subseteq A_{q}(f) \subseteq A_{2}(f)$ for all $p, q$ with $2 \leqslant p \leqslant q$.

The following theorem of Arazy, Fisher and Peetre is from [2, p. 132]. We give a different proof of (2) implies (1).

Theorem C. Let $\mu$ be a positive measure on $U$ and let $0<p<\infty$. Then,
(1) $\int_{U} \frac{d \mu(z)}{\left(1-|z|^{2}\right)^{p}}<\infty$
if and only if there is a constant $c$ with
(2) $\int_{U}\left|f^{\prime}(z)\right|^{p} d \mu(z) \leqslant c\|f\|_{\mathcal{B}}^{p}$, for all $f \in \mathcal{B}$.

Proof: For any $f \in \mathcal{B}$

$$
\begin{aligned}
\int_{U}\left|f^{\prime}(z)\right|^{p} d \mu(z) & =\int_{U} \frac{\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{p}}{\left(1-|z|^{2}\right)^{p}} d \mu(z) \\
& \leqslant\|f\|_{B}^{p} \int_{U} \frac{1}{\left(1-|z|^{2}\right)^{p}} d \mu(z)
\end{aligned}
$$

This proves the easy implication, (1) implies (2). Ramey and Ullrich proved in [8] that there exists functions $f, g \in \mathcal{B}$ so that

$$
\begin{equation*}
\left|f^{\prime}(z)\right|+\left|g^{\prime}(z)\right| \geqslant \frac{\text { const. }}{\left(1-|z|^{2}\right)} \tag{12}
\end{equation*}
$$

Therefore it is easy to see that

$$
\text { const. }\left(\left|f^{\prime}(z)\right|^{p}+\left|g^{\prime}(z)\right|^{p}\right) \geqslant \frac{1}{\left(1-|z|^{2}\right)^{p}}
$$

Integrating the above with respect to $d \mu(z)$ shows that (2) implies (1).
The following is an immediate consequence of Theorem 3.5 and Theorem C.
Corollary 3.6. For $f \in \mathcal{B}$, the following are equivalent:

1. $f \in \mathcal{B}_{0}$.
2. For all $\varepsilon>0 \Omega_{\varepsilon}(f)$ is a compact subset of $U$.
3. For some $p \geqslant 2$ and all $\varepsilon>0$,

$$
\int_{\Omega_{e}(f)} \frac{1}{\left(1-|w|^{2}\right)^{p}} d A(w)<\infty
$$

4. For any $p \geqslant 2$ and $\varepsilon>0$, there is a constant $c$ so that

$$
\int_{\Omega_{e}(f)}\left|g^{\prime}(z)\right|^{p} d A(z) \leqslant c\|g\|_{\mathcal{B}}^{p}, \quad \text { for all } g \in \mathcal{B}
$$

Let $D(0, \alpha)$ denote the disk centred at 0 of radius $\alpha$. A nontangential approach region $\Omega_{\alpha}(0<\alpha<1)$ in $U$ with vertex $\zeta \in \partial U$ is the convex hull of $D(0, \alpha) \cup\{\zeta\}$ minus the point $\zeta$.

For any region $G$ in the complex plane let $\partial G$ denote the boundary of the region. For an open subset $G$ of $U$ with $\zeta \in \partial G \cap \partial U$ we say that it has pointwise order of contact (at most) $b(b>0)$ with $\partial U$ at $\zeta$ if

$$
\begin{equation*}
\frac{1-|z|}{|\zeta-z|^{b}} \geqslant \text { const. } \tag{13}
\end{equation*}
$$

as $z$ approaches $\zeta$ within $G$. So if $\phi$ is a holomorphic self-map of $U$ such that $\phi(U)=\Omega_{\alpha}$ $(0<\alpha<1)$ with vertex $\zeta$ then $\phi(U)$ has pointwise order of contact 1 with $\partial U$ at $\zeta$; if $\phi(U)$ is a disk inside $U$ whose boundary makes tangential contact with $\partial U$ at the point $\zeta$ then $\phi(U)$ has pointwise order of contact 2 with $\partial U$ at the point $\zeta$.

In [3, p. 2191] Bourdon, Cima, and Matheson introduced the notion of mean order of contact. An open subset $G$ of $U$ has mean order of contact (at most) b(b>0) with $\partial U$ if

$$
\begin{equation*}
\int_{0}^{2 \pi} \chi_{G}\left(r e^{i \theta}\right) d \theta=O(1-r)^{1 / b} \tag{14}
\end{equation*}
$$

as $r \rightarrow 1^{-}$. The integral on the left side of (14) represents the angular measure of $G$ intersected with the circle $\{z \in U:|z|=r\}$.

Recall the definition of $\Omega_{\varepsilon}(f)$ in (1) for any $f \in \mathcal{B}$.
Proposition 3.7. Let $f \in \mathcal{B}$ so that for all $\varepsilon>0$ the mean order of contact of $\Omega_{\varepsilon}(f)$ with $\partial U$ is $\alpha_{\varepsilon}<1$. Then $f \in \mathcal{B}_{0}$.

Proof: For a fixed $\varepsilon>0$, (14) gives

$$
\begin{aligned}
\int_{\Omega_{z}(f)} \frac{1}{\left(1-|w|^{2}\right)^{2}} d A(w) & =\frac{1}{\pi} \int_{0}^{1} \int_{0}^{2 \pi} \chi_{\Omega_{c}(f)}\left(r e^{i \theta}\right) d \theta \frac{r}{\left(1-r^{2}\right)^{2}} d r \\
& \leqslant \text { const. } \int_{0}^{1} \frac{(1-r)^{1 / \alpha_{\epsilon}}}{(1-r)^{2}} d r<\infty
\end{aligned}
$$

since $\left(1 / \alpha_{\varepsilon}\right)-2>-1$. Thus by Corollary $3.6 f \in \mathcal{B}_{0}$.
Proposition 3.8. Let $f \in \mathcal{B}$ be so that for all $\varepsilon>0$ the mean order of contact of $\Omega_{\varepsilon}(f)$ with $\partial U$ is 1 . Then for all $\varepsilon>0$ and all $\beta>0$,

$$
\int_{\Omega_{e}(f)} \frac{1}{\left(1-|w|^{2}\right)^{2-\beta}} d A(w)<\infty
$$

We omit the proof as it is similar to the one of Proposition 3.7.
Remark. For the function $f(z)=\log (1-z)$ the mean order of contact of $\Omega_{\varepsilon}(f)$ with $\partial U$ is 1 for all $\varepsilon>0$ (see the remark after example 4.1 for a proof). This shows that the conclusion of the above proposition is valid for the function $\log (1-z)$. Therefore $p \geqslant 2$ in Theorem 3.5 is best possible since $\inf A_{p}(f)=0$ for all $p<2$. Similarly in Corollary $3.6 p \geqslant 2$ is best possible. If $g \in \mathcal{B}_{0}$ then by condition (2) of Corollary 3.6

$$
\int_{\Omega_{t}(g)} \frac{1}{\left(1-|w|^{2}\right)^{p}} d A(w)<\infty
$$

for all $p$. But the converse is valid only for $p \geqslant 2$.
It is well known that the Bloch space $\mathcal{B}$ can be thought of as the area version of the space of bounded mean oscillations $B M O A$. Thus, motivated by a formula for the distance of a BMOA function to VMOA, the space of vanishing mean oscillations, given by Stegenga and Stephenson in [10] we prove the following theorem. In the proof we use a modified version of an argument of Montes-Rodriguez, given in [6, p. 346].

Theorem 3.9. For $f \in \mathcal{B}$,

$$
\underset{|z| \rightarrow 1}{\limsup }\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right) \leqslant \operatorname{dist}_{B}\left(f, \mathcal{B}_{0}\right) \leqslant 2 \limsup _{|z| \rightarrow 1}\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right)
$$

Proof: For a given $f \in \mathcal{B}$ and $g \in \mathcal{B}_{0}$ (5) gives

$$
\limsup _{|z| \rightarrow 1}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right| \leqslant\|f-g\|_{B}
$$

from which the left inequality follows.
For the right inequality fix $f \in \mathcal{B}, M>0,0<\rho<1$ so that for all $z \in U$ with $|z| \geqslant 1-\rho,\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right) \leqslant M$. We shall show that $\operatorname{dist}_{\mathcal{B}}\left(f, \mathcal{B}_{0}\right) \leqslant 2 M$. Also fix for the moment $r$ with $1>r>1-\rho$, let $f_{r}(z)=f(r z)$ for $z \in U$. Then,

$$
\begin{align*}
\left\|f-f_{r}\right\|_{B} & =\sup _{z \in U}\left|\left(f-f_{r}\right)^{\prime}(z)\right|\left(1-|z|^{2}\right) \\
& \leqslant \sup _{|z| \leqslant(1-\rho) / r}\left|\left(f-f_{r}\right)^{\prime}(z)\right|\left(1-|z|^{2}\right)+\sup _{|z|>(1-\rho) / r}\left|\left(f-f_{r}\right)^{\prime}(z)\right|\left(1-|z|^{2}\right) \\
& =I+I I . \tag{15}
\end{align*}
$$

Then

$$
\begin{align*}
I I & \leqslant \sup _{|z|>(1-\rho) / r}\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right)+\sup _{|z|>(1-\rho) / r}\left|f_{r}^{\prime}(z)\right|\left(1-|z|^{2}\right) \\
& \leqslant \sup _{|z|>1-\rho}\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right)+\sup _{|z|>1-\rho}\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right) \leqslant 2 M . \tag{16}
\end{align*}
$$

Also

$$
\begin{align*}
I & =\sup _{|z| \leqslant(1-\rho) / r}\left|\left(f-f_{r}\right)^{\prime}(z)\right|\left(1-|z|^{2}\right) \\
& \leqslant \sup _{|z| \leqslant(1-\rho) / r}\left|f^{\prime}(z)-f^{\prime}(r z)\right|\left(1-|z|^{2}\right)+(1-r) \sup _{|z| \leqslant(1-\rho) / r}\left|f^{\prime}(r z)\right|\left(1-|z|^{2}\right) \\
& \leqslant A+(1-r)\|f\|_{B} . \tag{17}
\end{align*}
$$

By taking the line integral of $f^{\prime \prime}$ from $r z$ to $z$ we get

$$
\begin{align*}
A & =\sup _{|z| \leqslant(1-\rho) / r}\left|f^{\prime}(z)-f^{\prime}(r z)\right|\left(1-|z|^{2}\right) \\
& \leqslant(1-r) \sup _{|z| \leqslant(1-\rho) / r}\left|f^{\prime \prime}(\xi(z))\right||z|\left(1-|z|^{2}\right) \tag{18}
\end{align*}
$$

where $\xi(z)$ is a point in the closed disk of radius $(1-\rho) / r$. Using the Maximum Modulus Theorem and Cauchy's Estimates for $f^{\prime}$ on the circle centred at $\xi(z)$ with radius $R=(1-(1-\rho) / r) / 2$ in (18), we obtain

$$
\begin{align*}
A & \leqslant \frac{1-r}{R} \max _{|z|=R+(1-\rho) / r}\left|f^{\prime}(z)\right| \sup _{|z| \leqslant(1-\rho) / r}|z|\left(1-|z|^{2}\right) \\
& \leqslant \frac{(1-r)}{R}\|f\|_{B} \frac{(1-\rho) / r}{1-((1-\rho) / r+R)^{2}} \tag{19}
\end{align*}
$$

since

$$
\max _{|z|=(1-\rho) / r+R}\left|f^{\prime}(z)\right| \leqslant\|f\|_{B} \frac{1}{1-((1-\rho) /(r)+R)^{2}}
$$

Therefore by (15), (16), (17),

$$
\begin{align*}
\operatorname{dist}_{B}\left(f, \mathcal{B}_{0}\right) & \leqslant\left\|f-f_{r}\right\|_{B} \\
& \leqslant A+(1-r)\|f\|_{B}+2 M \tag{20}
\end{align*}
$$

Notice that

$$
\begin{equation*}
\lim _{r \rightarrow 1} \frac{1}{R} \frac{(1-\rho) / r}{1-((1-\rho) /(r)+R)^{2}}=\frac{8(1-\rho)}{\rho^{2}(4-\rho)} \tag{21}
\end{equation*}
$$

thus letting $r \rightarrow 1$ in (19) and in (20), we obtain

$$
\operatorname{dist}_{\mathcal{B}}\left(f, \mathcal{B}_{0}\right) \leqslant 2 M
$$

which proves the right inequality.
Recall the Koebe Distortion Theorem (see for example [9, p. 156]) which asserts that if $\psi$ is a univalent function on $U$ then for any $z \in U$,

$$
\begin{equation*}
\frac{1}{4}\left|\psi^{\prime}(z)\right|\left(1-|z|^{2}\right) \leqslant \operatorname{dist}(\psi(z), \partial \psi(U)) \leqslant\left|\psi^{\prime}(z)\right|\left(1-|z|^{2}\right) \tag{22}
\end{equation*}
$$

where $\operatorname{dist}(\psi(z), \partial \psi(U))$ is the Euclidean distance from $\psi(z)$ to $\partial \psi(U)$. By (22), an immediate corollary of Theorem 3.9 is as follows.

Corollary 3.10. For any univalent function $f \in \mathcal{B}$,

$$
\underset{|z| \rightarrow 1}{\limsup \operatorname{dist}}(f(z), \partial f(U)) \leqslant \operatorname{dist}_{\mathcal{B}}\left(f, \mathcal{B}_{0}\right) \leqslant 8 \underset{|z| \rightarrow 1}{\lim \sup \operatorname{dist}}(f(z), \partial f(U))
$$

## 4. Examples

It is easy to see that for any constant $c$ and any $f \in \mathcal{B}$

$$
\operatorname{dist}_{\mathcal{B}}\left(f+c, \mathcal{B}_{0}\right)=\operatorname{dist}_{\mathcal{B}}\left(f, \mathcal{B}_{0}\right)=\inf _{g \in \mathcal{B}_{0}}\|f-g\|_{\mathcal{B}} .
$$

Also because of the Möbius invariance of $\mathcal{B}$

$$
\begin{equation*}
\operatorname{dist}_{\mathcal{B}}\left(f \circ \omega \varphi_{a}, \mathcal{B}_{0}\right)=\operatorname{dist}_{\mathcal{B}}\left(f, \mathcal{B}_{0}\right) \tag{23}
\end{equation*}
$$

for all $a \in U, \omega \in \partial U$.
Example 4.1. The function $f(z)=\log (1-z)$ belongs to the Bloch space but not to the little Bloch space. We shall show that

$$
\begin{equation*}
\operatorname{dist}\left(\log (1-z), \mathcal{B}_{0}\right)=2=\|\log (1-z)\|_{B} \tag{24}
\end{equation*}
$$

First

$$
\frac{1-|z|^{2}}{|1-z|} \leqslant \frac{1-|z|^{2}}{1-|z|} \leqslant 2
$$

for all $z \in U$, therefore $\|\log (1-z)\|_{\mathcal{B}} \leqslant 2$; on the other hand

$$
\|\log (1-z)\|_{\mathcal{B}} \geqslant \frac{1-(1-(1 / n))^{2}}{|1-(1-(1 / n))|}
$$

or $\|\log (1-z)\|_{B} \geqslant 2-(1 / n)$ for all nonnegative integers $n$ and so $\|\log (1-z)\|_{B}=2$. By (1) the set

$$
\begin{equation*}
\Omega_{\varepsilon}(f)=\left\{z \in U: \frac{1-|z|^{2}}{|1-z|} \geqslant \varepsilon\right\} \tag{25}
\end{equation*}
$$

behaves like a nontangential approach region in $U$ that touches the unit circle only at the point 1 ; so $\Omega_{\varepsilon}(f)$ is never a compact subset of $U$ unless it is the empty set, thus trivially compact. If $\Omega_{\varepsilon}(f) \neq \emptyset$ then $\varepsilon<2$ since for any $z_{0} \in \Omega_{\varepsilon}(f)$,

$$
\varepsilon \leqslant \frac{1-\left|z_{0}\right|^{2}}{\left|1-z_{0}\right|} \leqslant 1+\left|z_{0}\right|<2
$$

on the other hand if $\varepsilon<2$ then $\Omega_{\varepsilon}(f) \neq \emptyset$, since it is easy to see that $z_{n}=1-(1 / n)$ $\in \Omega_{\varepsilon}(f)$ for all $n$ large enough. Therefore $\Omega_{\varepsilon}(f)=\emptyset$ if and only if $\varepsilon \geqslant 2$ if and only if $\Omega_{\varepsilon}(f)$ is a compact subset of $U$. Thus

$$
\begin{equation*}
\inf A(\log (1-z))=2=\|\log (1-z)\|_{\mathcal{B}} \tag{26}
\end{equation*}
$$

Since

$$
\operatorname{dist}_{\mathcal{B}}\left(\log (1-z), \mathcal{B}_{0}\right) \leqslant\|\log (1-z)\|_{\mathcal{B}}
$$

and by Theorem 3.5

$$
\inf A(\log (1-z)) \leqslant \operatorname{dist}_{\mathcal{B}}\left(\log (1-z), \mathcal{B}_{0}\right)
$$

using (26) we obtain (24) and by (23) for all $a \in U, \omega \in \partial U$

$$
\operatorname{dist}_{\mathcal{B}}\left(\log \left(1-\omega \frac{a-z}{1-\bar{a} z}\right), \mathcal{B}_{0}\right)=2 .
$$

Similarly to the proof of (24) one can show that

$$
\operatorname{dist}_{\mathcal{B}}\left(\log \left(k^{\prime}\right), \mathcal{B}_{0}\right)=6=\left\|\log \left(k^{\prime}\right)\right\|_{\mathcal{B}}
$$

where $k$ is the Koebe function $k(z)=z /\left((1-z)^{2}\right)$ and that

$$
\operatorname{dist}_{\mathcal{B}}\left(\log \left(\frac{z}{1-z^{2}}\right)^{\prime}, \mathcal{B}_{0}\right)=4=\left\|\log \left(\frac{z}{1-z^{2}}\right)\right\|_{\mathcal{B}}
$$

Remark. By (25) for the function $f(z)=\log (1-z)$ and each $\varepsilon>0, \Omega_{\varepsilon}(f)$ has pointwise order of contact 1 with $\partial U$ at the point 1 . In [3, p. 2192] is shown that for domains whose boundary touches the unit circle at exactly one point $\zeta$, if $G$ has pointwise order of contact 1 with $\partial U$ at $\zeta$ then it has mean order of contact 1 with $\partial U$. Therefore for all $\varepsilon>0$ $\Omega_{\varepsilon}(f)$ has mean order of contact 1 with $\partial U$.

For the rest of this section let $\phi$ be a univalent self-map of the unit disk; then $\phi \in \mathcal{B}_{0}$ as for example $\phi(U)$ has a finite area and all such functions lie in $\mathcal{B}_{0}$. Below we shall describe the distance of $\log (1-\phi)$ to $\mathcal{B}_{0}$ for several $\phi$. First notice that if $\phi(U) \subseteq U \backslash D(1, r)$, where $D(1, r)$ is the disk centred at 1 of radius $r$, then $\log (1-\phi) \in \mathcal{B}_{0}$. Example 4.2. Let $\phi$ be such that $\phi(U)=\Omega_{\alpha}$ a nontangential approach region in $U$ with vertex 1 , for some $0<\alpha<1$. We shall show that

$$
\begin{equation*}
\frac{1}{4}\|\log (1-\phi)\|_{\mathcal{B}} \leqslant \operatorname{dist}_{\mathcal{B}}\left(\log (1-\phi), \mathcal{B}_{0}\right) \leqslant\|\log (1-\phi)\|_{\mathcal{B}} \tag{27}
\end{equation*}
$$

Using the Schwarz-Pick Lemma it is easy to see that $\log (1-\phi) \in \mathcal{B}$. Then by (1) and (22) for all $\varepsilon>0$ the set

$$
\Omega_{\varepsilon}(\log (1-\phi))=\left\{z \in U: \frac{\left|\phi^{\prime}(z)\right|\left(1-|z|^{2}\right)}{|1-\phi(z)|} \geqslant \varepsilon\right\}
$$

contains the set

$$
G=\left\{z \in U: \frac{\operatorname{dist}(\phi(z), \partial \phi(U))}{|1-\phi(z)|} \geqslant \varepsilon\right\}
$$

Then $\phi(G)$ behaves like a nontangential approach region contained in $\phi(U)$. Therefore, unless $G=\emptyset$, it is not a compact subset of $U$. If $\Omega_{\varepsilon}(\log (1-\phi))$ is a compact subset of $U$ then so is $G$ and therefore $G=\emptyset$ and for all $z \in U$ we have

$$
\frac{\operatorname{dist}(\phi(z), \partial \phi(U))}{|1-\phi(z)|}<\varepsilon
$$

By (22) $\|\log (1-\phi)\|_{\mathcal{B}} / 4<\varepsilon$ so we obtain

$$
\frac{1}{4}\|\log (1-\phi)\|_{\mathcal{B}} \leqslant \inf A(\log (1-\phi))
$$

Thus Theorem 3.5 gives (27).
Next we give an example where equality holds in the right inequality of (27) for a function $\phi$ with $\phi(U)$ inside a nontangential approach region.

Example 4.3. For $0<\alpha<1$ define

$$
\phi_{\alpha}(z)=\frac{\sigma(z)^{\alpha}-1}{\sigma(z)^{\alpha}+1}
$$

where

$$
\sigma(z)=\frac{1+z}{1-z}, \quad z \in U
$$

The $\operatorname{map} \phi_{\alpha}$ is a holomorhic self-map of $U$ whose image is a lens-shaped region thus it is called a "lens map" ([9, p. 27]). We shall show that

$$
\begin{equation*}
\inf A\left(\log \left(1-\phi_{\alpha}\right)\right)=\operatorname{dist}\left(\log \left(1-\phi_{\alpha}\right), \mathcal{B}_{0}\right)=\left\|\log \left(1-\phi_{\alpha}\right)\right\|_{\mathcal{B}}=2 \alpha \tag{28}
\end{equation*}
$$

By (1) for each $\varepsilon>0$

$$
\begin{align*}
\Omega_{\varepsilon}\left(\log \left(1-\phi_{\alpha}\right)\right) & =\left\{z \in U: \frac{\left|\phi_{\alpha}^{\prime}(z)\right|\left(1-|z|^{2}\right)}{\left|1-\phi_{\alpha}(z)\right|} \geqslant \varepsilon\right\} \\
& =\left\{z \in U: \frac{2 \alpha\left(1-|z|^{2}\right)}{\left|1-z^{2}\right|\left|1+((1-z) /(1+z))^{\alpha}\right|} \geqslant \varepsilon\right\} \tag{29}
\end{align*}
$$

Fix $\epsilon<2$, let $z_{n}=1-1 / n$; then by (29) we can easily see that $z_{n} \in \Omega_{\varepsilon}\left(\log \left(1-\phi_{a}\right)\right)$ if and only if

$$
\frac{2 \alpha}{1+(1 /(2 n-1))^{\alpha}} \geqslant \varepsilon,
$$

which is true for all $n$ large enough thus $\Omega_{\varepsilon}\left(\log \left(1-\phi_{\alpha}\right)\right)$ is not a compact subset of $U$. This shows that

$$
\begin{equation*}
2 \alpha \leqslant \inf A\left(\log \left(1-\phi_{\alpha}\right)\right) \tag{30}
\end{equation*}
$$

For each $0<\alpha<1$

$$
\begin{align*}
\left\|\log \left(1-\phi_{\alpha}\right)\right\|_{\mathcal{B}} & =\sup _{z \in U} \frac{2 \alpha\left(1-|z|^{2}\right)}{\left|1-z^{2}\right|\left|1+((1-z) /(1+z))^{\alpha}\right|} \\
& \leqslant 2 \alpha \sup _{z \in U}\left|\frac{1}{1+((1-z) /(1+z))^{\alpha}}\right| \\
& \leqslant 2 \alpha \tag{31}
\end{align*}
$$

since

$$
1+((1-z) /(1+z))^{\alpha}
$$

maps $U$ onto the sector

$$
\{w:|\arg (w-1)|<(\alpha \pi) / 2\}
$$

Thus Theorem 3.5, (30) and (31) give (28).
Remark. A formula like in (27) is not true for all functions of the form $\log (1-\phi)$ where $\phi(U)$ has mean order of contact $b(0<b \leqslant 1)$ with $\partial U$, as there are such $\phi$ with $\log (1-\phi) \in \mathcal{B}_{0}$. Below we give examples of this.
(i) For each nonnegative integer $n$ let

$$
\Delta_{n}=\left\{z \in U:|\arg (1-z)|<\theta_{n}, \quad \rho_{n}<|z| \leqslant \rho_{n+1}\right\}
$$

where $\rho_{n}=1-\left(1 / 2^{n}\right), 0<\theta_{n}<\pi / 7$ such that $\Sigma_{n=1}^{\infty} \theta_{n}<\infty$. Let $\Delta=\bigcup_{n=1}^{\infty} \Delta_{n}$. It follows that $\Delta$, as it clearly has pointwise order of contact 1 with $\partial U$ at the point 1 , has mean order of contact 1 (see the remark after example 4.1). We would like to give a direct proof of this for our domain $\Delta$ using the definition of mean order of contact; since

$$
\begin{equation*}
\int_{0}^{2 \pi} \chi_{\Delta}\left(r e^{i \theta}\right) d \theta \leqslant \Sigma_{n=1}^{\infty} \int_{0}^{2 \pi} \chi_{\Delta_{n}}\left(r e^{i \theta}\right) d \theta \leqslant \Sigma_{n=1}^{\infty} 2 \psi r \tag{32}
\end{equation*}
$$

where $\psi=\arg (z), z$ is a point, on the first quadrant, on the boundary of the arc $\Delta \cap\{z \in U:|z|=r\}$. By the Law of Cosines and the Law of Sines

$$
\tan \psi=\frac{1-r}{r} \tan \theta_{n}
$$

therefore (32) gives

$$
\begin{aligned}
\int_{0}^{2 \pi} \chi_{\Delta}\left(r e^{i \theta}\right) d \theta & \leqslant \Sigma_{n=1}^{\infty} 2 r \tan ^{-1}\left(\frac{1-r}{r} \tan \theta_{n}\right) \\
& \leqslant \text { const. } \Sigma_{n=1}^{\infty} \theta_{n}(1-r) \leqslant \text { const. }(1-r)
\end{aligned}
$$

Thus (14) shows that $\Delta$ has mean order of contact with $\partial U$ 1. Let $\phi$ be the Riemann map from $U$ onto $\Delta$. It is easy to see, using (22), that $\log (1-\phi) \in \mathcal{B}_{0}$, thus (27) is not valid for such a $\phi$.
(ii) If $\phi$ is such that $\phi(U)$ has mean order of contact $b(0<b<1)$ with $\partial U$ and $\phi(U)$ lies inside a polygon inscribed in the unit circle then $\log (1-\phi) \in \mathcal{B}_{0}$; this follows from Corollary 5.2 in [3] and Theorem 5.3 in [5]. Thus (27) is not valid for such a $\phi$.

Example 4.4. If $\phi(U)$ is a polygon inscribed in the unit circle and one of the vertices of the polygon is the point 1 then it is easy to see that (27) is valid, as in the proof of the formula in the case where $\phi(U)=\Omega_{\alpha}(0<\alpha<1)$.

Example 4.5. If $\phi(U)$ is a disk tangent to the unit circle at the point 1 then it is easy to see that $\phi$ has the form $\psi \circ M$ where $\psi(z)=\lambda z+(1-\lambda)(0<\lambda<1)$ and $M$ is a

Möbius transformation. Using the Möbius invariance of the Bloch seminorm and (24) we obtain

$$
\begin{aligned}
\operatorname{dist}_{\mathcal{B}}\left(\log (1-\phi), \mathcal{B}_{0}\right) & =\operatorname{dist}_{\mathcal{B}}\left(\log (1-\psi), \mathcal{B}_{0}\right) \\
& =\operatorname{dist}_{\mathcal{B}}\left(\log \lambda(1-z), \mathcal{B}_{0}\right) \\
& =\operatorname{dist}_{\mathcal{B}}\left(\log (1-z), \mathcal{B}_{0}\right)=2 .
\end{aligned}
$$

Example 4.6. The function $S(z)=e^{(z+1) /(z-1)}$ belongs to the Bloch space but not to the little Bloch space; actually $S \in H^{\infty} \backslash \mathcal{B}_{0}$. We shall show that

$$
\begin{equation*}
\operatorname{dist}_{\mathcal{B}}\left(S, \mathcal{B}_{0}\right)=\frac{2}{e}=\|S\|_{\mathcal{B}} \tag{33}
\end{equation*}
$$

For $\alpha>0$, the function $S$ maps the circle

$$
C_{\alpha}=\left\{z \in U: \frac{1-|z|^{2}}{|1-z|^{2}}=\alpha\right\}
$$

(centre $\alpha /(1+\alpha)$, radius $1 /(1+\alpha)$ internally tangent to the unit circle at the point 1 ) to the circle $\left\{\varsigma \in U:|\varsigma|=e^{-\alpha}\right\}$. By (1)

$$
\begin{align*}
\Omega_{\varepsilon}(S) & =\left\{z \in U:\left(1-|z|^{2}\right)\left|S^{\prime}(z)\right| \geqslant \varepsilon\right\} \\
& =\left\{z \in U: \frac{2|S(z)|\left(1-|z|^{2}\right)}{|1-z|^{2}} \geqslant \varepsilon\right\} . \tag{34}
\end{align*}
$$

On $C_{\alpha}$ the left hand side of the inequality in (34) equals $2 \alpha e^{-\alpha}$. Thus,

$$
\Omega_{\varepsilon}(S)=\left\{z \in U: 2 \alpha e^{-\alpha} \geqslant \varepsilon, \quad \alpha=\frac{1-|z|^{2}}{|1-z|^{2}}\right\} .
$$

Also,

$$
\begin{equation*}
\|S\|_{\mathcal{B}}=\sup _{\alpha>0} 2 e^{-\alpha} \alpha=\frac{2}{e} . \tag{35}
\end{equation*}
$$

The set $\Omega_{\varepsilon}(S)$ is either the empty set, when $\varepsilon>2 / e$ or a circle internally tangent to the unit circle at $z=1$ when $\varepsilon=2 / e$, or it is the area between two circles both internally tangent to the unit circle at $z=1$ when $\varepsilon<2 / e$. Therefore $\Omega_{\varepsilon}(f)$ is never a compact subset of $U$ unless it is the empty set thus trivially compact. Thus, Theorem 3.5 and (35) show that

$$
\begin{align*}
\inf A(S)=\|S\|_{\mathcal{B}}=\frac{2}{e} & \leqslant \operatorname{dist}_{\mathcal{B}}\left(S, \mathcal{B}_{0}\right) \\
& =\operatorname{dist}_{\mathcal{B}}\left(S-S(0), \mathcal{B}_{0}\right) \\
& \leqslant\|S-S(0)\|_{B}=\|S\|_{\mathcal{B}}=\frac{2}{e} . \tag{36}
\end{align*}
$$

Therefore (33) follows.
5. Distance to $\mathcal{B}_{0}$ and the essential norm of a composition operator If $\phi$ is a holomorphic self-map of $U$, then the composition operator $C_{\phi}$

$$
C_{\phi} f=f \circ \phi
$$

maps holomorphic functions $f$ to holomorphic functions. It is a bounded operator on $\mathcal{B}$, and if $\phi \in \mathcal{B}_{0}$ it is bounded on $\mathcal{B}_{0}$ as well ([2, Theorem 12]). The essential norm of $C_{\phi}$, $\left\|C_{\phi}\right\|_{e}$, is the distance in the operator norm from $C_{\phi}$ to the compact operators. In [6, Theorem 2.1, Proposition 2.2] Montes-Rodriguez showed that for $\phi$ a univalent self-map of $U$

$$
\begin{equation*}
\left\|C_{\phi}\right\|_{e}=\underset{|z| \rightarrow 1}{\lim \sup } \frac{\left|\phi^{\prime}(z)\right|\left(1-|z|^{2}\right)}{1-|\phi(z)|^{2}} \tag{37}
\end{equation*}
$$

Corollary 5.1. Let $\phi$ be a univalent self-map of $U$ so that $\phi(U)$ has pointwise order of contact 1 with $\partial U$ at the point 1 . Then,

$$
\frac{1}{4} \operatorname{dist}_{\mathcal{B}}\left(\log (1-\phi), \mathcal{B}_{0}\right) \leqslant\left\|C_{\phi}\right\|_{e} \leqslant \text { const. } \operatorname{dist}_{\mathcal{B}}\left(\log (1-\phi), \mathcal{B}_{0}\right)
$$

Proof: By (13), (37) and Theorem 3.9

$$
\begin{aligned}
& \operatorname{dist}_{\mathcal{B}}\left(\log (1-\phi), \mathcal{B}_{0}\right) \leqslant 2 \limsup _{|z| \rightarrow 1} \frac{\left|\phi^{\prime}(z)\right|\left(1-|z|^{2}\right)}{|1-\phi(z)|} \\
& \leqslant 4 \limsup _{|z| \rightarrow 1}^{\left|\phi^{\prime}(z)\right|\left(1-|z|^{2}\right)} \\
& 1-|\phi(z)|^{2} \\
& \leqslant \text { const. } \limsup _{|z| \rightarrow 1} \frac{\left|\phi^{\prime}(z)\right|\left(1-|z|^{2}\right)}{|1-\phi(z)|} \\
& \leqslant C_{\phi} \|_{e} \\
& \text { const. } \operatorname{dist}_{\mathcal{B}}\left(\log (1-\phi), \mathcal{B}_{0}\right)
\end{aligned}
$$

Therefore the result follows.

## 6. Distance in Bloch type spaces

In [13] Zhu defined the Bloch type spaces of holomorphic functions on $U$, which are generalisations of the Bloch space $\mathcal{B}$. For each $\alpha>0, \mathcal{B}_{\alpha}$ denotes the space of holomorphic functions $f$ on $U$ for which

$$
\|f\|_{\mathcal{B}_{\alpha}}=\sup _{z \in U}\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right)^{\alpha}<\infty .
$$

The little Bloch type spaces are generalisations of the little Bloch space $\mathcal{B}_{0}$. For each $\alpha>0$ let $\mathcal{B}_{\alpha, 0}$ denote the space of all functions in $\mathcal{B}_{\alpha}$ so that

$$
\lim _{|z| \rightarrow 1}\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right)^{\alpha}=0
$$

Both $\mathcal{B}_{\alpha}$ and $\mathcal{B}_{\alpha, 0}$ are Banach spaces with norm

$$
\|f\|_{B_{\alpha}}=|f(0)|+\|f\|_{B_{\alpha}},
$$

for all $f \in \mathcal{B}_{\alpha}$. As Zhu notes these spaces are not new. When $0<\alpha<1$ then $\mathcal{B}_{\alpha}$ can be identified with the holomorphic Lipschitz space $\operatorname{Lip}_{1-\alpha}$, the space of all holomorphic functions on $U$ with $|f(z)-f(w)| \leqslant \mathrm{c}|z-w|^{1-\alpha}$, for some constant $c>0$ (depending on $f$ ) and all $z, w \in U$. And when $\alpha>1, \mathcal{B}_{\alpha}$ can be identified with the space of holomorhic functions $f$ with

$$
\sup _{z \in U}\left(1-|z|^{2}\right)^{\alpha-1}|f(z)|<\infty
$$

Below we shall describe how the distance formulas in $\mathcal{B}$ have Bloch type spaces analogues.

One can define analogues of $\Omega_{\varepsilon}(f), A_{p}(f)$ and $A(f)$ for Bloch type spaces, just by replacing, on the definition of these sets, (see (1), (8), (9)), the term $1-|z|^{2}$ with $\left(1-|z|^{2}\right)^{\alpha}$. Call these new sets $\Omega_{\varepsilon, \alpha}(f), A_{p, \alpha}(f)$ and $A_{\alpha}(f)$ respectively. Then by Corollary 4 in [13] the analogue of (2) holds in $\mathcal{B}_{\alpha}$ (change powers 2 to $1+\alpha$ ). Thus Lemma A (with 6 replaced with a constant, const., that depends on $\alpha$ ) holds. Lemma B follows from Proposition 2 in [13], which says that $\mathcal{B}_{\alpha, 0}$ is the closure of all polynomials in the $\mathcal{B}_{\alpha}$ norm. Lemma 3.1, Proposition 3.2, Proposition 3.3 (with 6 replaced with a constant, const., that depends on $\alpha$ ) hold. We omit the details as the proofs are similar to the corresponding results in $\mathcal{B}$.

Let $A$ and $B$ be two quantities that depend on a holomorphic function $f$ on $U$. We say that $A$ is equivalent to $B$, we write $A \sim B$, if

$$
\text { const. } A \leqslant B \leqslant \text { const. } A
$$

We shall show that the analogue of Theorem 3.5 holds for $p>2$.
Theorem 6.1. For $f \in \mathcal{B}_{\alpha}(\alpha>0), p>2$,

$$
\operatorname{dist}_{\boldsymbol{B}_{\boldsymbol{a}}}\left(f, \mathcal{B}_{\alpha, 0}\right) \sim \inf A_{p, \alpha}(f) \sim \inf A_{\alpha}(f)
$$

Proof: By the $\mathcal{B}_{\alpha}$ versions of Propositions 3.2 and 3.3 it suffices to show that for all $\varepsilon \in A_{p, \alpha}(f), f_{1} \in \mathcal{B}_{\alpha, 0}$. The function $f_{1}$ in the $\mathcal{B}_{\alpha}$ setting is

$$
f_{1}(z)=\int_{\Omega_{r}(f)} \frac{\left(1-|w|^{2}\right)^{\alpha} f^{\prime}(w)}{\bar{w}(1-\bar{w} z)^{1+\alpha}} d A(w) .
$$

Thus for all $\delta>0$

$$
\begin{aligned}
\left(1-|z|^{2}\right)^{\alpha}\left|f_{1}^{\prime}(z)\right| & \leqslant\left(1-|z|^{2}\right)^{\alpha}\|f\|_{\mathcal{B}_{\alpha}} \int_{\Omega_{e}(f)} \frac{1}{(1-|w||z|)^{\alpha+2}} d A(w) \\
& \leqslant \text { const. }(1-|z|)^{\delta} \int_{\Omega_{\epsilon}(f)} \frac{1}{\left(1-|w|^{2}\right)^{2+\delta}} d A(w)
\end{aligned}
$$

It follows that $f_{1} \in \mathcal{B}_{\alpha, 0}$ for all $\varepsilon \in A_{p, \alpha}(f), p=2+\delta(\delta>0)$. Therefore the result follows.

The analogue of Theorem C holds. In [11, Theorem 2.1.1] is the $\mathcal{B}_{\alpha}$ analogue of (12) (replace the term $1-|z|^{2}$ in (12) with $\left(1-|z|^{2}\right)^{\alpha}$ ). Thus a corollary of the proof of Theorem C is as follows.

Theorem 6.2. Let $\mu$ be a positive measure on $U$, let $0<p<\infty$ and $\alpha>0$. Then,

$$
\int_{U} \frac{d \mu(z)}{\left(1-|z|^{2}\right)^{\alpha p}}<\infty
$$

if and only if there is a constant $c$ with

$$
\int_{U}\left|f^{\prime}(z)\right|^{p} d \mu(z) \leqslant c\|f\|_{\mathcal{B}_{\alpha}}^{p}, \quad \text { for all } f \in \mathcal{B}_{\alpha}
$$

Therefore we obtain the analogue of Corollary 3.6 for $p>2$ :
Corollary 6.3. For $f \in \mathcal{B}_{\alpha}(\alpha>0)$, the following are equivalent:

1. $f \in \mathcal{B}_{\alpha, 0}$.
2. For all $\varepsilon>0 \Omega_{\varepsilon, \alpha}(f)$ is a compact subset of $U$.
3. For some $p>2$ and all $\varepsilon>0$,

$$
\int_{\Omega_{\varepsilon, a}(f)} 1 /\left(\left(1-|w|^{2}\right)^{p}\right) d A(w)<\infty
$$

4. For any $p>2$ and $\varepsilon>0$, there is a constant $c$ so that

$$
\int_{\Omega_{\varepsilon, \alpha}(f)}\left|g^{\prime}(z)\right|^{p} d A(z) \leqslant c\|g\|_{\mathcal{B}_{\alpha}}^{p}, \quad \text { for all } g \in \mathcal{B}_{\alpha}
$$

The analogue of Theorem 3.9 for all spaces $\mathcal{B}_{\alpha}$ holds. The left inequality holds as the analogue of (5) is easily seen to be true in $\mathcal{B}_{\alpha}$. For the right inequality everything works through with the appropriate change of each $1-|z|^{2}$ term to $\left(1-|z|^{2}\right)^{\alpha}$ and $\mathcal{B}, \mathcal{B}_{0}$ replaced with $\mathcal{B}_{\alpha}, \mathcal{B}_{\alpha, 0}$ respectively. $\operatorname{In}(19) 1 /\left(1-(R+(1-\rho) / r)^{2}\right)$ needs to be replaced by its $\alpha$ power then the corresponding limit in (21) equals $\left(2^{2 \alpha+1}(1-\rho)\right) /\left(\rho^{\alpha+1}(4-\rho)^{\alpha}\right)$. Therefore we obtain the following corollary.

Corollary 6.4. For $f \in \mathcal{B}_{\alpha}(\alpha>0)$,

$$
\underset{|z| \rightarrow 1}{\limsup }\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right)^{\alpha} \leqslant \operatorname{dist}_{\mathcal{B}_{\alpha}}\left(f, \mathcal{B}_{\alpha, 0}\right) \leqslant 2 \limsup _{|z| \rightarrow 1}\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right)^{\alpha}
$$

## References

[1] J.M. Anderson, 'Bloch functions: the basic theory', in Operators and Function Theory, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci 153 (Reidel, Dordrecht, 1985), pp. 1-17.
[2] J. Arazy, S.D. Fisher and J. Peetre, 'Möbius invariant function spaces', J. Reine Angew. Math. 363 (1985), 110-145.
[3] P.S. Bourdon, J.A. Cima and A.L. Matheson, 'Compact composition operators on BMOA', Trans. Amer. Math. Soc. 351 (1999), 2183-2196.
[4] P.G. Ghatage and D. Zheng, 'Analytic functions of bounded mean oscillation and the Bloch space', Integral Equations Operator Theory 17 (1993), 501-515.
[5] S. Makhmutov and M. Tjani, 'Composition operators on some Möbius invariant Banach spaces', Bull. Austral. Math. Soc. 62 (2000), 1-19.
[6] A. Montes-Rodriguez, 'The essential norm of a composition operator on Bloch spaces', Pacific J. Math. 188 (1999), 339-351.
[7] C. Pommerenke, Boundary behaviour of conformal maps (Springer-Verlag, Berlin, Heidelberg, 1992).
[8] W. Ramey and D. Ullrich, 'Bounded mean oscillations of Bloch pull-backs', Math. Ann. 291 (1991), 590-606.
[9] J.H. Shapiro, Composition operators and classical fnction theory (Springer-Verlag, New York, 1993).
[10] D.A. Stegenga and K. Stephenson, 'Sharp geometric estimates of the distance to VMOA', Contemp. Math. 137 (1992), 421-432.
[11] J. Xiao, Holomorphic Q classes, Lecture Notes in Mathematics 1767 (Springer-Verlag, Berlin, 2001).
[12] K. Zhu, Operator theory on function spaces (Marcel Dekker, New York, 1990).
[13] K. Zhu, 'Bloch type spaces of analytic functions', Rocky Mountain J. Math. 23 (1993), 1143-1177.

Department of Mathematical Sciences
University of Arkansas
Fayetteville, AR 72701
United States of America
e-mail: mtjani@uark.edu

