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Abstract. Properties of the most familiar optimality criteria, for example A-,
D- and E-optimality, are well known, but the distance optimality criterion has
not drawn much attention to date. In this paper properties of the distance
optimality criterion for the parameter vector of the classical linear model
under normally distributed errors are investigated. DS-optimal designs are
derived for ®rst-order polynomial ®t models. The matter of how the distance
optimality criterion is related to traditional D- and E-optimality criteria is
also addressed.
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1 Introduction

There exists an extensive literature on the characterization of optimal designs
under both discrete and continuous settings using the most familiar optimality
criteria, for example A-, D- and E-optimality. For references see for example
the monograph by Shah and Sinha (1989) and the book by Pukelsheim (1993).
However, the distance optimality criterion, though brie¯y mentioned in the
monograph by Shah and Sinha, has not drawn much attention hitherto.

Let us ®rst consider a line ®t model through the origin. Suppose we have n
uncorrelated responses

Yij � xib � Eij ; �1:1�

i � 1; 2; . . . ; l, and j � 1; 2; . . . ; ni with expectations and variances

E�Yij � � xib and V�Yij � � s2;



respectively. The least squares estimator (LSE) of b

b̂ �
Xl

i�1

nixiY i

�Xl

i�1

nix
2
i ; �1:2�

where Y i � �Yi1 � Yi2 � � � � � Yini
�=ni, has minimum variance among all

linear unbiased estimators of b.

The variance V� b̂� � s2

�Pl

i�1

nix
2
i depends on the values x1; x2; . . . ; xl of

the regressor x and the numbers of replications n1; n2; . . . ; nl . The values xi are
chosen from a given regression range w, which is usually an interval �a; b�. An

experimental design x�n�, or simply x, for sample size n is given by a ®nite
number of regression values in w, and nonzero integers n1; n2; . . . ; nl such thatPl

i�1

ni � n. The LSE b̂ of b and its variance V� b̂� depend on x, that is we may

write b̂ � b̂�x�.
We search now for a design x� which maximizes the probability

P�jb̂�x� ÿ bjU e�:
The idea is to minimize the distance between the true parameter value and its
estimate in a stochastic sense. Hence we call this criterion DS-optimality cri-
terion. A design x� is DS-optimal for the LSE of b when

P�jb̂�x�� ÿ bjU e�VP�jb̂�x� ÿ bjU e� for all eV 0 �1:3�
and for any competing design x with a ®xed sample size n.

Let w2
m denote a chi-squared random variable with m degrees of freedom.

Suppose that observations Yij in the model (1.1) follow a normal distribution.
Then �b̂ ÿ b�2=V� b̂�@ w2

1 , and hence

P�jb̂ ÿ bjU e� � P��b̂ ÿ b�2 U e2� � P w2
1 U

e2

s2

Xl

i�1

nix
2
i

 !
: �1:4�

Let w � �a; b� be the regression range and let xp � fa; b; pg with 0U pU 1
denote a design that assigns the weights p and 1ÿ p to the regression values b
and a, respectively. If jbj > jaj, then the unique maximum of the probability

(1.4) is P w2
1 U

e2nb2

s2

� �
. Thus x1 � fa; b; 1g is the unique DS-optimal design.

Similarly, if jbj < jaj, then x0 � fa; b; 0g is the unique DS-optimal design.
Finally, if w � �ÿa; a�, then every design xp � fÿa; a; pg with any 0U pU 1 is

DS-optimal. In fact, under the model (1.1) with normally distributed errors
the statements

(i) P�jb̂�x�� ÿ bjU e�VP�jb̂�x� ÿ bjU e� for all e > 0,

(ii) P�jb̂�x�� ÿ bjU e�VP�jb̂�x� ÿ bjU e� for some e > 0,

(iii) V� b̂�x���UV� b̂�x��

are equivalent (cf. SteËpniak 1989).

194 E. P. Liski et al.



Note that the optimality criterion (1.3) is de®ned via the peakedness of

the distributions of b̂�x�� and b̂�x�. According to a de®nition proposed by
Birnbaum (1948), a random variable Y1 is more peaked about m1 than is a
random variable Y2 about m2 if

P�jY1 ÿ m1jU e�VP�jY2 ÿ m2jU e� for all eV 0:

When m1 � m2 � 0, we simply say that Y1 is more peaked than Y2. This
de®nition was generalized to the multivariate case by Sherman (1955). For
k-dimensional random vectors Y1 and Y2, Y1 is said to be more peaked than
Y2 if

PfY1 A AgVPfY2 A Ag �1:5�

holds for all convex and symmetric (about the origin) sets AHRk.
In Section 2 we characterize the DS(e)- and DS-optimality for designs

under the classical linear model. Section 3 deals mainly with majorization
properties of the DS-optimality criterion. In Section 4 we brie¯y consider
symmetric polynomial designs and derive DS-optimal designs for the mean
parameter of the m-way ®rst-order polynomial ®t model. Finally, in Section 5,
we discuss the behaviour of the DS(e)-criterion as e! 0 and as e!y.

2 DS-Optimality in linear models

In this paper, we consider distance optimality under the classical linear model

Y@Nn�Xb; s2In�; �2:1�

where the n� 1 response vector Y � �Y1;Y2; . . . ;Yn�0 follows a multivariate
normal distribution, X � �x1; x2; . . . ; xn�0 is the n� k model matrix, b �
�b1; b2; . . . ; bk�0 is the k � 1 parameter vector, E�Y� � Xb is the expectation

vector of Y and D�Y� � s2In is the dispersion matrix of Y, where s2 � V�Yi�
and In is the n� n identity matrix. The regression vector xi appears as the
ith row of the model matrix X. In the spirit of (1.3) we de®ne now a
DS(e)-optimality criterion.

De®nition 2.1. Let b̂1 � b̂�x1� and b̂2 � b̂�x2� be the LSE's of b in (2.1) under
the designs x1 and x2, respectively, and k � k denotes the Euclidean norm in Rk.
If for a given e > 0

P�kb̂1 ÿ bkU e�VP�kb̂2 ÿ bkU e�; �2:2�

then the design x1 is at least as good as x2 with respect to the DS(e)-criterion.

A design x� is said to be DS(e)-optimal for the LSE of b in the model (2.1)
if it maximizes the probability P�kb̂ ÿ bkU e�. When x� is DS(e)-optimal for
all e > 0, we say that x� is DS-optimal. In the particular case k � 1 the DS-
criterion coincides with the DS(e)-criterion for any given e > 0. Sinha (1970)
introduced the distance optimality criterion in a one-way ANOVA model for
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optimal allocation of observations with a given total. Note that according to
the usual de®nition of stochastic ordering for random variables (see Marshall
and Olkin 1979, p. 481), kb̂1 ÿ bk is stochastically not greater kb̂2 ÿ bk, if the
inequality (2.2) holds for all e > 0.

An experimental design x�n� speci®es l U n distinct regression vectors

x1; x2; . . . ; xl and assigns to them frequencies ni such that
Pl

i�1

ni � n. The

regression vectors appearing in the design are called the support of x�n�, that is

supp x�n� � fx1; x2; . . . ; xlg. The matrix X 0X �Pl

i�1

nixix
0
i is the moment matrix

of x�n�; it is denoted by M�x�n��.
The dispersion matrix of the LSE of b � �b1; b2; . . . ; bk�0 is s2�X 0X�ÿ1 and

its inverse is the precision matrix of b. This matrix may be written as

1

s2
M�x�n�� � n

s2

Xl

i�1

ni

n
xix

0
i �

n

s2
M�x�n�=n�;

where M�x�n�=n� is the averaged moment matrix of x�n� (see Pukelsheim 1993,
p. 25). Designs for a speci®ed number of trials are called exact. In practice all
designs are exact.

More generally, we may allow the weights (or proportions) of the regres-
sion vectors vary continuously in the interval �0; 1�. A design in which the
distribution of trials over w is speci®ed by a measure x, regardless of n, is
called continuous or approximate. The moment matrix of a continuous design
x is de®ned by

M�x� �
X

xi A supp x

x�xi�xix
0
i ;

where x�xi� denotes the weight of the regression vector xi (see Pukelsheim
1993, p. 26). The mathematical problem of ®nding the optimum design is
simpli®ed by considering only continuous designs, thus ignoring the constraint
that the number of trials at any design point must be an integer.

Let PLP 0 �M�x� be the spectral decomposition of M�x�, where P is an
orthogonal k � k-matrix and L � diag�l1; l2; . . . ; lk� is the diagonal matrix
of the eigenvalues of M arranged in decreasing order l1 V l2 V � � � V lk > 0.

De®ne Z �
���
n
p
s

L1=2P 0� b̂ ÿ b� and note that Z@Nk�0; Ik� and D� b̂� �
s2

n
PLÿ1P 0. Since the observations Y follow a normal distribution

Nn�Xb; s2In�, the LSE of b � �b1; b2; . . . ; bk�0 follows the k-variate normal
distribution

b̂ @Nk b;
s2

n
M�x�ÿ1

� �
: �2:3�

As

P�kb̂ ÿ bk2 U e2� � P
s2

n
Z 0Lÿ1ZU e2

� �
� P

Xk

i�1

Z2
i

li
U d2

 !
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for all d � ���
n
p

e=s > 0, the DS(e)-criterion P�kb̂ ÿ bkU e� depends on M only
through its eigenvalues l � �l1; l2; . . . ; lk�0. We de®ne the criterion function
ce, or equivalently cd, as

ce�M� � P�kb̂ ÿ bk2 U e2� and cd�l� � P
Xk

i�1

Z2
i

li
U d2

 !
: �2:4�

It is clear that ce�M� � cd�l� for d � ���
n
p

e=s > 0.
As a function of d2 the DS(e)-optimality criterion cd�l� is the cumulative

distribution function of
Pk
i�1

Z2
i =li for every ®xed l A Rk

�. A design x� is DS�e�-
optimal for the LSE of b in (2.1), if for a given e > 0, ce�M�x���Vce�M�x��
for all x. A design x� is DS-optimal if it is DS(e)-optimal for all e > 0.

3 Properties of the DS-optimality criterion

The DS(e)-optimality criterion ce�M� is a function from the set of k � k pos-
itive de®nite matrices into the interval �0; 1�. Equally well we may consider the
corresponding function from positive eigenvalues of M into �0; 1�:

cd�l� : Rk
� ! �0; 1�:

It follows directly from (2.4) that

ce�aM� � c ��
a
p

e�M� and cd�al� � c ��
a
p

d�l�

for all a > 0. An essential aspect of the optimality criterion ce for given e > 0
is that it induces an ordering among designs and among the corresponding
moment matrices of designs. We say that a design x1 is at least as good as x2,
relative to the criterion ce, if ce�M�x1��Vce�M�x2��. In this case we can also
say that the corresponding moment matrix M�x1� is at least as good as M�x2�
with respect to ce. The Loewner partial ordering M�x1�VM�x2� in the set of
k � k nonnegative de®nite matrices is de®ned by the relation

M�x1�VM�x2� , M�x1� ÿM�x2� nonnegative definite

(see Pukelsheim 1993, p. 12).

3.1 Isotonicity and admissability

The function ce conforms to the Loewner ordering in the sense that it pre-
serves the matrix ordering, i.e. ce is isotonic for all e > 0.

Theorem 3.1. The DS-criterion is isotonic relative to Loewner ordering, that is

M�x1�VM�x2� > 0 ) ce�M�x1��Vce�M�x2�� for all e > 0: �3:1�
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Proof. Let Mi �M�xi�, i � 1; 2, be the moment matrices of designs x1 and
x2, respectively. Then for the designs x1 and x2 under the model (2.1) the

LSE's b̂i @Nk�b; s2Mÿ1
i �, i � 1; 2. If M1 VM2 > 0, then the antitonicity of

matrix inversion yields Mÿ1
2 VMÿ1

1 > 0 (see Pukelsheim 1993, p. 13). Hence
by Anderson's theorem (Anderson 1955, cf. Tong 1990, p. 73) we have

ce�M1� � P�kb̂1 ÿ bkU e�VP�kb̂2 ÿ bkU e� � ce�M2�

for all e > 0. r

A reasonable weakest requirement for a moment matrix M is that there
be no competing moment matrix A which is better than M in the Loewner
ordering sense. We say that a moment matrix M is admissible when every
competing moment matrix A with AVM is actually equal to M (cf. Pukel-
sheim 1993, Chapter 10). A design x is rated admissible when its moment
matrix M�x� is admissible. The admissible designs form a complete class
(Pukelsheim 1993, Lemma 10.3). Thus every inadmissible moment matrix
may be improved. If M is inadmissible, then there exists an admissible
moment matrix A0M such that AVM. Since ce is isotonic relative to
Loewner ordering, DS(e)-optimal designs as well as DS-optimal ones can be
found in the set of admissible designs.

3.2 Schur-concavity of the DS-optimality criterion

The notion of majorization proves useful in a study of the function cd�l�.
Majorization concerns the diversity of the components of a vector (cf. Mar-
shall and Olkin 1979, p. 7). Let l � �l1; l2; . . . ; lk�0 and g � �g1; g2; . . . ; gk�0
be k � 1 vectors and l�1�V l�2�V � � � V l�k�, g�1�V g�2�V � � � V g�k� be their
ordered components.

De®nition 3.1. A vector l is said to majorize g, written l � g, if
Pm
i�1

l�i�V
Pm
i�1

g�i�

holds for all m � 1; 2; . . . ; k ÿ 1 and
Pk
i�1

li �
Pk
i�1

gi.

Majorization provides a partial ordering on Rk. The order l � g implies
that the elements of l are more diverse than the elements of g. Then, for
example,

l � l � �l; l; . . . ; l�0 for all l A Rk;

where l � 1

k

Pk
i�1

li. Functions which reverse the ordering of majorization

are said to be Schur-concave (cf. Marshall and Olkin 1979, p. 54).

De®nition 3.2. A function f �x� : Rk ! R is said to be a Schur-concave function
if for all x; y A Rk the relation x � y implies f �x�U f �y�.
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Thus the value of f �x� becomes greater when the components of x become
less diverse. For further details on Schur-concave functions, see Marshall and
Olkin (1979).

We say that DS(e)-criterion is Schur-concave if the function cd�l� de®ned
by the equation (2.4) is a Schur-concave function of l � �l1; l2; . . . ; lk�0.

Theorem 3.2. The DS(e)-criterion is Schur-concave for all e > 0.

Proof. Consider the function cd�l� de®ned in (2.4). Since the joint density
function of the components of Z is Schur-concave (Tong 1990, Theorem
4.4.1), then by Proposition 7.4.2 of Tong (1990, p. 163)

cd�l� � P
Xk

i�1

Zi����
li

p
� �2

U d2

 !

is a Schur-concave function of l � �l1; l2; . . . ; lk�0 for all d > 0. This proves
the theorem. r

Since l � l � �l; l; . . . ; l�0 for all l, Theorem 3.2 implies the following
corollary (cf. also Tong 1990, Theorem 7.4.2):

Corollary 3.1. For the function cd�l� de®ned by the equation (2.4) the
inequality

cd�l�Ucd�l�

holds for all l A Rk and all d > 0, where l � �l; l; . . . ; l�0 and l � 1

k

Xk

i�1

li.

Corollary 3.2. Let l and g denote the column vectors whose components are the
eigenvalues of M1 and M2, respectively, arranged in decreasing order. If M is
a moment matrix with a vector of eigenvalues �1ÿ a�l� ag, then

ce��1ÿ a�M1 � aM2�Vce�M� �3:2�

for all a A �0; 1� and all e > 0.

Proof. Let l��1ÿ a�M1 � aM2� denote the column vector of eigenvalues of
�1ÿ a�M1 � aM2 arranged in decreasing order. Since by Theorem G.1.
(Marshall and Olkin 1979, p. 241) �1ÿ a�l� ag � l��1ÿ a�M1 � aM2�, the
inequality (3.2) follows from Theorem 3.2. r

Note especially that l� g � l�M1 �M2�. Therefore ce�M1 �M2�V
ce�M�, where l� g is the vector of eigenvalues of M. The following theorem
is, in fact, one version of the result due to Okamoto. The proof can be found
in Marshall and Olkin (1979, p. 303).

Theorem 3.3. The function cd�l� is a Schur-concave function of �log l1;
log l2; . . . ; log lk�0 for all d > 0.
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The following corollary is a direct consequence of Theorem 3.3.

Corollary 3.3. The inequality

cd�l�Ucd�~l�

holds for all l A Rk
� and all d > 0, where ~l � �~l; ~l; . . . ; ~l�0 and ~l � Qk

i�1

l
1=k
i .

3.3 Concavity

The function cd is concave on Rk
� if

cd��1ÿ a�l1 � al2�V �1ÿ a�cd�l1� � acd�l2�

for all a A �0; 1� and all l1, l2 A Rk
�. Concavity is often regarded as a compel-

ling property of an optimality criterion (cf. Pukelsheim 1993, p. 115). In this
section we show that the DS(e)-optimality criterion is not, in general, concave.

Theorem 3.4. The function cd�l� is concave on Rk
� for every ®xed d > 0 if and

only if k U 2.

Proof. Let us ®rst consider the special case l1 � l2 � � � � � lk and let c denote
the joint value of li's. Then cd�c� � P�w2

k U cd2� is a concave function of c >
0 if and only if for a given d > 0 the second derivative c 00d �c�U 0 for all c > 0
(see Marshall and Olkin 1979, 16B.3.c., p. 448). It can be shown by direct

calculation that c 00d �c�U 0 if cV
k ÿ 2

d2
and c 00d �c� > 0 if c <

k ÿ 2

d2
(cf. also

Lemma 5.1). Consequently, for k V 3 the function cd is not a concave function
of l everywhere on Rk

�. However, cd is concave on R�, i.e. when k � 1. Also
we see that cd is concave on the line l1 � l2 in R2

�. Next we show that cd is
concave on the whole of R2

�.
Let us now assume that k � 2. We show that

cd�l� �
1

2p

� �
z2
1

l1
�z2

2
l2
Ud2

eÿ�1=2��z2
1
�z2

2
� dz1 dz2

is a concave function of l � �l1; l2�0 on R2
�. Using polar coordinates we

obtain the representation

cd�l� �
1

2p

�2p

0

df

� d
����������������
g�l1;l2;f�
p

0

reÿ�1=2�r2

dr

� 1

2p

�2p

0

�1ÿ eÿ�1=2�d2g�l1;l2;f�� df; �3:3�
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where g�l1; l2; f� � cos2�f�
l1

� sin2�f�
l2

 !ÿ1

. It can be shown by di¨erentia-

tion that the Hessian matrix H�l; f� � ÿ q2g

qlql 0
of ÿg�l; f� is nonnegative

de®nite on R2
� for all f A �0; 2p�. Hence g�l; f� is a concave function of l �

�l1; l2�0 on R2
� for all f A �0; 2p� (Marshall and Olkin 1979, p. 448).

The second order derivative of the function fd�l; f� � 1ÿ eÿ�1=2�d2g�l;f�
with respect to l is

q2 fd

qlql 0
� d2

2
eÿ�1=2�d2g q2g

qlql 0
ÿ d2

2

qg

ql

� �
qg

ql

� � 0" #
: �3:4�

Since it is nonpositive de®nite, fd�l; f� is a concave function of l on R2
� for all

f A �0; 2p�. Therefore, cd�l� �
1

2p

�2p

0

fd�l; f� df is also concave on R2
�. r

Note that for any given e > 0, d2 � ne2=s2 !y as n!y. As shown in
the proof of Theorem 3.4, cd�c� is a concave function of c � l1 � � � � � lk in

k ÿ 2

d2
;y

� �
. Clearly, for any given e > 0 and k > 2,

k ÿ 2

d2
;y

� �
! R� as

n!y. It can be shown in general that for any e > 0 and k A N, cd�l� is

concave on the convex set A�d� � l A Rk
� : li A

k ÿ 2

d2
;y

� �
; 1U iU k

� �
.

This set approaches Rk
� as n!y.

4 DS-optimality in polynomial ®t models

We posit now a polynomial ®t model of degree d V 1,

Yij � b0 � b1ti � � � � � bdtd
i � Eij ; �4:1�

where

E�Eij� � 0 and V�Eij � � s2

for i � 1; 2; . . . ; l and j � 1; 2; . . . ; ni. The responses Yij are uncorrelated and
the experimental conditions t1; t2; . . . ; tl are assumed to lie in the interval
T � �ÿ1; 1�, which is called the experimental domain. The corresponding

regression range w � f�1; t; . . . ; td�0 : t A Tg is a one-dimensional curve

embedded in Rd�1. Any collection t � ft1; t2; . . . ; tl ; p1; p2; . . . ; plg of l V 1
distinct points ti A T and positive numbers pi, i � 1; 2; . . . ; l, such thatPl

i�1

pi � 1, induces a continuous design x on the regression range w (cf. Pukel-

sheim 1993, p. 32). In what follows we will also call t a design and denote by
T the set of all such designs.
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4.1 Symmetric polynomial designs

First we show that the function ce is invariant with respect to the re¯ection
operation. Let t A T be a design for the LSE of b � �b0; b1; . . . ; bd�0 on T �
�ÿ1; 1� in the polynomial ®t model (4.1). The re¯ected design tR is given by
tR � fÿt1;ÿt2; . . . ;ÿtl ; p1; p2; . . . ; plg. The designs t and tR have the same
even moments, while the odd moments of tR have a reversed sign.

If Md�t� denotes the �d � 1� � �d � 1� moment matrix of t, then

Md�tR� � QMd�t�Q;

where Q � diag�1;ÿ1; 1;ÿ1; . . . ;G1� is a diagonal matrix with diagonal ele-
ments 1;ÿ1; 1;ÿ1; . . . ;G1. Let Md � PLP 0 be the spectral decomposition of
Md , where the diagonal elements of the diagonal matrix L are the eigenvalues
of M and P is an orthogonal matrix. It is easy to see that QMdQ � QPLP 0Q
is the spectral decomposition of QMdQ. Consequently, Md and QMdQ have
the same eigenvalues. Since the value of ce�Md� depends on Md only through
its eigenvalues, ce is invariant under the action of Q. Thus ce�Md� �
ce�QMdQ� for all moment matrices Md and for all e > 0.

Theorem 4.1. Let t be a design and tR be the corresponding re¯ected design in a
dth degree polynomial ®t model with experimental domain T � �ÿ1; 1�. Then

ce��1ÿ a�Md�t� � aMd�tR��Vce�Md�t��

for all a A �0; 1� and all e > 0.

Proof. Let l denote the vector of eigenvalues of Md�t�. Invariance under the
action of Q implies that the moment matrix Md�tR� has the same eigenvalues
as Md�t�, and the desired result follows immediately from Corollary 3.2. r

The symmetrized design t � 1
2 �t� tR� has the moment matrix

Md�t� � 1
2 �Md�t� �QMd�t�Q�;

where all odd moments are zero. Hence the averaging operation simpli®es the
moment matrices by letting all odd moments vanish. By Theorem 4.1 the
symmetrized design t is at least as good as t with respect to the criterion ce.
Symmetrization thus increases the value of ce, or at least maintains the same
value.

Pukelsheim's (1993) Claim 10.7 states that t is admissible if and only if t
has at most d ÿ 1 support points in the open interval �ÿ1; 1�. Thus the
�d � 1�-point designs t � fÿ1; t2; . . . ; td ; 1; p1; p2; . . . ; pd ; pd�1g with t2; t3; . . . ;

td A �ÿ1; 1� and
Pd�1

i�1

pi � 1 are admissible. However, as noted above, the cor-

responding symmetrized designs t are at least as good as t.
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4.2 First degree polynomial ®t models

Let us look at an m-way ®rst-degree polynomial ®t model

Yij � b0 � b1ti1 � � � � � bmtim � Eij �4:2�
with m regression variables and l experimental conditions ti � �ti1; ti2; . . . ;
tim�0, i � 1; 2; . . . ; l. The experiment t�n� for sample size n has ni replications

of level ti � �ti1; ti2; . . . ; tim�0. We assume now that the experimental domain
is an m-dimensional Euclidean ball of radius

����
m
p

, that is T ���
m
p � ft A Rm :

ktkU ����
m
p g.

If the vectors t1; t2; . . . ; tm�1 ful®ll the conditions

1� t 0i ti � m� 1; 1� t 0i tj � 0 �4:3�
for all i 0 j Um� 1, then the vectors span a convex body called a regular
simplex. The vertices ti belong to the boundary sphere of the ball T ���

m
p . For

m � 2 the support points t1; t2; t3 span an equilateral triangle on the sphere
of T ��

2
p . A design which places uniform weight 1=�m� 1� on the vertices

t1; t2; . . . ; tm�1 of a regular simplex in Rm is called a regular simplex design (cf.
Pukelsheim 1993, p. 391). For all mV 1 it is always possible to choose vectors
t1; t2; . . . ; tm�1 such that they ful®ll the conditions (4.3). Putting equal weights

1

m� 1
to them yields a regular simplex design t with M1�t� � Im�1. Thus a

regular simplex design always exists. Note that any rotation of a regular sim-
plex design is also a regular simplex design.

The smallest possible support size of a feasible design for the LSE of b �
�b0; b1; . . . ; bm�0 in an m-way ®rst-degree model is l � m� 1, because b has
m� 1 components.

Theorem 4.2. Let Tm�1 be the set of designs t with support size l � m� 1 in the
m-way ®rst-degree model (4.2) on the experimental domain T ���

m
p . Then a design

t A Tm�1 is DS-optimal if and only if it is a regular simplex design.

Proof. Let t A Tm�1 be a design for the LSE of b with support size l � m� 1.
Hence t � ft1; t2; . . . ; tm�1; p1; p2; . . . ; pm�1g, where t1; t2; . . . ; tm�1 are distinct

vectors from T ���
m
p with positive weights p1; p2; . . . ; pm�1 such that

Pm�1

i�1

pi � 1.
For such a design

M1�t� � X 0DX; D � diag�p1; p2; . . . ; pm�1�

and the model matrix X is square. Since jX 0DXj � jDXX 0j, it follows from
Hadamard's inequality (Horn and Johnson 1987, p. 477) that

jM1�t�j � l1l2 . . . lm�1 U
Ym�1

i�1

pi�1� t 0i ti�; �4:4�

where l1; l2; . . . ; lm�1 are the eigenvalues of M1�t� and pi�1� t 0i ti�, i �
1; 2; . . . ;m� 1 are the diagonal elements of DXX 0. Equality holds if and only
if the matrix XX 0 is diagonal, that is if 1� t 0i tj � 0 for all i 0 j Um� 1.
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Now the arithmetic-geometric mean inequality

Ym�1

i�1

pi U
1

m� 1

� �m�1

and the conditions t 0i ti Um; i � 1; 2; . . . ;m� 1, yield the inequality

Ym�1

i�1

pi�1� t 0i ti�U 1: �4:5�

Equality holds if and only if p1 � p2 � � � � � pm�1 �
1

m� 1
and all ti lie on

the boundary sphere of T ���
m
p .

By Corollary 3.3

ce�M1�t��UP�w2
m�1 U d2 ~l� �4:6�

for all e > 0, where d � ���
n
p

e=s and ~l � �l1l2 . . . lm�1�1=�m�1�. The right hand

side of (4.6) is an increasing function of the bound d2 ~l. Therefore (4.4), (4.5)
and (4.6) yield the inequalities

ce�M1�t��UP�w2
m�1 U d2 ~l�UP�w2

m�1 U d2� �4:7�

for all e > 0.
Let t A Tm�1 be DS-optimal. It therefore maximizes ce�M1�t�� for all e > 0.

If ce�M1�t�� attains its maximum P�w2
m�1 U d2� for all e > 0, then it follows

from (4.4), (4.5) and (4.7) that the support points t1; t2; . . . ; tm�1 ful®ll the

conditions (4.3) and p1 � p2 � � � � � pm�1 �
1

m� 1
, i.e. t is a regular simplex

design.
On the other hand, for a regular simplex design t A Tm�1 we have M1�t� �

Im�1. But then ce�M1�t�� � P�w2
m�1 U d2� for all e > 0 and hence t is DS-

optimal. This completes the proof of the theorem. r

If m � 1, then we have the line ®t model

Yij � b0 � b1ti � Eij �4:8�

with experimental domain T � �ÿ1; 1�. It follows from the theorem of De
la Garza (1954) and Theorem 4.2 that the design t1=2 � fÿ1; 1; 1

2g, which

assigns weight 1
2 to the points ÿ1 and 1, is the unique DS-optimal design for

the LSE of b � �b0; b1�0 in (4.8). The same result with the help of a di¨erent
technique was obtained in Liski, Luoma, Mandal and Sinha (1998). An
�m� 1� � �m� 1� matrix X with entries 1 and ÿ1 is called a Hadamard
matrix if X 0X � �m� 1�Im�1. Thus there exists a two-level regular simplex
design (and therefore a two-level DS-optimal design) with levels G1 if and
only if there is a Hadamard matrix of order m� 1. If m � 2, for example,
there is no Hadamard matrix of order 3 and there exists no two-level regular
simplex design with levels G1 in a 2-way ®rst-order polynomial ®t model.
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Corollary 4.1. Let Tl be the set of designs t with support size l Vm� 1 in the
m-way ®rst-degree model (4.2) on the experimental domain T ���

m
p . Then a design

t A Tl is DS-optimal if M1�t� � Im�1.

Proof. Let t � ft1; t2; . . . ; tl ; p1; p2; . . . ; plg A Tl be a design for the LSE of b.
Since tr M1�t� � tr X 0DX, we have by the properties of trace that

tr X 0DX � tr DXX 0 �
Xl

i�1

pi�1� t 0i ti�Um� 1:

The upper bound is attained if and only if t 0i ti � m for all i � 1; 2; . . . ; l.
Clearly, under the constraint tr M1�t� � l1�l2�� � ��lm�1 Um� 1, jM1�t�j
� l1l2 . . . lm�1 attains its maximum if and only if l1 � l2 � � � � � lm�1 � 1.
Consequently, jM1�t�j has its maximum for a design t if M1�t� � Im�1. By the
same argument as in the last paragraph of Theorem 4.2, we can conclude that
t is DS-optimal if M1�t� � Im�1. r

As shown in Theorem 4.2, M1�t� � Im�1 holds for a regular simplex design
t. Hence a design t satisfying the condition M1�t� � Im�1 exists for the mini-
mal feasible support size l � m� 1. Existence of a DS-optimal design in gen-
eral, for any given pair of positive integers m and l Vm� 1, seems to be an
unsolved problem. Nevertheless, a DS-optimal design can be found for certain
values of m and l Vm� 1. For example, the complete factorial design 2m is a
DS-optimal design with l � 2m. It is a two-level design which assigns uniform
weight 1=2m to each of the l � 2m vertices of the m dimensional cube
�ÿ1; 1�m HT ���

m
p . The moment matrix of the complete factorial design 2m is

Im�1, and consequently it is a DS-optimal design for the LSE of b.
But if we have an m-way ®rst-degree model without a constant term,

Yij � b1ti1 � � � � � bmtim � Eij ; �4:9�

then a DS-optimal design on T ���
m
p always exists. This result follows from

Chow and Lii (1993), where D-optimal designs were constructed for the LSE
of b � �b1; b2; . . . ; bm�0 in the model (4.9). It can be shown, using Corollary
4.1, that these D-optimal designs are also DS-optimal.

5 D-, E- and DS(e)-optimality

To open this section we consider a class of designs for mean parameters of a
simple second-degree polynomial ®t model. It is an example of a set of designs
where no DS-optimal design exists. The main result of this section, Theorem
5.1, shows that the classical D- and E-criteria follow from the DS(e)-criterion
as e approaches 0 and y, respectively.

5.1 Quadratic regression without the ®rst-degree term

Let us now consider the parabola ®t model

E�Yij � � b0 � b1t2
i �5:1�
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over the experimental domain T � �ÿ1; 1�. If we denote zi � t2
i , then the

experimental domain of z is Tz � �0; 1�. We may thus seek DS-optimal design
for the LSE of b � �b0; b1�0 over Tz � �0; 1�.

Let t be a design with l V 2 distinct experimental levels z1; z2; . . . ; zl on
Tz � �0; 1�. Then, by the theorem of De la Garza (1954), it is always possible
to ®nd a two-point design tp � fa; b; pg such that

M1�t� �M1�tp�;

where p and q � 1ÿ p are weights at the points b and a, respectively, and
a; b A �0; 1� (cf. Pukelsheim 1993, Claim 10.7). Thus the moment matrix of tp is

M1�tp� � q
1 a

a a2

� �
� p

1 b

b b2

� �
� 1 qa� pb

qa� pb qa2 � pb2

� �
:

However, it is likewise always possible to choose a competing design tp� �
f0; 1; p�g with p� � qa� pb, which is at least as good as tp in the Loewner
ordering sense. This claim can be checked straightforwardly by noting that

M1�tp � � ÿM1�tp� � 0 0

0 q�aÿ a2� � p�bÿ b2�
� �

is nonnegative de®nite, since q�aÿ a2� � p�bÿ b2�V 0 for all a; b A �0; 1�. As
DS-optimality criterion is isotonic relative to Loewner ordering, we have the
inequality

ce�M1�tp � ��Vce�M1�tp�� for all e > 0:

Therefore tp� is at least as good as tp with respect to the DS-optimality
criterion. From this it follows that we may restrict ourselves to the class of
two-point designs ~tp � f0; 1; pg where p is the proportion of replications at 1.
The moment matrix is of the form

M1�~tp� � 1 p

p p

� �
: �5:2�

The eigenvalues of M1�~tp� are

l1;2 � p� 1

2
G

������������������������������������������
p� 1

2

� �2

ÿp�1ÿ p�
s

:

The greatest eigenvalue l1�p� is a monotonically increasing function of p,
while l2�p� attains its maximum at p � 2

5. The product of the eigenvalues
l1�p�l2�p� � p�1ÿ p� � jM1�~tp�j, which has the maximum at p � 1

2. Hence

t2=5 � f0; 1; 2
5g is the E-optimal design and t1=2 � f0; 1; 1

2g is the D-optimal
design for the LSE of b � �b0; b1�0 over Tz � �0; 1�.

Let Z �
���
n
p
s

L1=2P 0� b̂ ÿ b� be de®ned as in Section 2. Since the eigen-

values l1�p� and l2�p� of the matrix (5.2) are functions of the weight param-
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eter p, the DS(e)-optimality criterion ce�M1� depends on M1 solely through p.
Hence we may write

cd�l� � cd�p� � P
Z2

1

l1�p� �
Z2

2

l2�p� U d2

� �
:

Note that Y@Nn�Xb; s2In�, and consequently Z � �Z1;Z2�0@N2�0; I2�.
Since cd is isotonic relative to Loewner ordering and l1�p� and l2�p� are

increasing in 0; 2
5

� �
, we may conclude that cd

2
5

ÿ �
Vcd�p� for all p A 0; 2

5

� �
and

all d > 0. Consequently, if ~tp is DS-optimal, then p A 2
5 ; 1
� �

.
We inquire now whether there exists a DS-optimal design ~tp � f0; 1; pg,

p A �0; 1�. If we de®ne Vi � Zi=�d
����
li

p �, then V � �V1;V2�0 follows a normal
distribution N2�0; dÿ2Lÿ1�. The criterion cd can be written as

cd�p� � P�kVk2 U 1�

� d2
����������������������
l1�p�l2�p�

p
2p

� �
kvkU1

exp ÿ d2

2
v 0Lv

( )
dv;

where kVk2 � V 2
1 � V 2

2 , v 0Lv � l1�p�v2
1 � l2�p�v2

2 and dv � dv1 dv2. The
function cd�p� is positive and continuous on �0; 1� for all d > 0 and cd�0� �
cd�1� � 0. Hence cd�p� has a maximum on the interval �0; 1� at, say, p�.
However, the maximum point p� depends on d. Consequently, there exists no
DS-optimal design for the LSE of b over Tz � �0; 1� in the model (5.1).

5.2 Characterization of D- and E-optimal designs using DS(e)-optimality

Let l � �l1; l2; . . . ; lk�0 and g � �g1; g2; . . . ; gk�0 be the vectors of eigenvalues
of the positive de®nite matrices M�x1� and M�x2�, respectively. The entries of

Fig. 1. The graph of cd�p� for (a) d � 1, (b) d � 2, (c) d � 4
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l and g are arranged in decreasing order. Since M�x1� and M�x2� are positive
de®nite, lk > 0 and gk > 0. A design x1 is at least as good as a design x2, with
respect to the DS(e)-criterion, if

ce�M�x1��Vce�M�x2��; or equivalently; cd�l�Vcd�g�

for d � ���
n
p

e=s > 0. Denote Vi � Zi=�d
���
l
p

i�, i � 1; 2; . . . ; k and V �
�V1;V2; . . . ;Vk�0. Then V follows a k-variate normal distribution
Nk�0; dÿ2Lÿ1�. We may therefore write cd�l� using (2.4) as follows:

cd�l� � P�kVk2 U 1�

� dk�2p�ÿk=2jLj1=2

�
. . .

�
kvkU1

exp ÿ d2

2
v 0Lv

 !
dv; �5:3�

where kVk2 � V 2
1 � V 2

2 � � � � � V 2
k , v � �v1; v2; . . . ; vk�0 and dv � dv1 dv2 . . .

dvk. For any ®xed l with lk > 0 we may consider cd�l� as a function of d.
Theorem 5.1 utilizes the following lemma.

Lemma 5.1. Let w2
1 and w2

k denote chi-squared random variables with 1 and k
�k > 1� degrees of freedom, respectively. Let a and b be positive real numbers
and let d0 � d0�a; b; k� be su½ciently large. Then the following statements hold:

(i) If aU b, then P�w2
k U ad� < P�w2

1 U bd� for all d > 0.

(ii) If a > b, then P�w2
k U ad� > P�w2

1 U bd� for all d > d0.

Proof. It is clear that

P�w2
k > c� > P�w2

1 > c� for all c > 0;

since w2
k �

Pk
i�1

Z2
i and w2

1 � Z2
1 . Therefore, aU b implies P�w2

k U ad� <
P�w2

1 U bd� for all d > 0. Thus we have proved the part (i).
To prove the part (ii) we consider the quotient

q�d; a; b� � Hk�d; a�
H1�d; b� ;

where the functions

Hk�d; a� � P�w2
k > ad� � ck

�y
ad

x�k=2�ÿ1eÿx=2 dx > 0

and

H1�d; b� � P�w2
1 > bd� � c1

�y
bd

xÿ1=2eÿx=2 dx > 0
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as functions of d are de®ned on �0;y� and a; b; ck � 1

G k
2

ÿ �
2k=2

and c1 � 1������
2p
p

are positive constants.
We prove the lemma by showing that q�d; a; b� ! 0 as d!y for a > b.

The limit of the quotient q�d; a; b� is indeterminate of the form 0=0 as d!y.
The functions Hk and H1 are di¨erentiable and their derivatives with respect
to d are

H 0
k�d; a� � ÿck�ad��k=2�ÿ1

eÿad=2a

and

H 0
1�d; b� � ÿc1�bd�ÿ1=2eÿbd=2b;

respectively. Therefore we test the quotient of derivatives: H 0
k�d; a�=H 0

1�d; b� �
cd�kÿ1�=2e�bÿa�d=2, where c is a constant not depending on d. Then we have

H 0
k�d; a�

H 0
1�d; b� ! 0 as d!y if and only if a > b:

Hence, by L'Hospital's rule,

Hk�d; a�
H1�d; b� ! 0 as d!y for a > b: �5:4�

Consequently, for su½ciently large d by (5.4)

Hk�d; a� � 1ÿ P�w2
k U ad� < H1�d; b� � 1ÿ P�w2

1 U bd� for a > b:

This completes our proof. r

We are now in a position to characterize the DS(e)-criterion, when e
approaches 0 and y, respectively. These limiting cases have an interesting
relationship with the traditional D- and E-optimality criteria.

Theorem 5.1. Let l, g A Rk denote vectors whose components are the eigen-
values of the moment matrices M�x1� and M�x2�, respectively, arranged in
decreasing order. Then the following statements hold:

(a) If cd�l�Vcd�g� for all su½ciently small d > 0, then jM�x1�jV jM�x2�j;
if jM�x1�j > jM�x2�j, then cd�l� > cd�g� for all su½ciently small d > 0.

(b) If cd�l�Vcd�g� for all su½ciently large d, then lk V gk ;
if lk > gk, then cd�l� > cd�g� for all su½ciently large d.

Proof. We ®rst prove part �a�. In view of (5.3) the inequality cd�l�Vcd�g�
can be written as

jLj1=2

�
. . .

�
kvkU1

exp ÿ d2

2
v 0Lv

 !
dvV jGj1=2

�
. . .

�
kvkU1

exp ÿ d2

2
v 0Gv

 !
dv;

�5:5�
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where L and G are the diagonal matrices of the eigenvalues of M�x1� and
M�x2�, respectively. Both integrals

�
. . .

�
kvkU1

exp ÿ d2

2
v 0Lv

 !
dv and

�
. . .

�
kvkU1

exp ÿ d2

2
v 0Gv

 !
dv

approach pk=2

�
G

k

2
� 1

� �
as d! 0. Consequently, if (5.5) holds for all

su½ciently small d > 0, then jLj1=2 V jGj1=2, or equivalently jM�x1�j �
jLjV jGj � jM�x2�j. On the other hand, if jLj � jM�x1�j > jM�x2�j � jGj,
then (5.5) with a strict inequality holds for all su½ciently small d > 0. This
completes the proof of part (a).

The proof of part (b). Since gi V gk > 0 �gÿ1
i U gÿ1

k � for all i � 1; 2; . . . ; k,
Theorem 3.1 yields the inequality

cd�g� � P
Z2

1

g1

� Z2
2

g2

� � � � � Z2
k

gk

U d2

� �

VP
Z2

1

gk

� Z2
2

gk

� � � � � Z2
k

gk

U d2

� �
� P�w2

k U gkd2�; �5:6�

where Z@Nk�0; Ik� and Z2
1 � Z2

2 � � � � � Z2
k � w2

k is a chi-squared random
variable with k degrees of freedom. On the other hand, we have the inequality

P�w2
1 U lkd2� � P

Z2
k

lk
U d2

� �

> P
Z2

1

l1
� Z2

2

l2
� � � � � Z2

k

lk
U d2

� �
� cd�l�; �5:7�

where w2
1 is a chi-squared random variable with 1 degree of freedom.

If cd�l�Vcd�g� for all su½ciently large d, then by (5.6) and (5.7)

P�w2
1 U lkd2� > cd�l�Vcd�g�VP�w2

k U gkd2�

for all d > d0, where d0 is su½ciently large. Since P�w2
1 U lkd2� > P�w2

k U gkd2�
for all d > d0, it follows from Lemma 5.1 that lk V gk.

Now let us assume that lk > gk. The same arguments used in derivation of
the inequalities (5.6) and (5.7) also yield the inequalities

cd�l�VP�w2
k U lkd2� �5:8�

and

P�w2
1 U gkd2� > cd�g�: �5:9�

If lk > gk, then Lemma 5.1 yields the inequality
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P�w2
k U lkd2� > P�w2

1 U gkd2� �5:10�

for su½ciently large d. Hence the inequality cd�l� > cd�g� follows from (5.8)±
(5.10) for all su½ciently large d. This completes the proof of part (b). r

Note that nothing can be said about the relationship between cd�l� and
cd�g� for all su½ciently small d > 0, if jM�x1�j � jM�x2�j in part (a) of
Theorem 5.1. Theorem 5.1 also shows that the DS(e)-criterion is equivalent
to the D-criterion as e! 0, and the DS(e)-criterion is equivalent to the
E-criterion as e!y. These conclusions are due to the fact that both D- and
E-optimal designs are unique (cf. Hoel 1958, Pukelsheim and Studden 1993).
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