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Abstract Weclassify the distance-regular Cayley graphswith least eigenvalue−2 and diam-
eter at most three. Besides sporadic examples, these comprise of the lattice graphs, certain
triangular graphs, and line graphs of incidence graphs of certain projective planes. In addi-
tion, we classify the possible connection sets for the lattice graphs and obtain some results
on the structure of distance-regular Cayley line graphs of incidence graphs of generalized
polygons.
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1 Introduction

Distance-regular graphs form an important class of graphs in the area of algebraic graph
theory. Originally, they were defined as a generalization of distance-transitive graphs, and
many of them are not even vertex-transitive. For background on distance-regular graphs, we
refer to the monograph by Brouwer et al. [8] and the recent survey by Van Dam et al. [36].
Here we study the question which distance-regular graphs are Cayley graphs. This question
has been well-studied for distance-regular graphs with diameter two, that is, for strongly
regular graphs, see the survey paper on partial difference sets by Ma [22]. Miklavič and
Potočnik [23,24] classified the distance-regular circulant graphs and distance-regular Cayley
graphs on dihedral groups, whereas Miklavič and Šparl [25] studied a particular class of
distance-regular Cayley graphs on abelian groups. See also the monograph by Konstantinova
[17] for some basic facts and problems on Cayley graphs and distance-regular graphs.

It is well-known that graphs with least eigenvalue −2 have been classified by using root
lattices, see [8, Sect. 3.12]. In particular, it follows that a distance-regular graph with least
eigenvalue −2 is strongly regular or the line graph of a regular graph with girth at least five.
The strongly regular graphs with least eigenvalue−2 have been classified by Seidel [31]. We
will give an overview of which of these graphs is a Cayley graph and in particular, we will
classify the possible connection sets for the lattice graphs, using some general results that
we obtain for the distance-regular line graphs of incidence graphs of generalized polygons.
We will also classify the Cayley graphs with diameter three among the distance-regular line
graphs, in particular the line graphs of Moore graphs and the line graphs of incidence graphs
of projective planes. What remains open is to classify which line graphs of incidence graphs
of generalized quadrangles and hexagons are Cayley graphs.

2 Preliminaries

Let G be a finite group with identity element e and S ⊆ G\{e} be a set such that S = S−1 (we
call S inverse-closed). An (undirected) Cayley graph Cay(G, S) with connection set S is the
graph whose vertex set is G and where two vertices a and b are adjacent (denoted by a ∼ b)
whenever ab−1 ∈ S. The Cayley graph Cay(G, S) is connected if and only if the subgroup
〈S〉 generated by S is equal to G. In the literature, it is sometimes assumed explicitly that
a Cayley graph is connected. In this case, the connection set is also called a generating set.
Here we follow the terminology used by Alspach [4]. We denote the order of an element
a ∈ G by O(a), the subgroup generated by a by 〈a〉 and the cyclic group of order n by Zn .
Furthermore, the cycle graph of order m is denoted by Cm and the line graph of a graph Γ

by L(Γ ).

2.1 Distance-regular graphs

A strongly regular graphwith parameters (v, k, λ, μ) is a k-regular graphwith v vertices such
that every pair of adjacent vertices has λ common neighbors and every pair of non-adjacent
vertices has μ common neighbors. Here we exclude disjoint unions of complete graphs and
edgeless graphs, and therefore strongly regular graphs are connected with diameter two.

A connected graph with diameter d is distance-regular whenever for all vertices x and y,
and all integers i, j ≤ d , the number of vertices at distance i from x and distance j from
y depends only on i , j , and the distance between x and y. A distance-regular graph with
diameter two is the same as a strongly regular graph.
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Distance-regular Cayley graphs with least eigenvalue −2 75

A generalized d-gon is a point-line incidence structure whose (bipartite) incidence graph
has diameter d and girth 2d . It is of order (s, t) if every line contains s + 1 points, and every
point is on t + 1 lines. For s = t , both the incidence graph and its line graph are distance-
regular. This line graph can also be viewed as the point graph of a generalized 2d-gon of order
(s, 1). For some basic background on generalized polygons, we refer to the monographs by
Godsil and Royle [13, Sect. 5.6] and Brouwer et al. [8, Sect. 6.5].

The (adjacency) spectrum of a graph is the multiset of eigenvalues of its adjacency matrix.
As mentioned in the introduction, distance-regular graphs with least eigenvalue −2 can be
classified. In particular, we have the following.

Theorem 2.1 [8, Theorems 3.12.4 and 4.2.16] Let Γ be a distance-regular graph with least
eigenvalue −2. Then Γ is a cycle of even length, or its diameter d equals 2, 3, 4, or 6.
Moreover,

– If d = 2, then Γ is a cocktail party graph, a triangular graph, a lattice graph, the
Petersen graph, the Clebsch graph, the Shrikhande graph, the Schläfli graph, or one of
the three Chang graphs,

– If d = 3, then Γ is the line graph of the Petersen graph, the line graph of the
Hoffman–Singleton graph, the line graph of a strongly regular graph with parameters
(3250, 57, 0, 1), or the line graph of the incidence graph of a projective plane,

– If d = 4, then Γ is the line graph of the incidence graph of a generalized quadrangle of
order (q, q),

– If d = 6, then Γ is the line graph of the incidence graph of a generalized hexagon of
order (q, q).

Recall that the triangular graph T (n) is the line graph of the complete graph Kn , the lattice
graph L2(n) is the line graph of the complete bipartite graph Kn,n (a generalized 2-gon), and
the cocktail party graph C P(n) is the complete multipartite graph with n parts of size two.
Note also that a projective plane is a generalized 3-gon.

We note that the distance-regular graphs with least eigenvalue larger than −2 are also
known. Besides the complete graphs (with least eigenvalue −1), there are the cycles of odd
length, and these are clearly Cayley graphs.

2.2 Vertex-transitivity and edge-transitivity

Recall that a graph Γ is vertex-transitive whenever the automorphism group of Γ acts tran-
sitivity on the vertex set of Γ , i.e. if x is a fixed vertex of Γ , then {xσ |σ ∈ Aut(Γ )} is equal
to the set of vertices of Γ . It is clear that Cayley graphs are vertex-transitive. In fact, a graph
Γ is a Cayley graph if and only if the automorphism group Aut(Γ ) of Γ contains a regular
subgroup, see [4, Theorem 2.2].

AgraphΓ is called edge-transitivewhenever the automorphismgroupofΓ acts transitivity
on the edge set of the graph. Because line graphs play an important role in this paper, also
the concept of edge-transitivity is relevant. Indeed, the following result provides us with
a connection between the vertex-transitivity of the line graph of a graph Γ and the edge-
transitivity of Γ .

Theorem 2.2 [28, Theorem 5.3] Let Γ be a connected graph which is not isomorphic to the
complete graphs K2, K4, a triangle with an extra edge attached, and two triangles sharing an
edge. Then the automorphism group of Γ and its line graph are isomorphic, with the natural
group isomorphism ϕ : Aut(Γ ) → Aut(L(Γ )), defined by ϕ(σ) = σ̃ for σ ∈ Aut(Γ ),
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76 A. Abdollahi et al.

where σ̃ acts on the line graph of Γ such that σ̃ ({v,w}) = {σ(v), σ (w)}, where v and w

are adjacent in Γ .

Lemma 2.3 A connected regular graph is edge-transitive if and only if its line graph is
vertex-transitive.

Proof Let Γ be connected and regular. If Γ is isomorphic to K2 or K4, then Γ is edge-
transitive and the line graph ofΓ is vertex-transitive. On the other hand, ifΓ is not isomorphic
to K2 or K4, then the automorphism group of Γ and its line graph are isomorphic with the
natural group isomorphism by Theorem 2.2, which completes the proof. 	

2.3 Groups and products

Two subgroups H and K in G are conjugate whenever there exists an element g ∈ G such
that K = g−1Hg. The semidirect product G of a group N by a group H is denoted by H � N
or N � H . It has the property that it contains a normal subgroup N1 isomorphic to N and a
subgroup H1 isomorphic to H such that G = N1H1 and N1 ∩ H1 = {e}.

Let G be a finite group with subgroups H and K such that G = H K and the intersection
of H and K is the identity of G. Then G is called a general product of H and K (see [10]).

Finally we mention a result that we will use in Sect. 5.2.

Theorem 2.4 [27, Theorem 9.1.2] Let N be a normal subgroup of a finite group G, and let
n = |N |, and m = [G : N ]. Suppose that n and m are relatively prime. Then G contains
subgroups of order m and any two of them are conjugate in G.

3 Some results on generalized polygons

Let Γ be a distance-regular line graph of the incidence graph of a generalized d-gon of order
(q, q). Then Γ can also be seen as the point graph of a generalized 2d-gon of order (q, 1). It
follows that each vertex of Γ is contained in two maximal cliques, of size q + 1, and every
edge of Γ is contained in a unique maximal clique. Thus, Γ does not have K1,3 nor K1,2,1

as an induced subgraph. Moreover, Γ has diameter d and every induced cycle in Γ is either
a 3-cycle or a 2d-cycle. We will use these properties to derive some general results on the
structure of the connection set in case Γ is a Cayley graph.

Theorem 3.1 Let d ≥ 2, let Γ be the line graph of the incidence graph of a generalized
d-gon of order (q, q), and suppose that Γ is a Cayley graph Cay(G, S). Then there exist
two subgroups H and K of G such that S = (H ∪ K )\{e}, with |H | = |K | = q + 1 and
H ∩ K = {e} if and only if 〈a〉 ⊆ S ∪ {e} for every element a of order 2d in S.

Proof One direction is clear: if there are subgroups H and K ofG such that S = (H ∪K )\{e},
then 〈a〉 ⊆ S ∪ {e} for every element a in S. To show the other direction, assume that
〈a〉 ⊆ S ∪ {e} for every element a of order 2d in S.

We first claim that 〈a〉 ⊆ S ∪ {e} for all a ∈ S. In order to prove this, let a ∈ S and
n = O(a) �= 2d . If n = 2 or 3, then 〈a〉 ⊆ S ∪ {e} since S = S−1. If n ≥ 4, then it is clear
that the induced subgraph Γ〈a〉 of Γ on 〈a〉 contains a cycle e ∼ a ∼ a2 ∼ · · · ∼ an−1 ∼ e
of length n (see also [3, Lemma 2.6]). Because n �= 3 and n �= 2d , it follows that this cycle
is not an induced cycle. Thus, there must be an extra edge in Γ〈a〉, that is, an edge that is not
generated by a or a−1, and hence ai ∈ S for some i with 1 < i < n − 1. Now e is adjacent
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Distance-regular Cayley graphs with least eigenvalue −2 77

to a, a−1, and ai , and because Γ does not contain an induced subgraph K1,3, it follows that
a2 ∈ S, or ai−1 ∈ S, or ai+1 ∈ S. Let us consider the case that ai−1 ∈ S, with i > 2. By
considering the induced subgraph on {e, a, ai−1, ai }, it follows that ai−2 ∈ S because Γ

does not contain an induced subgraph K1,2,1. Similarly, by considering the induced subgraph
on {e, a−1, ai−1, ai }, it follows that ai+1 ∈ S. By repeating this argument, it follows that
〈a〉 ⊆ S ∪ {e}. The other cases go similarly, which proves our claim.

Let H and K be the two cliques of size q + 1 that contain e. Then S = (H ∪ K )\{e} and
H ∩ K = {e}. What remains to be shown is that H and K are subgroups of G.

Let a ∈ H\{e}. Because the graph induced on 〈a〉 is a clique, and there are no edges
between H\{e} and K\{e}, it follows that 〈a〉 ⊆ H , In particular, a−1 ∈ H .

Now let a, b ∈ H , and let us show that ba−1 ∈ H , thus showing that H is a subgroup of
G. If a = b, a = e, or b = e, then this clearly implies that ba−1 ∈ H . In the other cases, we
have that b ∼ a, so ba−1 ∈ S. Because ba−1 ∼ a−1, and there are no edges between H\{e}
and K\{e}, it follows that ba−1 ∈ H . Thus, H—and similarly K—is a subgroup of G. 	


The condition that 〈a〉 ⊆ S ∪ {e} for every element a of order 2d in S is not redundant.
Indeed, the lattice graph L2(2), which is the line graph of K2,2 (the incidence graph of a
generalized 2-gon of order (1, 1)) is isomorphic to the Cayley graph Cay(Z4, {±1}). Both
elements a in S = {±1} have order 4, but a2 /∈ S, and indeed S ∪ {e} does not contain a
nontrivial subgroup of Z4.

The proof of Theorem 3.1 indicates that the condition 〈a〉 ⊆ S ∪ {e} for every element a
of order 2d in S can be replaced by the condition that a2 ∈ S for every element a of order
2d in S. We can in fact generalize this as follows.

Corollary 3.2 Let d ≥ 2, let Γ be the line graph of the incidence graph of a generalized
d-gon of order (q, q), and suppose that Γ is a Cayley graph Cay(G, S). Then there exist
two subgroups H and K of G such that S = (H ∪ K )\{e}, with |H | = |K | = q + 1 and
H ∩ K = {e} if and only if for every element a of order 2d, there exists an element s ∈ S
such that s �= a, a−1 and sas−1 ∈ S.

Proof Let a be of order 2d in S, and assume that there exists an element s ∈ S such that
s �= a, a−1 and sas−1 ∈ S. By Theorem 3.1, it suffices to prove that 〈a〉 ⊆ S ∪ {e}. Because
e is adjacent to a, a−1, and s, and G has no induced subgraph K1,3, it follows that there is
at least one edge within {a, a−1, s}. If a and a−1 are adjacent, then a2 ∈ S. Because Γ does
not contain an induced subgraph K1,2,1, it then follows by induction and by considering the
induced subgraph on {e, a, ai , ai+1} (for i ≥ 2) that 〈a〉 ⊆ S ∪ {e}. So let us assume that a
and a−1 are not adjacent. Without loss of generality, we may thus assume that s is adjacent
a−1, and hence that sa ∈ S. Now e is adjacent to sa, a and s. Furthermore, sa is adjacent to
a and s since sas−1 ∈ S. It follows, again because Γ does not contain an induced subgraph
K1,2,1, that a is adjacent to s. Using the same argument once more gives that a and a−1 are
adjacent, which is a contradiction that finishes the proof. 	

Remark 3.3 In view of the above, if there exists an element a ∈ S of order 2d such that
〈a〉 � S ∪ {e}, then a and a−1 are not adjacent. We may therefore assume that a ∈ H and
a−1 ∈ K , where H and K are the two maximal cliques (but not subgroups) containing e. But
clearly the set K a is a maximal clique containing a and e. Because every edge is in a unique
maximal clique, it follows that K a = H . Therefore, in this case, S = (K ∪ K a)\{e}. In the
case of the Cayley graph Cay(Z4, {±1}), we indeed have K = {−1, 0} and H = K + 1.

As a first application of the above, we obtain that the (distance-regular) line graph of the
Tutte–Coxeter graph is not a Cayley graph.
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Proposition 3.4 The line graph of the Tutte–Coxeter graph is not a Cayley graph.

Proof The Tutte–Coxeter graph is the incidence graph of a generalized quadrangle (4-gon)
of order (2, 2). It has 30 vertices and 45 edges. If its line graph is a Cayley graph Cay(G, S),
then |G| = 45 and |S| = 4. Because G has no element of order 8, it follows from Theorem
3.1 that there exist two subgroups H and K of G such that S = (H ∪ K )\{e}, where
|H | = |K | = 3 and H ∩ K = {e}. Furthermore, the group G is an abelian group isomorphic
to Z3 × Z3 × Z5 or Z9 × Z5 since G has only one subgroup of order 9 and one subgroup of
order 5 by Sylow’s theorems. By the structure of the connection set S, it now follows that
G must be the abelian group isomorphic to Z3 × Z3 × Z5 but in this case the Cayley graph
Cay(G, S) is not connected, a contradiction. Therefore the line graph of the Tutte–Coxeter
graph is not a Cayley graph. 	


We finish this section with a result that shows that the obtained structure of S in the above
fits naturally with line graphs of bipartite graphs.

Lemma 3.5 Let Γ be a Cayley graph Cay(G, S), where S = (H ∪ K )\{e} for nontrivial
subgroups H and K of G such that H ∩ K = {e}. Then Γ is the line graph of a bipartite
graph.

Proof From the structure of S, it follows that each vertex is in twomaximal cliques, and every
edge is in a unique maximal clique. By a result of Krausz [18] (see [37, Theorem 7.1.16])
it follows that Γ is a line graph of a graph, Γ ′, say. The graph Γ ′ has the maximal cliques
of Γ as vertices, and two such cliques are adjacent in Γ ′ if and only if they intersect; the
corresponding edge in Γ ′ is the vertex in Γ that is contained in both cliques.

Because S = (H ∪ K )\{e} and H ∩ K = {e}, we can distinguish between two kinds of
maximal cliques. We call such a clique an H -clique if the edges in the clique are generated
by an element in H , and the other cliques are similarly called K -cliques. Now it is clear that
every edge in Γ ′ has one vertex in the set of H -cliques and the other vertex in the set of
K -cliques. Thus Γ ′ is bipartite. 	


4 Strongly regular graphs

In this section, we will determine which strongly regular graphs with least eigenvalue−2 are
Cayley graphs, using the case of diameter d = 2 in the classification given in Theorem 2.1.

4.1 The sporadic graphs

Besides the three infinite families of strongly regular graphs with least eigenvalue −2, we
have to consider the Petersen graph, the Clebsch graph, the Shrikhande graph, the Schläfli
graph, and the Chang graphs. The Petersen graph is the unique strongly regular graph with
parameters (10, 3, 0, 1). It is the complement of the line graph of the complete graph K5,
and therefore it is not a Cayley graph, by Corollary 4.6 below (see also [13, Lemma 3.1.3]).

Proposition 4.1 (Folklore) The Petersen graph is not a Cayley graph.

It is well-known that the complement of the Clebsch graph is the folded 5-cube, which is
strongly regular with parameters (16, 5, 0, 2) (see [9, p. 119]). The d-dimensional cube Qd is
the distance-regular graph whose vertex set can be labeled with the 2d binary d-tuples such
that two vertices are adjacent whenever their labels differ in exactly one position (clearly
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Distance-regular Cayley graphs with least eigenvalue −2 79

this is a Cayley graph). The folded d-cube is the distance-regular graph that can be obtained
from the cube Qd−1 by adding a perfect matching that connects vertices at distance d − 1
(see [34]). It is evident that the folded d-cube is the Cayley graph Cay(G, S), where G is the
elementary abelian 2-group of order 2d−1 and

S = {(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, 0, . . . , 0, 1), (1, 1, . . . , 1)}.
Thus, the Clebsch graph is a Cayley graph.

The Shrikhande graph is a strongly regular graph with the same parameters as the lattice
graph L2(4) and can be constructed as a Cayley graph

Cay(Z4 × Z4, {±(0, 1),±(1, 0),±(1,−1)}).
This construction ‘on the torus’ is accredited to Biggs [6] by Gol’fand et al. [14, p. 182].

The Schläfli graph is the unique strongly regular graphs with parameters (27, 16, 10, 8). It
follows from theworkbyLiebeck et al. [20] (see also [19,Lemma2.6]) that it is aCayley graph
over the semidirect product Z9 � Z3. UsingGAP [33], we checked that with G = Z9 � Z3 =
〈a, b|a9 = b3 = 1, b−1ab = a7〉 and S = {a, a8, a3, a6, b, b2, a7b, a5b2, a2b, a4b2}, the
Cayley graph Γ = Cay(G, S) indeed is the complement of the Schläfli graph. Note that Γ

is also the point graph of the unique generalized quadrangle of order (2, 4), with lines thus
being the triangles in Γ . Therefore, these lines can be obtained as the right ‘cosets’ of the
five triangles {e, a, a2b}, {e, a8, a7b},{e, a3, a6},{e, b, b2},{e, a5b2, a4b2} through e.

The Schläfli graph can also be constructed as a Cayley graph over (Z3 × Z3) � Z3,
the other nonabelian group of order 27. Indeed, we again checked with GAP [33] that
Γ = Cay(G ′, S′) for G ′ = 〈a, b, c|a3 = b3 = c3 = e, abc = ba, ac = ca, bc = cb〉 and
S′ = {a, a2, b, b2, c, c2, cba, a2b2c2, aba, bab}. In this case all nonidentity elements of the
group have order 3, and hence the triangles through e are subgroups H1, . . . , H5 of G ′, with
trivial intersection and S′ = (H1 ∪ · · · ∪ H5)\{e} (cf. Theorem 3.1). Again, the cosets of
these subgroups give the lines of the generalized quadrangle of order (2, 4). From the above,
we conclude the following.

Proposition 4.2 The Clebsch graph, the Shrikhande graph, and the Schläfli graph are Cayley
graphs.

The Chang graphs are strongly regular graphs with the same parameters as the line graph
of the complete graph K8. These three graphs can be obtained by Seidel switching in L(K8).
According to [7], the orders of the automorphism groups of these graphs are 384, 360, and
96, respectively.

Proposition 4.3 The three Chang graphs are not Cayley graphs.

Proof Let Γ be one of the Chang graphs, and suppose on the contrary that it is a Cayley
graph, and hence that it is vertex-transitive. Let x be a fixed vertex in Γ . Then the order
of {xσ |σ ∈ Aut(Γ )} is equal to 28 since Γ is vertex-transitive. It follows that the index of
Aut(Γ ) over the stabilizer of x is 28. Therefore 28 must divide the order of Aut(Γ ), which
is a contradiction. 	

4.2 The infinite families

A cocktail party graph is a complete multipartite graph with parts of size two, and clearly
such a graph is a Cayley graph. By [1, Proposition 2.6], we obtain the following result.
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Proposition 4.4 A Cayley graph Cay(G, S) is a cocktail party graph if and only if G has an
element a of order 2 and S = G\〈a〉 .

Consider a set X of size n and let V be the collection of all subsets of size m in X , with
m ≥ 2 and n ≥ 2m + 1. The Kneser graph K (n, m) is the graph with vertex set V such that
two vertices A and B in V are adjacent whenever |A ∩ B| = 0. The Kneser graph K (n, 2)
is the complement of the triangular graph T (n). Godsil [11] characterized the Cayley graphs
among the Kneser graphs.

Theorem 4.5 [11] Except in the following cases, the Kneser graph K (n, m) is not a Cayley
graph.

– m = 2, n is a prime power and n ≡ 3 (mod4),
– m = 3, n = 8 or n = 32.

As a corollary, we obtain a result first obtained by Sabidussi [29]. Note that the triangular
graphs T (2) and T (3) are complete graphs, and that T (4) is isomorphic to the cocktail party
graph C P(3).

Corollary 4.6 [29] The triangular graph T (n) is a Cayley graph if and only if n = 2, 3, 4
or n ≡ 3 (mod4) and n is a prime power.

Godsil [12] gave the following construction of the triangular graph T (n) as a Cayley graph
Cay(G, S) for prime powers n ≡ 3 (mod 4). Let F be the field of order n. For a, b ∈ F, let the
map Ta,b : F → F be defined by Ta,b(x) = ax + b. Let G be the group of maps Ta,b, with
a a non-zero square and b arbitrary. It is not hard to see that G acts regularity on the edges
of the complete graph Kn (with vertex set F), using that −1 is a non-square (whence the
assumption that n ≡ 3 (mod 4)). As connection set S one can take the set of maps Ta,b ∈ G
such that either Ta,b(0) ∈ {0, 1} or Ta,b(1) ∈ {0, 1} (thus mapping the vertex {0, 1} of the
triangular graph to an adjacent vertex).

As a final family of strongly regular graphs with least eigenvalue −2, we consider the
lattice graphs. Let n ≥ 2. The lattice graph L2(n) is the line graph of the complete bipartite
graph Kn,n . It is isomorphic to the Cartesian product of two complete graphs Kn , and hence
to the Cayley graph Cay(Zn × Zn, {(0, 1), . . . , (0, n − 1), (1, 0), . . . , (n − 1, 0)}). Because
Kn,n is the incidence graph of a generalized 2-gon, we can apply the results of Sect. 3. We
will use these to give a characterization of the lattice graphs as Cayley graphs.

Theorem 4.7 Let n ≥ 2, let G be a finite group, S be an inverse-closed subset of G, and let
Γ = Cay(G, S). Then the following hold:

– If G is a general product of two of its subgroups H and K of order n and S = (H∪K )\{e},
then Γ is isomorphic to the lattice graph L2(n),

– If Γ is isomorphic to the lattice graph L2(n) and 〈a〉 ⊆ S ∪ {e} for every element a of
order 4 in S, then G is a general product of two of its subgroups H and K of order n and
S = (H ∪ K )\{e}.

Proof Let G be a general product of two of its subgroups H and K of order n and let
S = (H ∪ K )\{e}. Then |G| = n2. By using the results in Sect. 3, we know that every vertex
in Γ is in two maximal cliques of size n. A simple counting argument shows that there are
2|G|/n = 2n maximal cliques in Γ . By Lemma 3.5 and its proof, it follows that Γ is the
line graph of a bipartite graph Γ ′ on the 2n maximal cliques of Γ , and that each clique is on
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Distance-regular Cayley graphs with least eigenvalue −2 81

n edges in Γ ′. This implies that Γ ′ is the complete bipartite graph Kn,n , and hence Γ is the
lattice graph L2(n).

To prove the second item, suppose that Γ is isomorphic to the lattice graph L2(n) and
〈a〉 ⊆ S ∪ {e} for every element a of order 4 in S. It follows by Theorem 3.1 that there are
subgroups H and K of order n in G such that H ∩ K = {e} and S = (H ∪ K )\{e}. Now
K is a maximal clique in Γ . Let g be a vertex not in K . Then the structure of the lattice
graph implies that g is adjacent to precisely one vertex k ∈ K . Thus gk−1 ∈ S, and hence
it follows that gk−1 ∈ H (because if it were in K , then so would g), so g = hk for some
h ∈ H . Therefore G is the general product of H and K , which completes the proof. 	

We recall from Sect. 3 that the lattice graph L2(2) is isomorphic to the Cayley graph
Cay(Z4, {±1}), which is an example such that G = Z4 cannot be written as a general
product H K with inverse-closed sets H and K of size 2.

We now conclude this section by giving the classification of all strongly regular Cayley
graphs with least eigenvalue at least −2 (which follows from the above). Recall that the only
strongly regular graph with least eigenvalue larger than −2 is the 5-cycle.

Theorem 4.8 A graph Γ is a strongly regular Cayley graph with least eigenvalue at least
−2 if and only if Γ is isomorphic to one of the following graphs.

– The cycle C5, the Clebsch graph, the Shrikhande graph, or the Schläfli graph,
– The cocktail party graph C P(n), with n ≥ 2,
– The triangular graph T (n), with n = 4, or n ≡ 3 (mod4) and n a prime power, n > 4,
– The lattice graph L2(n), with n ≥ 2.

5 Distance regular graphs with diameter three

In this section, we will determine which distance-regular graphs with least eigenvalue −2
and diameter three are Cayley graphs. By the classification given in Theorem 2.1, we again
have to consider a few sporadic examples and an infinite family.

5.1 The line graphs of Moore graphs

Proposition 5.1 The line graph of the Petersen graph is not a Cayley graph.

Proof LetΓ be the line graph of the Petersen graph, and suppose thatΓ ∼= Cay(G, S), hence
|G| = 15 and |S| = 4. Therefore there exists a subgroup of order 15 of the automorphism
group of Γ which acts transitively on the edges of the Petersen graph. By Sylow’s theorems,
it is easy to see that the only group of order 15 is the cyclic group Z15. This abelian group G
acts transitively on the edges of the Petersen graph, and because this graph is not bipartite, it
follows that G acts transitively on the vertices of the Petersen graph (cf. [13, Lemma 3.2.1]).
But every transitive abelian group acts regularly (cf. [6, Proposition 16.5]), which gives a
contradiction because the Petersen graph does not have 15 vertices. 	

Proposition 5.2 The line graph of the Hoffman–Singleton graph is not a Cayley graph.

Proof Let Γ be the line graph of the Hoffman–Singleton graph, and suppose that Γ ∼=
Cay(G, S), hence |G| = 175 and |S| = 12. It is easy to see that there exist only two groups
of order 175 by Sylow’s theorems, which are the abelian groups Z175 and Z35 × Z5. The
result now follows similarly as in Proposition 5.1 	
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The final case in this section is the line graph of a putative Moore graph on 3250 vertices.

Proposition 5.3 The line graph of a strongly regular graph with parameters (3250, 57, 0, 1)
is not a Cayley graph.

Proof Let Γ be a strongly regular graph with parameters (3250, 57, 0, 1) and suppose that
the line graph of Γ is a Cayley graph. Then L(Γ ) is vertex-transitive and therefore Γ is
edge-transitive by Lemma 2.3. On the other hand, it is known that Γ is not vertex-transitive,
see [9, Proposition 11.2], and therefore Γ must be bipartite by [13, Lemma 3.2.1], which is
a contradiction. 	

5.2 The line graphs of the incidence graphs of projective planes

Recall that a projective plane of order q is a point-line incidence structure such that each
line has q + 1 points, each point is on q + 1 lines, and every pair of points in on a unique
line. It is the same as a generalized 3-gon of order (q, q) and a 2-(q2 + q + 1, q + 1, 1)
design. Currently, projective planes of order q are only known to exist for prime powers q ,
and for q = 1. For q > 1, the classical construction of a projective plane of order q uses the
finite field GF(q) and gives the so-called Desarguesian plane of order q . We note that Loz
et al. [21] showed that the (distance-regular) incidence graph of a Desarguesian plane is a
Cayley graph. Here we will consider the line graph, however. For q = 1, the line graph of
the incidence graph is a 6-cycle, which is a Cayley graph. We therefore assume from now on
that q > 1. We note that the dual incidence structure of a projective plane is also a projective
plane; if a projective plane is isomorphic to its dual, then we say it is self-dual.

Consider now a projective plane π of order q , and let Γπ be the incidence graph of π .
Recall from Theorem 2.2 that the automorphism group of Γπ and its line graph L(Γπ ) are
isomorphic. A collineation (automorphism) of π is a permutation of the points and lines
that maps points to points, lines to lines, and that preserves incidence. If π is not self-dual,
then an automorphism of the incidence graph Γπ must be a collineation. Additionally, if
the projective plane is self-dual, then the automorphism group of Γπ has index 2 over the
automorphism group of π ; in this case the plane has so-called correlations (isomorphisms
between the plane and its dual; see also [26]) on top of collineations.

By construction, a vertex in L(Γπ ) corresponds to an incident point-line pair—also called
flag—of π . If L(Γπ ) is a Cayley graph (or more generally, is vertex-transitive), then we have
a group of collineations and correlations of π that is transitive on flags. In particular, we have
the following lemma.

Lemma 5.4 Let π be a projective plane of order q, with q even. If L(Γπ ) is a Cayley graph,
then π has a collineation group acting regularly on its flags.

Proof If L(Γπ ) is a Cayley graph, then there must be a group G of automorphisms of Γπ

acting regularly on the edges of Γπ . The group G therefore has order (q + 1)(q2 + q + 1).
Moreover, G is (isomorphic to) a group of collineations and correlations of π that acts
regularly on its flags. If this group contains correlations, then it has an index 2 subgroup of
collineations, but this is impossible because the order of G is odd. Hence π has a collineation
group acting regularly on its flags. 	


For q even, we can therefore use the following characterization by Kantor [16].

Theorem 5.5 [16, Theorem A] Let q ≥ 2, let π be a projective plane of order q, and let F
be a collineation group of π that is transitive on flags. Then either

123



Distance-regular Cayley graphs with least eigenvalue −2 83

– P SL(3, q) is contained in F and π is Desarguesian, or
– F is a Frobenius group of odd order (q + 1)(q2 + q + 1), and q2 + q + 1 is prime.

Recall that P SL(3, q) is the projective special linear group, which has order

q3(q3 − 1)(q2 − 1)

gcd(3, q − 1)
.

If L(Γπ ) is a Cayley graph Cay(G, S), then |G| = (q2 + q + 1)(q + 1), and the action of
G on the flags of π must be regular. Because the order of P SL(3, q) is larger than |G|, it
follows that G is a Frobenius group of odd order (q2 + q + 1)(q + 1), and that q2 + q + 1 is
prime. Recall that a Frobenius group is a group F which has a non-trivial subgroup H such
that H ∩ x−1H x = {e} for all x ∈ F\H . Furthermore, N = F\ ⋃

x∈F (x−1H x\{e}) is a
normal subgroup of F such that F = H N and H ∩ K = {e}, i.e. F is the semidirect product
N � H (see [27]).

Proposition 5.6 If the line graph of the incidence graph of a projective plane π of order q
is a Cayley graph Cay(G, S), where G corresponds to a group of collineations of π , then G
is N � H in which N is a normal subgroup of prime order q2 + q + 1 and H is a subgroup
of odd order q + 1.

Proof It follows from the above that G is a Frobenius group of odd order (q2+q +1)(q +1),
and q2+q +1 is a prime number. It follows that G has a normal (q2+q +1)-Sylow subgroup
N of order q2 + q + 1 by Sylow’s theorems. On the other hand, there exists a subgroup H
of order q + 1 in G by Theorem 2.4, and the intersection of N and H is the identity element
of G. Therefore G is N � H . 	


It is widely believed that there is no non-Desarguesian plane admitting a collineation
group acting transitively on flags. Thas and Zagier [32] showed that if such a plane exists,
then its order is at least 2 × 1011.

On the other hand, Higman and McLaughlin [15] showed that the only Desarguesian
planes admitting a collineation group acting regularly on flags are those of order 2 and 8.
Indeed, the line graphs of the incidence graphs of these projective planes can be constructed
as Cayley graphs as follows:

Example 5.7 TheHeawood graph is the incidence graph of the Fano plane; its line graph is the
unique graph with spectrum {41, (1+√

2)6, (1−√
2)6,−28} (see [35]). Let G = Z7 �Z3 =

〈a, b|a7 = b3 = e, b−1ab = a2〉. Let H = 〈b〉, K = 〈a−1ba〉 and S = (H ∪ K )\{e}
(cf. Theorem 3.1). By usingGAP [33] and similar codes as in [2, p. 4], it is checked that the
Cayley graph Cay(G, S) is indeed the line graph of the Heawood graph.

Similarly the line graph of the incidence graph of the (unique) projective plane of order
8 is obtained by taking G = Z73 � Z9 = 〈a, b|a73 = b9 = e, b−1ab = a2〉, H = 〈b〉,
K = 〈a−1ba〉, and S = (H ∪ K )\{e}.

We may thus conclude the following.

Theorem 5.8 Let Γ be a distance-regular Cayley graph with diameter three and least eigen-
value at least −2. Then Γ is isomorphic to one of the following graphs.

– The cycle C6 or C7,
– The line graph of the incidence graph of the Desarguesian projective plane of order 2 or

8,
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– The line graph of the incidence graph of a non-Desarguesian projective plane of order
q, where q2 + q + 1 is prime and q is even and at least 2 × 1011,

– The line graph of the incidence graph of a projective plane of odd order with a group of
collineations and correlations acting regularly on its flags.

It would be interesting to find out whether any of the results on collineations of projective
planes can be extended to groups of collineations and correlations, and thus rule out the final
case of Theorem 5.8. We could not find any such results in the literature.

Besides the line graph of the Tutte–Coxeter graph (see Proposition 3.4) we leave the
case of the line graphs of incidence graphs of generalized quadrangles and hexagons open
(cf. Theorem 2.1). For some results on flag-transitive generalized quadrangles, we refer to
Bamberg et al. [5]; for flag-transitive generalized hexagons, we refer to Schneider and Van
Maldeghem [30].
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