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Distance Sets for Shape Filters
and Shape Recognition

Cosmin Grigorescu, Student Member, IEEE, and Nicolai Petkov

Abstract—We introduce a novel rich local descriptor of an image
point, we call the (labeled) distance set, which is determined by the
spatial arrangement of image features around that point. We de-
scribe a two-dimensional (2-D) visual object by the set of (labeled)
distance sets associated with the feature points of that object. Based
on a dissimilarity measure between (labeled) distance sets and a
dissimilarity measure between sets of (labeled) distance sets, we
address two problems that are often encountered in object recog-
nition: object segmentation, for which we formulate a distance sets
shape filter, and shape matching. The use of the shape filter is il-
lustrated on printed and handwritten character recognition and
detection of traffic signs in complex scenes. The shape compar-
ison procedure is illustrated on handwritten character classifica-
tion, COIL-20 database object recognition and MPEG-7 silhouette
database retrieval.

Index Terms—Character recognition, distance set, image data-
base retrieval, MPEG-7, object recognition, segmentation, shape
descriptor, shape filter, traffic sign recognition.

I. INTRODUCTION

T
HE world, as we visually perceive it, is full of information
that we effortlessly interpret as colors, lines, edges, con-

tours, textures, etc. It is not only the mere presence of these bits
and pieces of information that plays a role in our perception, but
also their spatial interrelations which enable us to distinguish
between surrounding objects. Let us consider, for example, the
binary images shown in Fig. 1(a). The black pixels taken indi-
vidually, especially those in the interior of the objects shown, do
not carry any information whether they are part of a representa-
tion of a bird or a rabbit; it is their spatial interrelations which
make us recognize the shape of a bird or a rabbit. When only
the contours or even parts of the contours of the objects are left,
like in Fig. 1(b) and (c), we are still able to discriminate between
the two objects. In this particular case, it is the edge points be-
longing to the contours which are perceptually important and it
is their spatial interrelations which define our perception of two
different objects. A failure of the structures of the brain respon-
sible for the detection of elementary features, such as lines and
edges, or of the higher structures responsible for setting relations
between these features and integrating them into perception of
specific objects leads to a medical condition referred to by neu-
rologists as form blindness or object agnosia [1]. While many
aspects of detection of elementary visual features by the brain
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Fig. 1. (a) Two familiar objects, (b) their contours, and (c) parts of their
contours.

are fairly well understood [2]–[11], and a large number of algo-
rithms for feature extraction have been developed in computer
vision (see, e.g., [12]–[16]), the neurophysiology of feature in-
tegration for object perception and recognition is still unknown
and the development of computer vision algorithms for this pur-
pose is an ongoing activity [17]–[21].

In this paper, we propose to describe the spatial interrela-
tions between perceptually significant points, to be called fea-
ture points, by associating with each such point a data structure
containing the set of distances to a certain number of neigh-
boring feature points. As features can be of different types, we
associate different labels with such distances and call the re-
sulting data structure the labeled distance set. We propose the
set of distance sets associated with all feature points of an ob-
ject as a data structure integrating information about the spa-
tial interrelations of elementary features and show that this data
structure can effectively be used to segment objects in complex
scenes and to classify objects.

A number which characterizes the image content in the sur-
roundings of a point is often called a local image descriptor.
The value of a pixel in a grey-level image can be considered
as the simplest type of local descriptor, comprising merely one
number. An elaborate local descriptor can indicate the presence
of a perceptually important feature, often called a salient feature,
such as an edge [22], a corner, or a specific type of junction [23]
at a given location in the image.

A rich descriptor is a set of numbers or, more generally, a data
structure computed on the neighborhood of a point and presents
a more informative characteristic of the local image contents.
The adjective “rich” refers to the use of many values as op-
posed to one single value, with the degree of richness being
related to the size (cardinality) of the descriptor and its com-
plexity as a data structure. Kruizinga and Petkov [24] used as
a rich local descriptor a set of arrays of intensity values vis-
ible in multiscale windows centered on the concerned point.
Wiskott et al. [25] considered as a local descriptor a vector of
complex Gabor wavelet coefficients computed for several scales
and orientations. Belongie et al. [20] proposed as a local de-
scriptor of a point the two-dimensional (2-D) histogram (with
arguments log-distance and polar angle in relative image coor-
dinates) of the number of object contour points in the surround-
ings of the concerned point. Amit et al. [26] used a set of tags,
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each tag specifying the occurrence of a given combination of
binary pixel values at certain positions relative to the concerned
point. The (labeled) distance set we propose below comprises
multiple values and thus also falls in the class of rich local image
descriptors.

Local descriptors are used for different purposes; one can,
for instance, select only those points of an image whose local
descriptors fulfill a certain condition. For grey-level images,
thresholding can be considered as such an operation; the condi-
tion to be fulfilled by the local descriptor (in this case the grey-
level value of a pixel) is that it is larger than a given threshold
value. This type of use of local descriptors can be regarded as
filtering: a result image that represents a binary map of points
which satisfy a given condition versus points that do not fulfill
the condition is computed from an input image.

In the following we define a dissimilarity measure between
(labeled) distance sets and, based on this measure, we intro-
duce a novel filtering procedure aimed at detecting instances
of a given object (or parts of an object) in a complex scene. We
refer to the proposed filtering method as distance set shape fil-

tering.
Another use of local descriptors, typical of rich local descrip-

tors, is for solving the correspondence problem, i.e., finding
counterpart points in two images. We address this problem by
representing an object as a set of (labeled) distance sets and by
computing a dissimilarity measure between two such sets. We
use this measure for pairwise shape comparison and classifica-
tion.

Image descriptors based on distances between image features
have been previously proposed in the literature for object detec-
tion [22], [27], shape comparison [20], [28], handwritten digit
classification [26], face recognition [29]. Despite this, the con-
cept of a (labeled) distance set, and the associated filtering oper-
ator and shape comparison method are, to our best knowledge,
novel.

A brief overview of other methods for shape extraction and
shape comparison methods based on rich local descriptors is
given in Section II. In Section III we introduce the concepts of
a distance set and a labeled distance set, and associated dissim-
ilarity measures. Sets of (labeled) distance sets together with a
measure of dissimilarity between two sets of (labeled) distance
sets are introduced in Section IV. The distance sets shape filter
is introduced in Section V; this filter is related to certain mor-
phological filters. We illustrate the applicability of the distance
sets shape filtering to handwritten character recognition and the
detection of instances of a given object in complex scenes.

A shape comparison procedure based on a dissimilarity
measure between two sets of (labeled) distance sets is presented
in Section VI. We evaluate the performance of the proposed
comparison method in three applications: handwritten char-
acter classification, COIL-20 database object recognition, and
MPEG-7 silhouette database retrieval. Section VII summarizes
the results and concludes the paper.

II. OVERVIEW OF OTHER SHAPE EXTRACTION AND SHAPE

COMPARISON METHODS

We consider shape as a property or characteristic of a set of
points that define a visual object whereby said property is deter-
mined by the geometric relations between the involved points in

such a way that it is invariant for translations, rotations, reflec-
tions and distance scaling of the point set as a whole.

A substantial body of work in shape analysis assumes that
shape is a characteristic of a binary image region. Such methods
use either the boundary of an object or its interior to compute
a shape descriptor. Their applicability is envisaged mainly in
situations in which a binary object is already available or can
be computed by some preprocessing steps like pixel-based seg-
mentation, edge detection, skeletonization, etc. An overview of
such shape analysis methods can be found in [17] and [30].

Recent developments in shape analysis describe shape more
generally, as a property of a collection of feature points, and
associate with each such point a local image descriptor. These
descriptors are subsequently used to find the occurrences of a
reference object in an image (segmentation), or to evaluate how
similar two objects are (comparison). When comparing two ob-
jects, one often tries to determine a transformation which casts
one of them into another. Since rigid, affine or projective trans-
formations are sensitive to irregular shape deformations or par-
tial occlusion, a more general model, that of nonrigid trans-
formations, is assumed. With this formulation, shape compar-
ison implies either finding pairs of corresponding feature points
(i.e., solving a correspondence problem) and/or determining the
transformation which maps one point set into the other. A shape
(dis)similarity measure can be computed from the solution of
the correspondence problem and/or from the nonrigid transfor-
mation.

As the proposed (labeled) distance set shape descriptor, the
associated shape filtering operator and the shape comparison
procedure we propose are based on sets of feature points, we
restrict our overview only to similar methods—nonrigid point-

based shape analysis methods—previously reported in the liter-
ature.

Non-rigid shape matching methods have been introduced in
computer vision by Fischler and Elschlager [31], who formu-
lated the shape matching as an energy minimization problem
in a mass-spring model. A feature-based correspondence ap-
proach using eigenvectors is presented by Shapiro and Brady
in [32]. Modal matching proposed by Sclaroff and Pentland
[33] describes shape in terms of generalized symmetries defined
by object’s eigenmodes. The shape similarity between two ob-
jects is expressed by the amount of modal energy deformation
needed to align the objects. Chui and Rangarajan [34] use an in-
tegrated approach for solving the point correspondence problem
and finding a nonrigid transformation between points from the
contours of two objects. Their iterative regularization proce-
dure uses a softassign [35], [36] for the correspondences and
a thin-plate spline model [37] for the nonrigid mapping. The
method proves to be robust to noise and outliers.

Other approaches select only a number of points from
the outline of an object and approximate it with curve seg-
ments which pass through those points. Usually, these points
have some specific properties, such as minimum curvature,
inflections between convex and concave parts of an object
contour, etc. Petrakis et al. [38], for instance, extract only
inflection points and approximate the shape by B-splines
curve segments. A dissimilarity cost of associating a group
of curve segments from a source shape to another group of
curve segments originating from a target shape is computed
by dynamic programming. In a similar way, Sebastian et al.
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[21] use length and curvature to define a similarity metric
between curve segments. This metric is subsequently employed
by a dynamic programming algorithm to solve the optimum
alignment (correspondence) problem. Such methods have a
limited applicability because they can be used for the pairwise
comparison of single curves only. Objects that are defined by
multiple curves, e.g., an icon of a face with separate curves for
head outline, nose, mouth and eyes, cannot be compared since
the mutual geometric arrangement of the constituent curves
that define such an object is not taken into account.

Shape characterization based on distances between points
which do not necessarily originate from the object outline is
used by a number of authors. A shape extraction method based
on the Hausdorff distance between two point sets is proposed
by Huttenlocher et al. [22], [27]. Although this method does
not explicitly find the point correspondences, it is capable of
detecting multiple occurrences of the same reference object
even in case of partial matching caused by occlusion and
clutter. The discrimination is improved by introducing as
additional information the local edge orientation [39]. Amit
and Kong [40] find geometric arrangements of landmark points
in an image by matching decomposable graphs. An extended
approach [26], [41] considers as local descriptors topographic
codes and compares the descriptors originating from different
shapes using multiple classification trees. Gavrila [42] proposes
a method for shape extraction based on the distance transform
of the edge map of an image. The correlation between this
distance transform and the edge map of a reference object is an
indicator whether the reference object is present or not in the
image. Since the distance transform assigns to each image point
as a local descriptor the distance to the nearest edge pixel, this
formulation can be considered as a special case of a distance
set descriptor with cardinality one.

A local descriptor based on the spatial arrangement of feature
points in a fixed-size neighborhood of a point is the shape con-
text of Belongie et al. [20], [28]. The shape context of a point
is a two-dimensional histogram (with axes the log-distance and
polar angle) of the number of contour points in the surround-
ings of the concerned point. These authors developed a method
for shape comparison by first finding the point correspondences
as the solution of an assignment problem and then evaluating
a nonlinear alignment transformation using a thin-plate spline
model. With respect to radial (distance) information, the shape
context may be regarded as a simplified, coarser version of the
distance set descriptor: the coarseness is due to the histogram
binning process. As to the angular information present in the
shape context, such information can be included in a labeled dis-
tance set by assigning to each distance an orientation label—the
polar angle of the concerned feature point. As proposed in [20],
the shape context uses only contour information and is intended
only for shape comparison. In contrast, the labeled distance set
descriptor incorporates multiple feature types. Next to shape
comparison, we use this descriptor also for shape segmentation.

III. DISTANCE SETS AND LABELED DISTANCE SETS

A. Distance Sets

Let be a set of perceptually significant

points in an image, which we will call feature points. The spatial

relation of a given feature point to other feature points can be

characterized by the set of its distances to these other points.

For a given point one can select only a subset of

nearest neighboring points and still have a good description of

its spatial relation to the other points1 . Let be the

distance between point and its -nearest neighbor from ,

. We call the local descriptor

(1)

the distance set, more precisely the -distance set, of point to

its first nearest neighbors within . Note that the distance set

of a point is not affected by a rotation of the image as a whole.

Given two points and from two images and

their associated distance sets and ,

, we define the relative difference between the

-neighbor and -neighbor distances of and , respectively,

as2

(2)

Let be a one-to-one mapping from the set

to the set , such that , ,

and let be the set of all such mappings.

We introduce the dissimilarity between two distance sets

and as follows:

(3)

The dissimilarity is thus the cost of the optimal mapping of the

distance set onto the distance set .

Iff , the distance set is a

subset of :

(4)

In the special case , the two sets are identical:

(5)

In this way, the quantity indicates how dis-

similar two points and are with respect to their distances to

feature points in their respective neighborhoods.

The distance set of a point , together with the

dissimilarity measure defined above, can be an effective means

for discrimination of points according to their similarity to a

given point. As an example, we consider as feature points the

pixels which define printed characters on a computer screen.

Fig. 2(a) shows a set of points that define the character “ ,”

a point from this set and its associated distance set

to the first neighbors. (Euclidian distance

is used in this and the following examples unless otherwise spec-

ified.) Fig. 2(b) shows points from the word “alphabet,” that

comprise a set . For each point we compute its cor-

responding distance set . In Fig. 2(b), the points for

1The point p need actually not be a point from S, it can be any point in the
image.

2The use of relative differences is motivated by Weber-Fechner law of percep-
tion. Alternative definitions with similar effect are possible, e.g., j ln d (p) �
ln d (q)j, but we consider this as a technical detail.
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Fig. 2. (a) A point p 2 S (shed black) from the printed character “a” together
with its set DS (p) of distances to the first N = 5 nearest neighbors
withinS . (b) The points q 2 S (shed also black) in the word “alphabet” which
have 5-distance sets (within S ) identical with that of p,D (p; q) = 0.
(c) Points q 2 S for whichD (p; q) = 0, the same points are obtained
also for D (p; q) = 0.

which holds are shown black. From the

total of 173 points of the word “alphabet,” only 20 have 5-dis-

tance sets identical to that of the concerned point of the character

“ .” The discrimination is improved by increasing the size of the

involved distance sets, Fig. 2(c): if, for instance, the distance sets

contain distances, only the real counterparts of

the selected point are found to have the same distance sets.

In a second example, we consider a point , where

is the set of points comprising the contour of a handwritten

character “ ,” and the distance set associated with

it, Fig. 3(a). The set consists of the points from the con-

tour of a handwritten word “alphabet.” For each we

compute the associated distance set and its dis-

similarity to the distance set of

the concerned point from the handwritten character “ .” The

requirement , which was used in the

printed character example given above, turns out to be too strong

and not fulfilled by any point . A weaker requirement

, , can be imposed on the points of

. For , only 35 from the total number of 216 points of

the word “alphabet” fulfill this requirement; the corresponding

points are shed black in Fig. 3(b). If an even stricter condition

is imposed, , only 11 points are found to satisfy the

condition, Fig. 3(c).

B. Labeled Distance Sets

The feature points in an image can be of different types. In

the character “ ,” for instance, one can consider the points at

the extremities of the contour to be of an “end-of-line” type

and all other points to be of another, “line” or “contour” type.

As a matter of fact, similar, evidently perceptually significant

features are extracted in the visual cortex by so-called simple

and complex cells (for lines and edges) [2], [4]–[6], and end-

stopped cells (for ends of lines) [3], [4], [7]–[9]. The distance

Fig. 3. (a) A point p 2 S (shed black) from the handwritten character
“a” together with its distance set DS (p) to the first N = 15 nearest
neighbors within S . (b-c) The points q 2 S in the handwritten word
“alphabet” (shed also black) for which holds (b) D (p; q) < 0:3
and (c) D (p; q) < 0:25.

from a feature point to another feature point can thus be labeled

by the type of feature to which the distance is measured.

Let be the set of possible feature labels and let be one

such label. We define the labeled distance subset

of a point to its first neighbor feature points of type as

follows:

(6)

where is the set of feature points of type and is the

distance from point to its -th nearest neighbor feature point

from that set.

A labeled distance set is the set of tuples of labeled distance

subsets and their corresponding labels:

(7)

Let be the dissimilarity between two la-

beled distance subsets of type computed according to (3).

Since (in a given context) certain feature points can be perceptu-

ally more important than others, for each label type we can

assign a different weight and define the dissimilarity be-

tween two labeled distance sets

and associated with and as

follows:

(8)
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Fig. 4. (a) A point p (shed black) from the letter “c” and its labeled distance

subsetsDS (p) to the firstN = 7 nearest neighbors of contour

type (white) and DS (p) to the first N = 2 nearest neighbors

of end-of-line type (grey). (b) Identical points (regarding their 9-distance sets)
from the word “cow” when no feature type labels are taken into account. (c)
Identical points when labeled distances are used.

As an example, let us consider a point from the set of points

defining the printed character “ ” on a computer screen,

Fig. 4(a), and the set of points defining the word “cow,”

Fig. 4(b). We assign two types of labels: —a regular point,

associated with a pixel coming from the contours of the letters,

and —an end-of-line point at the extremities of the contours.

We build both the distance set (for ) and the labeled dis-

tance set (for , ) of the point and for

each point of the word “cow.” Fig. 4(a) shows the selected point

together with its labeled distance subsets

and ; the unlabeled distance set ,

, is the union of these two subsets. Fig. 4(b)

presents points from the word “cow” that are identical with the

concerned point regarding their unlabeled 9-distance sets; sev-

eral such points are found in the character “ .” If, however, la-

beled distance sets are used with and , the

number of similar points decreases to only two, the real counter-

parts of the selected point , as shown in Fig. 4(c). This example

illustrates that labeled distance sets can be effective means of

improving the discrimination possibilities offered by distance

sets.

C. Implementation

The -distance set of a point can be determined by se-

lecting the smallest distances from the distances of to

all feature points of the corresponding set . The computa-

tional complexity of this straightforward approach is , and

depends on the number of points of the set . However, by pre-

processing and usage of appropriate data structures, the compu-

tational complexity of this search problem can be reduced and

made dependent only on the number of neighbors of that

are involved in an -distance set.

Advanced data structures which can be used to efficiently

search nearest neighbors in higher dimensional spaces include

Fig. 5. Set of 4-distance sets SDS of a printed character “t.”

quad-trees [43], K-d trees [44], range trees [45], lookup maps

[46], etc. In order to reduce the computational complexity, some

of these data structures make use of an estimate of an underlying

probability distribution function which characterizes the occur-

rence of the points in the search space.

The case of distance sets computation is a particular case of

a nearest neighbor search in two dimensions. An efficient data

structure for finding the first nearest neighbor in two dimen-

sions in amortized constant time , is the semidynamic bi-

nary search tree (SD tree) [47], which is a particular case of a

K-d tree. The term “semidynamic” refers to the class of trees

for which update operations such as deletion and undeletion of

nodes are allowed, but insertion of new nodes is not allowed

[44]. The computational overhead of building the SD tree is

, being the total number of points. Using this ap-

proach, the first nearest neighbors of a point and the set

of distances to these points can be found in constant

amortized time .

IV. SETS OF (LABELED) DISTANCE SETS

A. Definition

In Section III we suggested that the (labeled) distance set of a

point , and the measure of dissimilarity between (labeled)

distance sets are suitable means for discrimination. However, a

(labeled) distance set describes a local arrangement of features

around one point, and not the global spatial arrangement of all

the points from the set . For this latter purpose we now intro-

duce a new concept.

Given the distance sets , , we define the set

of distance sets of as

(9)

Fig. 5 illustrates this concept.

Similarly, the set of labeled distance sets is defined by

(10)

B. Dissimilarity Between Sets of (Labeled) Distance Sets

Given two sets of points and , , we intro-

duce in the following a dissimilarity measure between their as-

sociated sets of -distance sets and .
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Let be a one-to-one mapping from to ,

( , , ), and let

be the set of all such mappings. Let be a positive constant.

We define the cost of a mapping as follows:

(11)

The term is a penalty for those points of which

are not images of points of . Finally, we define the dissimi-

larity between the sets of distance sets and as follows:

(12)

It holds:

(13)

Similarly, in the case of sets of labeled distance

sets, and

, the cost of a mapping

, is defined as

(14)

The dissimilarity between two labeled sets of distance sets is

defined as follows:

(15)

Similarly to (13), it holds

(16)

The problem of finding the correspondences between the points

of two discrete sets and is thus reduced to finding an

optimal mapping which minimizes the measures according to

(11) or (14). In Section VI we show how the cost of the optimal

mapping can be used for shape comparison and classification.

C. Implementation

The computation of the dissimilarity between two distance

sets, as well as the computation of the dissimilarity between sets

of distance sets involve finding the solution of the optimization

problems introduced by (3) and (12). These problems are in-

stances of the square assignment problem, whose optimal so-

lution can be found using the Hungarian method [48] or vari-

ants of it [49]. However, both problems can be reformulated

in terms of minimum weight assignment problems in a bipar-

tite graph and solved efficiently in [47]

(where and are the number of vertices and edges of the asso-

ciated graphs, respectively). For instance, in the case of com-

putation of the dissimilarity between two distance sets intro-

duced by (3), the distances are consid-

ered as source nodes and are considered

as target nodes in an associated bipartite graph. The threshold

condition imposed on the dissimilarity between distance sets

(Fig. 3), as well as the fact that, within a distance set, the dis-

tances are ordered increasingly, leads to a smaller number of

correspondences (edges) in the associated bipartite graph and,

consequently, to smaller computational complexity. In our ex-

periments, the worst case computational complexity is in the

order of . A further reduction of the computa-

tional complexity of the optimization problem according to (3)

can be achieved by using an alternative definition of the matrix

, namely . In this case,

dynamic programming techniques can be used and the compu-

tational complexity is .

Similarly, in the case of the optimization problem introduced

by (12), the points are considered as source nodes and

the points are considered as target nodes of an associated

bipartite graph. Again, the optimal solution can be computed as

the cost of the minimum weight assignment in the associated

bipartite graph.

D. Orientation and Scale Invariance

An important property of shape descriptors is scale and ori-

entation invariance. The very notion of shape concerns those

spatial properties of an object that do not change when the ob-

ject appears at different sizes or orientations.

Unless orientation is involved in the definition and extraction

of features, a set of distance sets does not depend in any way

on the orientation of an object in the 2-D plane: only distances

matter. A set of distance sets associated with a given object can

be made scale invariant by, for instance, dividing all distances

in the set by the distance between the two feature points that are

furthest apart, the diameter of the feature point set. As all dis-

tances change in proportion with the size, the normalized dis-

tances remain constant.

This approach to achieving scale invariance is of practical use

only when the object under consideration is segmented from its

background. Such a situation is assumed in the shape compar-

ison application given in Section VI-D where scale invariance

is obtained by resizing all objects to the same bounding box.

In other situations, such as those illustrated in Section V-E, an

object is not segmented from its background. In contrast, the

very purpose of using a shape descriptor in such a situation is

to test whether a given object is present in a complex scene and

to separate it from the background. Under such circumstances

and without any prior knowledge about the appropriate scale to

be used, one can take a multiscale approach: features and dis-

tance sets are computed independently at multiple resolutions

and the distance sets computed at each scale are compared with

the reference sets. The plausibility of the multiscale approach

has been argumented for both in biological [50] and computer

[51] vision.
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Fig. 6. (a) The set S is defined by the black points in the shown piece of text. (b) The subset of points S = fq 2 S j 9p 2 S ;D (p; q) = 0g that
remain after one application of a shape filter associated with the letter “t.” (c) The subset of points S = fq 2 S j 9p 2 S ;D (p; q) = 0g which

remain after two applications of the filter.

V. DISTANCE SET SHAPE FILTERS

A. Definition

Let be a set of feature points extracted from an image of

a reference object. We assume that the reference object is sepa-

rated from the background and there is no noise or occlusion by

other objects. Let be a set of feature points extracted from an-

other image, to be called the test image. Typically, the test image

will represent a complex scene and the number of feature points

obtained from this scene will be greater that the number of fea-

ture points extracted from the reference object, . If

the test image contains the reference object (at the same size and

from the same view), the set will have a subset which is

isomorphic to , in that there will be a one-to-one mapping be-

tween the sets and which preserves the distances between

the points within the sets.

Let and be two counterpart points. The dis-

tance set of to its nearest neighbors in

is identical with the distance set of to its

nearest neighbors in . This relation does not necessarily hold

for the distance set to the nearest neighbors

of in the bigger set . If, however, is a counterpart of

, there will be an integer number , , such that

, where is the distance

set of to its nearest neighbors in . The latter relation can

be verified using the dissimilarity between

the distance sets and , which must be

zero according to (4). We can now use this property to deter-

mine the points of which are counterparts of the points

of . Let be the set of all possible subsets of . We define

the operator associated with the set

and having as parameters the number of neighbors taken into

account , and a threshold value as follows:

(17)

The subset mentioned above can be determined by recur-

sive application of the operator for

(18)

where is the number of times has to be recursively

applied, until

holds. In general, decreases with an increasing neighborhood

. Note that is only a subset of because

may contain multiple subsets which are iso-

morphic with .

If sets of labeled distance sets are used with being the set

of possible labels, the operator is defined as follows:

(19)

Similar to a band-pass filter, which will retain only signal com-

ponents within a certain frequency band, the proposed filter will

allow to pass only those points of which, regarding their dis-

tance sets, are similar to points of , and will filter out all other

points. In analogy to a band-pass filter, we will call this filter the

distance set shape filter.

B. Example of Printed Character Recognition

The following optical character recognition (OCR) example

demonstrates how the set of (labeled) distance sets of a printed

character can be used for finding the occurrences of that partic-

ular character in a piece of printed text.

Let be the set of points that define the printed character

“ ,” and be the set of points of the printed text appearing in

Fig. 6(a). Let be the set of -distance sets of the

character “ .” As to the points of , note that the points in the

neighborhood of a given point can belong to a neighboring char-

acter. This problem is tackled by taking a bigger neighborhood

around the points from , , in determining a set of

distance sets . We now determine a subset

as follows [Fig. 6(b)]:

(20)

or, equivalently:

(21)

The set obtained in this way consists mostly of points that

belong to different instances of the character “ ” but there are a

relatively small number of other points as well, Fig. 6(b).
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Fig. 7. (a) The set S is defined by the black points in the piece of text (shown on the left). (b) The subset of points S � S obtained by applying twice a c-shape
filter that makes use of unlabeled distance sets, S = fq 2 S j 9p 2 S ;D (p; q) = 0g with S = fq 2 S j 9p 2 S ;D (p; q) = 0g
and S being the set of points defining the printed character “c;” note that the instances of the character “o” are not filtered out. (c) The subset of points Q =
fq 2 S j 9p 2 S ;LD (p; q) = 0g obtained by only one filtering iteration when labeled distance sets are used; only instances

of the character “c” pass the filter.

Taking as input an applying the procedure once again a

new subset of points

(22)

is obtained, Fig. 6(c). Only points from the instances of the char-

acter “ ” that occur in the considered piece of text belong to this

new subset, all the other points are filtered out.

The set of (unlabeled) distance sets does not offer

enough discriminative power to correctly find occurrences of

certain printed characters. For example, an attempt to separate

the occurrences of the character “ ” from the set of points

of the same text (Fig. 7(a)) by applying the filtering procedure

described by (20) and (22) ( , ) leads to the

result presented in Fig. 7(b). Due to the fact that points defining

a “ ” form a subset of the set of points defining an “ ,” any

point of “ ” will find a counterpart point in an “ ” such

that . This ambiguity can be avoided by using

the set of labeled distance sets of the

character “ ,” with the labels shown in Fig. 4(a). Assigning

equal weights to the two labels and applying the same filtering

procedure

(23)

leads in one iteration to the correct result, Fig. 7(c).

C. Relation to Mathematical Morphology

A shape filter based on the distance set of a single point

is, in a way, related to certain operations from mathematical

morphology [52]. The term “morphology” is used in many

disciplines (image processing, linguistics, biology), being as-

sociated with the study of form (from Greek: “morphy”- form,

figure, shape, “logos”- speech, sermon, word, reason, account).

In image processing, morphological filtering operations are

well known for their properties of detecting certain patterns of

pixel configurations; however, such operators are mainly used

for pixel-based analysis of images. A distance set shape filter

can be implemented as a combination of morphological filters.

Consider, for instance, a 1-distance set shape filter based on

Fig. 8. Example of structuring elements that can be used with erosion
operations to obtain the same result as the one obtained after applying a
distance set shape filter characterized by the distance set DS (p) = f2g.

the -norm and the distance set . This means

that a feature point will pass the filter if another feature point

at a -distance of 2 is found in the neighborhood. Fig. 8

shows a few structuring elements which, when used in an

erosion operation, will detect only points which have neighbors

at a -distance of 2 in the given orientations. The disjunction

of the results of all such erosion operations is equivalent to

applying the above mentioned 1-distance set shape filter.

An -distance set shape filter can be realized as the con-

junction operation of 1-distance set shape filters which, as

mentioned above, can be realized as combinations of elemen-

tary erosion operations. At a next level, a shape filter based on

a set of -distance sets can be realized as the disjunction of a

collection of -distance set operators.

Although it is possible to implement a distance set shape filter

as a combination of morphological operators, the mathematical

formulation in terms of distance sets is more intuitive and

straightforward. Furthermore, the mathematical morphology

implementation can cover only the case of a strict filter condi-

tion (20), which is a special case that we do not actually use in

practice. A labeled distance set filter cannot be implemented

as a combination of elementary morphological operations.

For these reasons, we find the introduction of a separate term,

distance set shape filter, appropriate and justified.

D. Application to Continuous Handwritten Text

The (labeled) distance sets and the shape filter operator pre-

sented in Sections V-A–C can be used for off-line handwritten

character recognition. As an illustration, we consider a hand-

written version of same piece of text presented in the printed

character recognition example. In this case, let us denote by

the set of points that originate from the skeleton of the hand-

written character “ ” and by the points originating from
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Fig. 9. (a) The set S of points originating from the skeleton of a piece of handwritten text. (b) The subset of points S = F (S ) remaining

after applying 3 successive filtering steps with a shape filter associated with the distance set S of a handwritten character t. (c) The subset of points S =
LF (S ) remaining after applying only 2 filtering steps with a filter associated with the labeled distance set LS of a handwritten character t;
two types of labels, l —contour point and l —junction point were used in this case.

the skeletonized version of the handwritten text presented in

Fig. 9(a). We apply iteratively the filtering procedure described

by (19) and determine the subset

(24)

After iterations, the result is no longer modified by

subsequent filtering steps, Fig. 9(b); the parameters used in this

example are , , . All the occurrences

of character “ ” are correctly found, but some other fragments

of text remain and cannot be filtered out. Some of these frag-

ments originate from the skeletons of letters “ ,” “ ,” and “ ,”

which, for this particular handwriting style, have similar parts

of the contour as the letter “ .”

In order to resolve this ambiguity and improve the discrim-

ination, additional labels have to be introduced and the set of

labeled distance sets has to be used in the filtering procedure,

(19). We consider the set of labels , with the two

labels being —a contour point and —a junction point, and,

using , , , , and

, we determine the subset

(25)

We consider the junction points as being perceptually more

important than the contour points and, consequently, weight the

dissimilarities differently, , (8). After

filtering steps, only the occurrences of the character “ ” are

correctly detected, Fig. 9(c).

Since in most cases the same person can write the same char-

acter in different ways and the input text may contain occur-

rences of the same character written differently, a collection of

(pre-stored) prototype characters representing the same letter

can be used in detecting the occurrences of a particular char-

acter. The results of all filtering operations performed with dif-

ferent prototype characters can be “OR”-ed to produce the final

result. The use of additional features can further improve the

discrimination; some of these additional features, already used

in different ways in handwritten text recognition, may include

centers of closed contours, end-of-lines, branch points, crossing

points, high curvature points, etc. [12], [53]–[55].

E. Finding Objects in Complex Scenes

One of the most challenging tasks in computer vision is the

detection of a particular object in a complex scene. A widely

accepted hypothesis of human object perception is that recog-

nition and categorization performance is viewpoint dependent

[56], [57], to suggest that some kind of view specific represen-

tation of objects or, at least, some component features derived

from the two-dimensional views of the objects are used in recog-

nition. Based on this two-dimensional viewpoint recognition as-

sumption, we address in the following the problem of detecting

instances of a given reference object (in this case a traffic sign)

in a complex scene. The viewpoint from which we look at both

the reference object and the object embedded in the complex

scene is approximately the same and favors their recognition.

We created a traffic sign image database of 48 traffic scenes,

containing three different traffic signs3 . Edges from the scenes

were extracted from the zero-crossings of a multiscale oriented

-spline wavelet representation [58], [59]. For edge extraction

we used only the second scale of the wavelet decomposition

since it represented most accurately the traffic sign edges. The

wavelet chosen in our experiments decomposed the image in

four different orientations for each subband. In order to elimi-

nate small amplitude edges, a threshold condition was imposed

on the gradient of the oriented edge maps (gradient be at least

15% of the maximum gradient value of the corresponding

edge map). Fig. 10(a) shows a traffic image containing one

of the traffic signs. Fig. 10(b) presents the combined edge

map obtained after superimposing the four oriented edge

maps. We assigned a different label, ,

to each of the four orientations, and a labeled distance set

was built for each point of the

combined edge map by computing the distances to the first

nearest neighbor points occurring in each oriented edge

map, .

We denote in the following by and the set of edge points

from the combined edge map of a traffic sign template and the

3The image database of traffic signs and complex scenes, as well as the ex-
perimental results are available at: http://www.cs.rug.nl/~imaging
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Fig. 10. (a) Traffic scene, and (b) its corresponding edge map. Labeled
distance set shape filtering results after (c) one, i = 1, and (d) two, i = 2,
steps.

Fig. 11. Possible correspondences between the points of S and S of two
identical copies of the printed character “i;” two nonoptimal mappings with
costs (a) 0.091 and (b) 0.035 and (c) the optimal mapping with a cost 0 (the size
of the neighborhood used is N = 12). The dissimilarity E (S ; S ) of the sets
of distance sets associated with S and S is by definition equal to the cost of
this optimal mapping.

complex scene, respectively. Fig. 10(c) and (d) display the re-

sults when applying iteratively the distance set filtering proce-

dure:

(26)

for , , , and . For

, the result is no longer modified by subsequent filtering steps.

For all the 48 traffic scenes currently available in the database

the occurrence of a given traffic signs was correctly detected.

VI. SHAPE COMPARISON

A. Method of Comparison

Assuming that the sets of distance sets and

are characteristic of the geometric configura-

tions of two sets of feature points and , the condition

can be used to check whether these two

sets of feature points are identical regarding their geometric

configurations (up to any transformation that preserves a set

of distance sets). In the case that the quantity is

not equal to zero, it can still be used as an indicator of how

(dis)similar two sets of feature points are.

For illustration, we consider the sets and defined by

the points of two identical copies of the printed character “ .”

Fig. 11 shows three possible mappings of onto . A cost

can be assigned to each such mapping according to (11) or (14).

Fig. 11(c) shows the optimal mapping with zero cost found after

Fig. 12. Optimal mappings of a set S onto different sets S and the
dissimilarities between the corresponding sets of distance sets. The points of
S that do not have counterparts in S are shed black; each such point increases
the cost of the optimal mapping by a constant C .

Fig. 13. Examples of handwritten characters used for shape comparison.

solving the optimization problem defined by (12) or (15), re-

spectively.

Fig. 12 shows the optimal mappings between points of dif-

ferent printed characters and the dissimilarities between the cor-

responding associated sets of distance sets. For computing the

cost of mappings, the value of the constant in (11) was chosen

as the average pair-wise dissimilarity of two points:

(27)

B. Application to Handwritten Character Recognition

In a more elaborate example, a database of 286 characters, 11

characters for each of the 26 letters, handwritten by one person

was used, Fig. 13. The skeleton for each character was extracted

and the points from the skeleton were further considered as fea-

ture points in the shape comparison procedure.

For each of the 26 categories, one of the 11 instances was ran-

domly selected and considered as a test character. The remaining

260 characters were considered as references. The dissimilarity

between each of the test characters and all reference characters

was computed according to (11); again, the constant was cal-

culated as in (27).

The dissimilarity between any character and its nearest

neighbor from the same class is considerably smaller than the

dissimilarity of this character and its nearest neighbor from a

different class. Fig. 14 presents a histogram of the minimum

dissimilarity values. The values obtained for characters from

the same class cluster in the black bins of the histogram, while

the values obtained for characters from different classes fill

the white bins. The bimodal nature of the histogram allows

classification by thresholding.

C. Application to Object Recognition Based on 2-D Views

In the following, we evaluate the shape comparison procedure

for recognition of objects based on their 2-D appearances. We

used the COIL-20 database [60]. Each object from this database
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Fig. 14. Histograms of the minimum values of dissimilarities between
handwritten test characters and reference characters from the same (black) and
different (white) classes.

Fig. 15. Examples of contour maps extracted from COIL-20 images.

is photographed from 72 different views around the object, cor-

responding to equally spaced 5 angular offsets. The distance

between the object and the camera is approximately the same.

We start by extracting contours using a Gabor energy operator

augmented with isotropic inhibition [11], Fig. 15.

A distance set is constructed for each of the detected contour

points , and the dissimilarity between two contour maps defined

by two such sets of points is computed according to (11). The

cost was calculated as in (27). The number of neighbors taken

into account within a distance set is ,

where and are the numbers of feature points in two

contour maps that are compared. The dissimilarities of all con-

tour maps to a subset of 360 contour maps (prototypes) corre-

sponding to 18 views per object, equally spaced at angular off-

sets of 20 , were analyzed. For all contour maps, the nearest

neighbor was always a prototype contour map from the same

class (0% misclassification).

The number of prototypes can be reduced because some of the

objects have approximately the same appearance from all view-

points. For such an object, e.g., the cup shown in the last column

of Fig. 15, one can take a lesser number of prototypes. More

generally, one can consider prototype selection as an optimiza-

tion problem in which one tries to jointly minimize the number

of prototypes and the misclassification error. For instance, Be-

longie et al. [61] used a modified —means clustering algo-

rithm for adaptively selecting prototypes. They report 2.4% mis-

classification by using only 80 prototypes. More intricate clus-

Fig. 16. Examples from the MPEG-7 shape database for four different
categories.

tering algorithms may lead to an even smaller number of proto-

types while achieving a reduced classification error. When such

an algorithm is employed, it is, however, difficult to assess the

quality of the shape comparison method: a reduced classifica-

tion error may be more a result of smart clustering than due to

the discrimination properties of the shape comparison method.

We consider clustering methods for optimal prototype selection

rather a study in itself that is beyond the scope of this paper.

D. Application to MPEG-7 Shape Database Retrieval

In the following experiment we measure the similarity-based

retrieval performance for a database of 1400 objects used in the

MPEG-7 Core Experiment CE-Shape-1 part B [62]. This data-

base consists of 70 shape categories, with 20 objects per cate-

gory, Fig. 16. Each object is used successively as a query ob-

ject and compared with all 1400 objects; the retrieval rate for

the query object is measured by counting the number of objects

from the same category which are found in the first 40 most sim-

ilar matches (bulls-eye test). The maximum number of objects

from the same category which can appear in the first 40 retrieved

objects is 20. The total number of possible correct matches when

all 1400 objects are used in turn as queries is thus 28.000. The

overall retrieval rate is computed as the ratio of the total number

of actual correct matches and the total number of possible cor-

rect matches.

Since the original database contains images of objects of

different sizes, we first rescaled every object to the same

minimum of width and height of its bounding box. The con-

tours were extracted with an edge detector operator and the

contour points were further considered as feature points of type

—contour; 150 to 300 such points were extracted per object.

The center of the bounding box of the object was considered

as an additional feature point, of type —center, and the

associated labeled distance sets, ,

were computed only for the contour points. Let and

denote the sets of points representing a query object and a

test object, respectively. The dissimilarity between labeled

distance sets for two points and was computed

using nearest neighbors of type

contour point and center point. Equal weights

were used for the distance sets to the contour points and the

distance to the center point in computing the dissimilarity

according

to (8).
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The dissimilarity between the sets of labeled distance sets was

determined according to (15). Correspondences for

which the dissimilarity exceeded a certain threshold value,

originate from configurations of points which are perceptually

very different. We considered these points as completely dis-

similar, and set the value of the dissimilarity to

The above operation can be viewed as an additional thresholding

operation performed on the values of dissimilarity. For situa-

tions in which , the sets of points were first swapped

and then the comparison procedure was applied. The penalty

cost for those points of which are not images of points of

was set to a constant value, .

The time needed for computing the dissimilarity between

two objects, each being described by approximately 250

points and having associated distance sets of 100 distances,

is about 0.7 s on a regular Pentium III/667 MHz computer.

With this experimental setup, we achieved an overall retrieval

rate of 78.38%. Previous studies report 78.17% [21], 76.51%

[20], 76.45% [62] and 75.44% [19]. One possible reason for

achieving improved results is that distance sets are invariant

with respect to reflections, whereas shape contexts are not.

Examples of similar shapes where this can be a problem are

shown in the first row of Fig. 16.

VII. SUMMARY AND CONCLUSIONS

We proposed a new local image point descriptor, namely the

(labeled) distance set, which is determined by the spatial config-

uration of feature points in the surrounding of a given point. We

formulated an appropriate dissimilarity measure between two

(labeled) distance sets and, based on it, we defined a novel shape

filter. Relying upon the geometric arrangement of features orig-

inating from a reference object, the (labeled) distance sets shape

filter is able to segment instances of the reference object in im-

ages even when they are embedded in a complex environment,

have a deformed appearance or are partially occluded by other

image structures.

Furthermore, by introducing an appropriate dissimilarity

measure between two sets of (labeled) distance sets, we

proposed a new shape comparison method. Formulated as a

minimum cost assignment in an associated bipartite graph,

the proposed shape comparison method delivers a reliable

shape dissimilarity measure which can be used for shape

classification.

We demonstrated the applicability of the distance set shape

filter for segmentation, and illustrated its effectiveness for letter

segmentation in handwritten character recognition and for the

isolation of traffic signs in complex traffic scenes. We eval-

uated the performance of the distance set shape comparison

method in the context of three other applications: handwritten

character recognition, object recognition and image database re-

trieval. For the latter, a retrieval experiment was performed on

a MPEG-7 shape database. Our method outperforms all shape

comparison methods previously reported in the literature.

The proposed shape comparison method is based exclusively

on a dissimilarity measure computed from point correspon-

dences. This method does not explicitly model transformations

between objects, is robust to local shape deformations and

shows reduced computational complexity.
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