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Abstract. Let X be a 2-dimensional normed space, and let BX be the unit ball
in X. We discuss the question of how large the set of extremal points of BX may

be if X contains a well-distributed set whose distance set ∆ satisfies the estimate

|∆ ∩ [0, N ]| ≤ CN3/2−ε. We also give a necessary and sufficient condition for the
existence of a well-distributed set with |∆ ∩ [0, N ]| ≤ CN .

§0. INTRODUCTION

The classical Erdős Distance Problem asks for the smallest possible cardinality
of

∆(A) = ∆l22
(A) =

{
‖a− a′‖l22

: a, a′ ∈ A
}

if A ⊂ R2 has cardinality N <∞ and

‖x‖l22
=

√
x2

1 + x2
2

is the Euclidean distance between the points a and a′. Erdős conjectured that
|∆(A)| � N/

√
logN for N ≥ 2. (We write U � V , or V � U , if the functions

U, V satisfy the inequality |U | ≤ CV , where C is a constant which may depend on
some specified parameters). The best known result to date in two dimensions is
due to Katz and Tardos who prove in [KT04] that |∆(A)| � N .864 improving an
earlier breakthrough by Solymosi and Tóth [ST01].

More generally, one can examine an arbitrary two-dimensional space X with the
unit ball

BX = {x ∈ R2 : ‖x‖X ≤ 1}

and define the distance set

∆X(A) = {‖a− a′‖X : a, a′ ∈ A} .

For example, let
‖x‖l2∞

= max(|x1|, |x2|)

then for N ≥ 1, A = {m ∈ Z2 : 0 ≤ m1 ≤ N1/2, 0 ≤ m2 ≤ N1/2} we have
|A| � N , |∆l2∞

(A)| � N1/2. This simple example shows that the Erdős Distance
Conjecture can not be directly extended for arbitrary two-dimensional spaces. We
note, however, that the estimate |∆X(A)| � N1/2, proved by Erdős [E46] for
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Euclidean norms, extends (with the same proof) to arbitrary 2-dimensional spaces
X; see also [I01], [G04].

Also, for a positive integer N we denote

∆X,N (A) = {‖a− a′‖X ≤ N : a, a′ ∈ A} .

We say that a set S ⊂ X is well-distributed if there is a constant K such that
every closed ball of radius K in X contains a point from S. In other words, for
every point x ∈ X there is a point y ∈ S such that ‖x− y‖X ≤ K. Sometimes it is
said that S is a K-net for X. Clearly, for any well-distributed set S and N ≥ 2K
we have

(1) |{x ∈ S : ‖x‖X ≤ N/2}| � N2

where the constant in � depends only on K. Therefore, for any well-distributed
set S ∈ l22 we have, by [T02],

|∆l22,N (S)| � N1.728,

and the Erdős Distance Conjecture implies for large N

|∆l22,N (S)| � N2/
√

logN.

On the other hand, for a well-distributed set S = Z2 ⊂ l2∞ we have

|∆l2∞,N (S)| = 2N + 1.

Iosevich and the second author [I L03] have recently established that a slow
growth of |∆X,N (S)| for a well-distributed set S ⊂ X is possible only in the case
if BX is a polygon with finitely or infinitely many sides. Let us discuss possible
definitions of polygons with infinitely many sides. For a convex set A ⊂ X by
Ext(A) we denote the set of extremal points of A. Namely, x ∈ Ext(A) if and only
if x ∈ A and for any segment [y, z] the conditions x ∈ [y, z] ⊂ A imply x = y or
x = z. Clearly, Ext(BX) is a closed subset of the unit circle

∂BX = {x ∈ X : ‖x‖X = 1}.

Also, it is easy to see that Ext(BX) is finite if and only if BX is a polygon with
finitely many sides, and it is natural to consider BX as a polygon with infinitely
many sides if Ext(BX) is small. There are different ways to define smallness of
Ext(BX) and, thus, polygons with infinitely many sides:
1) in category: Ext(BX) is nowhere dense in ∂BX;
2) in measure: Ext(BX) has a zero linear measure (or a small Hausdorff dimension);
3) in cardinality: Ext(BX) is at most countable.
Clearly, 3) implies 2) and 2) implies 1).

It has been proved in [I L03] that the condition

(0.1) limN→∞|∆X,N (S)|N−3/2 = 0

for a well-distributed set S implies that BX is a polygon in a category sense.
Following [I L03], we prove that, moreover, BX is a polygon in a measure sense.
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Theorem 1. Let S be a well-distributed set.
(i) Assume that (0.1) holds. Then the one-dimensional Hausdorff measure of
Ext(BX) is 0;
(ii) If moreover

(0.2) |∆X,N (S)| = O(N1+α)

for some α ∈ (0, 1/2) then the Hausdorff dimension of Ext(BX) is at most 2α.

If |∆X,N (S)| has an extremally slow rate of growth for some well-distributed set
S, namely,

(0.3) |∆X,N (S)| = O(N)

then, as it has been proved in [I L03], BX is a polygon with finitely many sides.
However, if we weaken (0.3) we cannot claim that BX is a polygon in a cardinality
sense.

Theorem 2. Let ψ(u) be a function (0,∞) → (0,∞) such that limu→∞ ψ(u) = ∞.
Then there exists a 2-dimensional space X and a well-distributed set S ⊂ X such
that

(0.4) |∆X,N (S)| = o(Nψ(N)) (N →∞)

but Ext(BX) is a perfect set (and therefore is uncountable).

Also, we find a necessary and sufficient condition for a space X to make (0.3)
possible for some well-distributed set S ⊂ X. Take two non-collinear vectors e1, e2
in X. They determine coordinates for any x ∈ X, namely, x = x1e1 + x2e2.
Then, for any non-degenerate segment I ⊂ X, we can define its slope Sl(I): if
the line containing I is given by an equation u1x1 + u2x2 + u0 = 0, then we set
Sl(I) = −u1/u2. We write Sl(I) = ∞ if u2 = 0; it will be convenient for us to
consider ∞ as an algebraic number.

Theorem 3. The following conditions on X are equivalent:
(i) BX is a polygon with finitely many sides, and there is a coordinate system in
X such that the slopes of all sides of BX are algebraic;
(ii) there is a well-distributed set S ⊂ X such that (0.3) holds.

Corollary 1. If a norm ‖ ·‖X on R2 is so that BX is a polygon with finitely many
sides and all angles between its sides are rational multiples of π then there is a
well-distributed set S ⊂ X such that (0.3) holds.

Corollary 2. If a norm ‖ ·‖X on R2 is defined by a regular polygon BX then there
is a well-distributed set S ⊂ X such that (0.3) holds.

We remark that a similar algebraicity condition arose in the work of Laczkovich-
Ruzsa [LR96] on counting the number of similar copies of a fixed pattern embedded
in a point set. (See also [EE94].)

The Falconer conjecture (for the plane) says that if the Hausdorff dimension of
a compact A ⊂ R2 is greater than 1 then ∆(A) has positive Lebesgue measure.
The best known result is due to Wolff who proved in [W99] that the distance set
has positive Lebesgue measure if the Hausdorff dimension of A is greater than 4/3.
One can ask a similar question for an arbitrary two-dimensional normed space X.
It turns out that this question is related to distance sets for well-distributed and
separated sets. By Theorem 4 from [I L04], Theorem 3 and Proposition 1 we get
the following.
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Corollary 3. If a norm ‖·‖X on R2 is defined by a polygon BX with finitely many
sides all of which have algebraic slopes then there is a compact A ⊂ X such that
the Hausdorff dimension of A is 2 and Lebesgue measure of ∆X(A) is 0.

After this paper was completed, K. Falconer [Fa04] proved (using different meth-
ods) that the same result is in fact true without the supposition on the slopes of
the sides.

Recall that, by [I L03], it is enough to prove the implication (ii) → (i) in Theorem
3 assuming that BX is a polygon. In that case we prove a stronger result.

Theorem 4. Let BX be a polygon with finitely many sides which does not satisfy
the condition (i) of Theorem 3. Then for any well-distributed set S we have

(0.5) |∆X,N (S)| � N logN/ log logN (N ≥ 3).

Comparison of Theorem 4 with Theorem 2 shows that the growth of |∆X,N (S)|
for well-distributed sets and N →∞ does not distinguish the spaces X with small
and big cardinality of Ext(BX).

As remarked in [I L03], the well-distribution assumption on the point set S is
essential for results such as Theorems 1–4, as it ensures that the set of directions
between pairs of points in S is dense. If this fails, then K can be modified arbitrarily
in the “missing” directions without affecting the distance set of S. (See [G04] for
further discussion of the general case.) We also note that Solymosi and Vu [SV04]
obtain good bounds for Euclidean distance sets of well-distributed sets in 3 or
more dimensions, and that their method may extend to other metrics. As noted in
[SV04], known examples of sets with small distance sets tend to be lattice-like and
therefore well-distributed.

§1. PROOF OF THEOREMS 1 AND 2

Proof of (i). Without loss of generality we may assume that BX ⊂ Bl22 and the set
S is well-distributed in X with the constant K = 1/2. Also, choose δ > 0 so that

(1.1) δBl22 ⊂ BX.

By (0.1), for any ε > 0 there are arbitrary large N0 such that

|∆X,N0(S)| ≤ εN
3/2
0 .

If N0 ≥ 8 then the number of integers j ≥ 0 with N0/2 + 4j ≤ N0 − 2 is

≥ (N0/2− 2)/4 ≥ N0/8.

Thus, there is at least one j such that N = N0/2 + 4j satisfies the condition

(1.2) |(∆X(S)| ∩ (N − 2, N + 2)) ≤ 8εN3/2
0 /N0 ≤ 12εN1/2.

So, (1.2) holds for arbitrary large N .
We take any N satisfying (1.2) and an arbitrary P ∈ S. Let Q be the closest

point to P in the space X (observe that it exists since S is closed due to (0.1)).
Then, by well-distribution of S (recall that K = 1/2) we have

(1.3) ‖P −Q‖X ≤ 1.
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Without loss of generality, P = 0. Denote M = [2Nδ] and consider the rays

Lj = {(r, θ) : θ = θj = 2πj/M},

where (r, θ) are the polar coordinates in l22. Consider a point Rj , 1 ≤ j ≤M , with
the polar coordinates (rj , (θj−1 + θj)/2) such that ‖Rj‖X = N . By (1.1) we have

rj ≥ δN.

Therefore, the Euclidean distance from Rj to the rays Lj−1 and Lj is

(1.4) rj sin(π/M) ≥ Nδ sin(π/(2Nδ)) > 1.

provided that N is large enough. Therefore, the distance from Rj to these rays in
X is also greater than 1. Also, the distance from Rj to the circles

Γ1 = {R : ‖R‖X = N − 1}, Γ2 = {R : ‖R‖X = N + 1}

in X is equal to 1. Thus, the X-disc of radius 1/2 with the center at Rj is contained
in the open region Uj bounded by Lj−1, Lj , Γ1, and Γ2. By the supposition on S
there is a point Pj ∈ Uj ∩ S.

Observe that for any j we have

N − 1 < ‖P − Pj‖X < N + 1, N − 2 < ‖Q− Pj‖X < N + 2.

Let U = {(‖P − Pj‖X , ‖Q− Pj‖X)}. By (1.2),

(1.5) |U | ≤ 144ε2N.

For any (n1, n2) ∈ U we denote

Jn1,n2 = {j : ‖P − Pj‖X = n1, ‖Q− Pj‖X = n2}.

By [I L03, Lemma 1.4, (i)], if j1, j2, j3 ∈ Jn1,n2 then one of the points Pj1 , Pj2 , Pj3

must lie on the segment connecting two other points and contained in the circle
{R : ‖P −R‖X = n1}. This implies that for all j ∈ Jn1,n2 but at most two indices
the intersection of ∂BX with the sector Sj bounded by Lj−1 and Lj is inside some
line segment contained in ∂BX. Therefore, by (1.5), the number of sectors Sj

containing an extremal point of BX is at most 288ε2N . For R ∈ ∂BX with the
polar coordinates (r, θ) denote Θ(R) = θ. Define the measure on ∂BX in such a
way that for any Borel set V ⊂ ∂BX the measure µP (V ) is defined as the Lebesgue
measure of Θ(V ). In particular,

µp(∂BX ∩ Sj) =
2π
M
.

Clearly, µp is equivalent to the standard Lebesgue measure on ∂BX. We have
proved that

µp(Ext(BX)) ≤ 288ε2N
2π
M
.
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But 1/M ≤ 1/(Nδ). Hence,

µp(Ext(BX)) ≤ 2π × 288ε2/δ.

As ε can be chosen arbitrarily small, we get µp(Ext(BX)) = 0, and this completes
the proof of (i).

Proof of (ii) follows the same scheme. Inequality (1.2) should be replaced by

|∆X(S) ∩ (N − 2, N + 2)| ≤ ∆Nα,

where ∆ may depend only on X, S, and α. We define the distance dp on ∂BX
as the distance between the polar coordinates. This metric is equivalent to the X-
metric. The set Ext(BX) can be covered by at most 2∆2N2α arcs ∂BX ∩ Sj each
of them has the dp-diameter at most 2π/(Nδ). This implies the required estimate
for the Hausdorff dimension of Ext(BX).

Proof of Theorem 2. We select an increasing sequence {Nj} of positive integers
such that

(1.6) ψ(N) ≥ 5j (N ≥ Nj).

By Λj we denote the set of numbers a/q with a ∈ Z, q ∈ N, q ≤ Nj . We will
construct a ball BX on the Euclidean plane. Moreover, it will be symmetric with
respect to the lines x1 = x2 and x1 = −x2, and thus it suffices to construct BX in
the quadrant Q = {x : x2 ≥ |x1|}.

Let D0 be the square

D0 = {x : 0 ≤ x2 + x1 ≤ 1, 0 ≤ x2 − x1 ≤ 1}.

We will construct a decreasing sequence of polygons Dj ; each one will be defined as
a result of cutting some angles from the previous one. The sides V1, V2 of D0 with
an endpoint at the origin will not be changed. The intersection of the sequence
Dj will define the part of our BX in Q. In particular, the points (±1/2, 1/2) will
be vertices of all polygons Dj . Therefore, these points as well as the symmetrical
points (±1/2,−1/2) will be in ∂BX.

First, we construct D1 as a result of cutting D0 by a line x2 = u for some
u ∈ (1/2, 1). We choose u such that for intersection points x1 and x2 of this line
with the boundary of D0 the ratios xj

1/x
j
2 (j = 1, 2) differs from all numbers λ ∈ Λ1.

Moreover, we take neighborhoods Uj of the points xj (j = 1, 2) such that

∀y ∈ Uj y2/y1 6∈ Λ1 (j = 1, 2).

In the sequel we shall make other cuts only inside the sets U1 and U2. This means
that all points x on the boundary of D1 with x1/x2 ∈ Λ1 not belonging to the
sides V1, V2 as well as their neighborhoods in the boundary of D1 will remain in all
polygons D2, D3, . . . , and eventually they will be interior points of some segments
in the boundary of BX with a slope −1, 0, or 1,

On the second step, we construct D2 as a result of cutting D1 by lines with slopes
−1/2 and 1/2 such that for any new vertex x of a polygon D2 we have x2/x1 6∈ Λ2.
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Moreover, we take neighborhoods U(x) of all these points x (each is contained in
U1 or in U2) such that

∀y ∈ U(x) y2/y1 6∈ Λ2.

Again, we shall make other cuts only inside the sets U(x). This means that all
points x on the boundary of D2 with x1/x2 ∈ Λ2 not belonging to the sides V1, V2

as well as their neighborhoods in the boundary of D2 will remain in all polygons
D3, D4, . . . , and eventually they will be interior points of some segments in the
boundary of BX with a slope a/2, a ∈ Z, |a| ≤ 2.

Proceeding in the same way, we shall get a ball BX with the following property:
if x ∈ ∂BX and x1/x2 ∈ Λj+1 for some j then x is an interior point of some segment
contained in ∂BX with a slope a/2j , a ∈ Z, |a| ≤ 2j . This segment is a part of
a line 2jx2 − ax1 = b(a, j) or a symmetrical line 2jx2 − ax1 = −b(a, j). Also, by
symmetry, if x ∈ ∂BX and x2/x1 ∈ Λj+1 for some j then 2jx1 − ax2 = b(a, j)
or 2jx1 − ax2 = −b(a, j). In terms of the norm ‖ · ‖X we conclude that if x ∈ X
and x1/x2 ∈ Λj+1 or x2/x1 ∈ Λj+1 then ‖x‖X is equal to one of the numbers
|2jx1 − ax2|/|b(a, j)| or |2jx2 − ax1|/|b(a, j)|, a ∈ Z, |a| ≤ 2j . Also, observe that,
by our construction, BX is contained in the square [−1, 1]2. Therefore,

(1.7) ‖x‖X ≥ max(|x1|, |x2|).

Now let us take the lattice S = Z2 and estimate |∆X,N (S)| for Nj < N ≤ Nj+1.
If x, y ∈ S and ‖x−y‖X ≤ N , then we have ‖x−y‖X = |(z1, z2)|X where z1, z2 ∈ Z
and, by (1.7), max(|z1|, |z2|) ≤ N . Hence, (z1, z2) = (0, 0), or x1/x2 ∈ Λj+1, or
x2/x1 ∈ Λj+1. Therefore, ‖x− y‖X = 0 or ‖x− y‖X is equal to one of the numbers
|2jx1 − ax2|/|b(a, j)| or |2jx2 − ax1|/|b(a, j)|, a ∈ Z, |a| ≤ 2j . For every a we have

|2jx1 − ax2| ≤ 2j |x1|+ |a| × |x2| ≤ 2j+1N.

Taking the sum over all a we get

(1.8) |∆X,N (S)| ≤ (2j+1 + 1)2j+1N + 1 ≤ 22j+3N.

On the other hand, by (1.6),

(1.9) ψ(N) ≥ 5j .

Comparing (1.8) and (1.9), we get (0.4) and thus complete the proof of the theorem.

§2. PROOF OF THEOREM 3, PART I

In this section we prove that the condition (i) of Theorem 3 implies (ii).
Assume that ∂BX consists of a finite number of line segments with slopes

β1, β2, . . . , βr, all real and algebraic. Let FQ[β1, . . . , βr] be the field extension of
Q generated by β1, . . . , βr, and let α0 be its primitive element, i.e. an algebraic
number such that FQ[β1, . . . , βr] = FQ[α0]. We may assume that α0 is an algebraic
integer: indeed, if α0 is a root of P (x) = adx

d + · · ·+ a0, then α′0 = adα0 is a root
of ad−1

d P (x/ad) = xd + ad−1x
d−1 + ad−2adx

d−2 + · · ·+ a0a
d−1
d , hence an algebraic

integer, and generates the same extension.
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It suffices to prove that there is a well-distributed set S ⊂ R2 such that

(2.1) |{x+ βy : (x, y) ∈ S − S, |x|+ |y| ≤ R}| � R,

for each β ∈ FQ[α].
Since FQ[β1, . . . , βr] ⊂ R, we have α0 ∈ R. Let α1, . . . , αd−1 be the algebraic

conjugates of α0 in C (of course they need not belong to FQ[α0]). Define for C > 0

T (C) = {
d−1∑
j=0

ajα
j
0 : aj ∈ Z, |

d−1∑
j=0

ajα
j
k| ≤ C, k = 1, . . . , d− 1},

and
S = T (C)× T (C),

where C will be fixed later.
We first claim that T (C) is well distributed in R (with the implicit constant

dependent on C), and that

(2.2) |T (C) ∩ [−R,R]| � R.

Indeed, let x = (x0, x1, . . . , xd−1)T solve

d−1∑
j=0

αj
0 xj = 1,

d−1∑
j=0

αj
k xj = 0, k − 1, . . . , d− 1.

Since the Vandermonde matrix A = (αj
k) is nonsingular, x is unique. In particular,

it follows that x is real-valued; this may be seen by taking complex conjugates and
observing that αk is an algebraic conjugate of α0 if and only if so is ᾱk, hence x̄
solves the same system of equations.

To prove the first part of the claim, it suffices to show that there is a constant
K1 such that for any y ∈ R there is a v ∈ T (C) with |y − v| ≤ K1. Fix y, then we
have

y =
d−1∑
j=0

αj
0 yxj .

Let vj be an integer such that |vj − yxj | ≤ 1/2, and let v =
∑d

j=0 α
j
0vj . Then

|y − v| = |
d−1∑
j=0

αj
0(yxj − vj)| ≤ 1

2

d−1∑
j=0

|αj
0| =: K1,

and, for k = 1, . . . , d− 1,

|
d−1∑
j=0

αj
k vj | ≤ |

d−1∑
j=0

αj
k (yxj − vj)|+ y|

d−1∑
j=0

αj
k xj | ≤

1
2

d−1∑
j=0

|αj
k|.
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The claim follows if we let C ≥ 1
2

∑d−1
j=0 |α

j
k|.

We now prove (2.2). It suffices to verify that there is a constant K2 such that
for any y ∈ R there are at most K2 elements of T (C) in [y − C, y + C]. Let
a =

∑d−1
j=0 α

j
0 aj , then the conditions that a ∈ T (C) and |y − a| ≤ C imply that

Aã− ỹ ∈ CQ,

where ã = (a0, . . . , ad−1)T , ỹ = (y, 0, . . . , 0)T , and Q = [−1, 1]d. In other words,
ã ∈ A−1ỹ + CA−1Q. But it is clear that the number of integer lattice points
contained in any translate of CA−1Q is bounded by a constant.

It remains to prove (2.1). Observe first that if x, x′ ∈ T (C), then x−x′ ∈ T (2C).
Thus, in view of (2.2), it is enough to prove that for any two algebraic integers β, γ ∈
ZQ[α] there is a C1 = C1(β, γ) such that if x, y ∈ T (2C), then xβ + yγ ∈ T (C1).
By the triangle inequality, it suffices to prove this with y = 0. Let x ∈ T (C), then
x =

∑d−1
j=0 α

j
0 xj for some xj ∈ Z. We also write β =

∑d−1
j=0 α

j
0 bj , with bj ∈ Z.

Then βy =
∑d−1

i,j=0 α
i+j
0 xibj . We thus need to verify that

|
d−1∑
i,j=0

αi+j
k xibj | ≤ C1

for k = 1, . . . , d− 1. But the left side is equal to

|
d−1∑
i=0

αi
k xi| · |

d−1∑
j=0

αj
k bj |,

which is bounded by C1(β) = C maxk |
∑d−1

j=0 α
j
k bj |.

Example. Let BX be a symmetric convex octagon whose sides have slopes
0,−1,∞,

√
2. Let also T (C) = {i+ j

√
2 : |i− j

√
2| ≤ C}, and S = T (10)× T (10).

It is easy to see that T (C) is well distributed and that (2.2) holds. Let x, y ∈ S,
then x − y = (i + j

√
2, k + l

√
2), where i + j

√
2, k + l

√
2 ∈ T (20). Depending on

where x−y is located, the distance from x to y will be one of the following numbers:

c1|i+ j
√

2|,

c2|k + l
√

2|,

c3|(i+ k) + (j + l)
√

2|,

c4|(i+ j
√

2)
√

2− (k + l
√

2)| = c4|(2j − k) + (i− l)
√

2|.

Clearly, the first three belong to T (20 max(c1, c2, c3)). For the fourth one, we have

c4|(2j − k)− (i− l)
√

2| = c4| − (i− j
√

2)
√

2− (k − l
√

2)|

≤ 20c4(1 +
√

2).

Hence all distances between points in S belong to T (C) for some C large enough,
and in particular satisfy the cardinality estimate (2.2).
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§3. ADDITIVE PROPERTIES OF MULTIDIMENSIONAL SETS
AND SETS WITH SPECIFIC ADDITIVE RESTRICTIONS

Let Y be a linear space over R or over Q. For A,B ⊂ Y and α ∈ R or Q we
denote

A+B = {a+ b : a ∈ A, b ∈ B}, αA = {αa : a ∈ A}.

We say that a set A ⊂ Y is a d-dimensional if A is contained in some d-dimensional
affine subspace of Y , but in no d − 1-dimensional affine subspace of Y . We will
denote the dimension of a set A by dA.

The following result is due to Ruzsa [Ru94, Corollary 1.1].

Lemma 3.1. Let A,B ⊂ Rd, |A| ≤ |B|, and assume that A+B is d-dimensional.
Then

(3.1) |A+B| ≥ |B|+ d|A| − d(d+ 1)/2.

The special case of Lemma 3.1 with A = B was proved earlier by Freiman [F73,
p. 24]). In this case we also have the following corollary.

Corollary 3.1. Let A ⊂ Rd, and assume that |A+A| ≤ K|A|, K ≤ |A|1/2. Then
the dimension of A does not exceed K.

Proof. Let |A| = N ≥ 1, then dA ≤ N − 1. Suppose that dA > K. The function
f(x) = (x+ 1)N −x(x+ 1)/2 is increasing for x ≤ N − 1/2, hence by (3.1) we have

KN ≥ f(dA) > f(K) = (K + 1)N − K(K + 1)
2

,

i.e. K(K + 1) > 2N , which is not possible if K2 ≤ N .

We observe that Lemma 3.1, and hence also Corollary 3.1, extends to the case
when A,B are subsets of a linear space Y over Q. Assume that Y is d-dimensional,
and take a basis {e1, . . . .ed} in Y . Consider the space Rd with a basis {e′1, . . . .e′d}.
We can arrange a mapping Φ : Y → Y ′ by

Φ(
d∑

j=1

αjej) =
d∑

j=1

αje
′
j .

It is easy to see that Φ is Freiman’s isomorphism of any order and, in particular,
of order 2: this means that for any y1, , y2, z1, z2 from Y the condition

y1 + y2 6= z1 + z2

implies
Φ(y1) + Φ(y2) 6= Φ(z1) + Φ(z2).

Therefore, if A,B are finite subsets of Y and A′ = Φ(A), B′ = Φ(B), then |A+B| =
|A′ +B′|, and we get the required inequality for |A+B|.

The following is a special case of [N96, Theorem 7.8].
10



Lemma 3.2. If N ∈ N, K > 1, A ⊂ Y , and B ⊂ Y satisfy

(3.2) min(|A|, |B|) ≥ N, |A+B| ≤ KN,

we have
|A+A| ≤ K2|A|.

Corollary 3.2. If N ∈ N, K > 1, and if A,B ⊂ Y satisfy (3.2) for some K with
K2(2K2 + 1) < N , then dA+B ≤ K. In particular, dA ≤ K and dB ≤ K.

Proof. By Lemma 3.2, we have |A+A| ≤ K2N , hence Corollary 3.1 implies that

dA ≤ K2,

and similarly for B. Hence dA+B ≤ dA + dB ≤ 2K2. By Lemma 3.1, we have

KN ≥ |A+B| ≥ (1 + dA+B)N − dA+B(dA+B + 1)
2

≥ dA+BN +N −K2(2K2 + 1) ≥ dA+BN,

which proves the first inequality. To complete the proof, observe that dA+B ≥
max(dA, dB).

Lemma 3.3. Let K > 0, A and B be finite nonempty subsets of R, α ∈ R \ {0}.
Also, suppose that the following conditions are satisfied

(3.3) |A− αB| ≤ K|B|.

Then there is a set B′ ⊂ B such that

(3.4) |A− αB′| ≤ K|B′|,

(3.5) |B′| ≥ |A|/K,

and for any b1, b2 ∈ B′ the number α(b1− b2) is a linear combination of differences
a1 − a2, a1, a2 ∈ A, with integer coefficients.

Proof. Let us construct a graph H on B. We join b1, b2 ∈ B (not necessary distinct)
by an edge if there are a1, a2 ∈ A such that a1−αb1 = a2−αb2. Let B1, . . . , Bs be
the components of connectedness of the graph H. Thus, for any j = 1, . . . , s and
for any b1, b2 ∈ Bs there is a path connecting b1 and b2 and consisting of edges of
H (a one-point path for b1 = b2 is allowed). This implies that α(b1 − b2) is a sum
of differences a1 − a2 for some pairs (a1, a2) ∈ A×A. Also, denoting

S = A− αB, Sj = A− αBj ,

we see that, by the choice of B1, . . . , Bs, the sets Sj (j = 1, . . . , s) are disjoint.
Since

|B| =
s∑

j=1

|Bj |, |S| =
s∑

j=1

|Sj |,

11



there is some j such that
|Sj |/|Bj | ≤ |S|/|B|,

and, by (3.3),
|Sj | ≤ K|Bj |.

On the other hand,
|Sj | = |A− αBj | ≥ |A|.

Hence,
|Bj | ≥ |Sj |/K ≥ |A|/K.

So, the set B′ = Bj satisfies (3.4) and (3.5), and Lemma 3.3 follows.

Lemma 3.4. Let K > 0, A and B be finite nonempty subsets of R, α1, α2 ∈ R\{0}.
Also, suppose that the conditions

(3.6) |A− α1B| ≤ K|B|,

(3.7) |A− α2B| ≤ K|A|,

are satisfied. Then there are nonempty sets A′ ⊂ A and B′ ⊂ B such that

(3.8) |A− α1B
′| ≤ K|B′|,

(3.9) |A′ − α2B
′| ≤ K|A′|,

(3.10) |A′| ≥ |A|/K2,

and for any a′1, a
′
2 ∈ A′ the difference a′1 − a′2 is a linear combination of numbers

α2
α1

(a1 − a2), a1, a2 ∈ A, with integer coefficients.

Proof. By (3.6), we can use Lemma 3.3 for α = α1, and we get (3.8) and (3.5).
Further, we use Lemma 3.3 again for B′, A (thus, in the reverse order), and we get
(3.9) and also

|A′| ≥ |B′|/K.

Combining the last inequality with (3.5) we obtain (3.10). The proof of the lemma
is complete.

Replacing (3.8) by a weaker inequality

|A′ − α1B
′| ≤ K|B′|

and iterating Lemma 3.4, we get the following.
12



Lemma 3.5. Let K > 0, A and B be finite nonempty subsets of R, α1, α2 ∈ R\{0}.
Also, suppose that the conditions (3.6) and (3.7) are satisfied. Then there are
nonempty sets Aj ⊂ A and Bj ⊂ B (j = 0, 1, . . . ,) such that A0 = A, B0 = B,
Aj ⊂ Aj−1, Bj ⊂ Bj−1 for j ≥ 1,

|Aj − α2Bj | ≤ K|Aj | (j ≥ 1),

|Aj | ≥ |A|/K2j ,

and for any a1, a2 ∈ Aj the difference a1 − a2 is a linear combination of numbers
αj

2

αj
1
(a′1 − a′2), a′1, a

′
2 ∈ A, with integer coefficients.

Now we are in position to come to the main object of our constructions: to show
that under the assumptions of Lemma 3.5, providing that the number α1/α2 is
transcendental, we can conclude that the dimension of the set A over Q cannot be
too small.

Corollary 3.6. Let K > 0, A and B be finite nonempty subsets of R, α1, α2 ∈
R \ {0} such that α1/α2 is transcendental. Also, suppose that the conditions (3.6)
and (3.7) are satisfied. Then, if for some d ∈ N the inequality

(3.11) |A| > K2d

holds, then the dimension of A over Q is greater than d.

Proof. By Lemma 3.5 and (3.11), we have |Ad| ≥ 2. Take distinct a1, a2 ∈ Ad. Then
also a1, a2 ∈ Aj for j = 0, 1, . . . , d, and, by Lemma 3.6, the difference a1 − a2 is

a linear combination of numbers αj
2

αj
1
(a′1 − a′2), a′1, a

′
2 ∈ A, with integer coefficients.

Therefore, all numbers bj = αj
1

αj
2
(a1 − a2) belong to the linear span of a′1 − a′2,

a′1, a
′
2 ∈ A, over Q. But, since α1/α2 is transcendental, the numbers bj (j = 0, . . . , d)

are linearly independent over Q. Therefore, the dimension of the linear span of
a′1 − a′2, a′1, a

′
2 ∈ A, over Q is at least d+ 1, as required.

Corollary 3.7. If A is a subset of R, 2 ≤ |A| < ∞, α is a transcendental real
number, then

|A− αA| � |A| log |A|/ log log |A|.

Proof. Suppose that the conclusion fails, then for any ε > 0 we may find arbitrarily
large N and A ⊂ R with |A| = N such that

|A− αA| ≤ KN, K = ε
logN

log logN
.

By Corollary 3.2, we have dA ≤ K. On the other hand, (3.6) holds with B = A,
α1 = α, and, since A − α−1A = −α−1(A − αA), (3.7) holds with B = A and
α2 = α−1. Corollary 3.7 then implies that

N ≤ K2K .

Taking logarithms of both sides, and assuming that 2ε < 1, we obtain

logN ≤ 2ε
logN

log logN
(log(2ε) + log logN − log log logN) ≤ 2ε logN,

13



which is not possible if N was chosen large enough.

Remark 1. On the other hand, if α ∈ R is an algebraic number, then one can
use our construction from §2 to show that for any N ∈ N there is a set A ⊂ R,
|A| = N , such that

|A− αA| ≤ C|A|,

where C depends only on α.

Remark 2. We do not know whether the bound in Corollary 3.7 is optimal.
However, for any transcendental number α we can construct a set A such that

|A− αA| ≤ Cε|A|1+ε

for any ε > 01. Namely, let

A = {
m∑

i=1

aiα
i : ai = 1, ..., n},

then |A| = nm and

A+ αA ⊂ {
m+1∑
i=1

aiα
i : ai = 1, ..., 2n},

which has cardinality ≤ (2n)m+1. Let us take n = 2m, N = nm = 2m2
, in which

case (2n)m+1 = 2(m+1)2 � N exp(C
√

logN), less than CεN
1+ε for any ε > 0, as

claimed.

Finally, we state a lemma due to J. Bourgain[B99, Lemma 2.1]. For our purposes,
we need a slightly more precise formulation than that given in [B99]; the required
modifications are described below.

Lemma 3.8. Let N ≥ 2, A,B be finite subsets of R and G ⊂ A×B such that

(3.12) |A|, |B| ≤ N,

(3.13) |S| ≤ N where S = {a+ b : (a, b) ∈ G},

(3.14) |G| ≥ δN2.

Then there exist A′ ⊂ A, B′ ⊂ B satisfying the conditions

(3.15) |(A′ ×B′) ∩G| � δ5N2(logN)−C1 ,

(3.16) |A′ −B′| � N−1(logN)C2δ−13|(A′ ×B′) ∩G|.

1We thank Ben Green for pointing out this example.
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In [B], the bounds (3.15) and (3.16) involved factors of the form Nγ+ and Nγ−,
where Nγ+ (Nγ−) means ≤ C(ε)Nγ+ε for all ε > 0 and some C(ε) > 0 (resp.,
≥ c(ε)Nγ−ε for all ε > 0, c(ε) > 0). We need a slightly stronger statement, namely
that the same bounds hold with the factors in question obeying the inequalities
� Nγ(logN)C or � Nγ(logN)−C , respectively, for some appropriate choice of a
constant C. A careful examination of the proof in [B99] shows that it remains valid
with this new meaning of the notation Nγ+ and Nγ−, and that one may in fact
take C1 = 5, C2 = 10. We further note that although Bourgain states his lemma
for A,B ⊂ Zd, the same proof works for A,B ⊂ R if the exponential sum inequality
[B99,(2.7)] is replaced by

|G| <
∫

S

χA ∗ χB ≤ |S|1/2‖χA ∗ χB‖2;

we then observe that

‖χA ∗ χB‖22 = |{(a, a′, b, b′) ∈ A×A×B ×B : a+ b = a′ + b′}|

= |{(a, a′, b, b′) ∈ A×A×B ×B : a− b′ = a′ − b}| = ‖χA ∗ χ−B‖22,

and proceed further as in [B99]. A similar modification should be made in
[B99,(2.36)].

§4. PROOF OF THEOREM 4

In this section we prove Theorem 4; note that this also proves the implication
(ii)⇒(i) of Theorem 3.

Suppose that BX is a polygon with finitely many sides for which the conclusion
of the theorem fails, i.e. that there is a well distributed set S such that for any
ε > 0 there is an increasing sequence of positive integers N1, N2, · · · → ∞ with

(4.1) |∆X,Nj
(S)| < εNjψ(Nj),

where
ψ(N) = logN/ log logN.

Without loss of generality we may assume that ∂BX contains a vertical line segment
and a horizontal line segment, and that c1Bl22 ⊂ BX ⊂ Bl22. Let also c2 ∈ (0, 1/10)
be a small constant such that all sides of BX have length at least 8c2.

Let M be a sufficiently large number which may depend on ε; all other constants
in the proof will be independent of ε. Let T = Nj0 for some j0 large enough so
that T > M , and let N = c2T . Suppose that one of the two vertical sides of BX
is the line segment {(x1, x2) : x1 = v1, |x2 − v2| ≤ r}, where v1 > 0. Let also
Q = Int (N ·BX), v = (v1, v2), and

A = {x1 : (x1, x2) ∈ S ∩Q for some x2},

Q′ = Q+ (T − 2N)v.

Observe that both Q and Q′ have Euclidean diameter ≤ 2N , and that

Q′ ⊂ {(x1, x2) : (T − 3N)v1 < x1 < (T −N)v1},
15



so that
‖x− x′‖X ≥ (1− 4c2)T > T/2, x ∈ Q, x′ ∈ Q′.

By our choice of c2 we have c2 ≤ r/4, so that

T/2 · r ≥ 2N.

Hence all X-distances between points in Q and Q′ are measured using the vertical
segments of ∂BX, i.e.

‖x− x′‖X = |x1 − x′1|/v1, x = (x1, x2) ∈ Q, x′ = (x′1, x
′
2) ∈ Qt.

Next, we claim that

(4.2) |{‖x− x′‖X : x ∈ S ∩Q, x′ ∈ S ∩Q′}| < K0εNψ(N),

where K0 is a constant depending only on c2. Indeed, we have

{‖x− x′‖X : x ∈ Q, x′ ∈ Q′} ⊂ [0, T ],

hence the failure of (4.2) would imply that

|∆X,T (S)| ≥ K0εNψ(N) ≥ εTψ(T ),

if K0 is large enough (at the last step we used that ψ(N) � ψ(c−1
2 N) = ψ(T )).

But this contradicts (4.1).
It follows that if we define

A′ = {x′1 : (x′1, x
′
2) ∈ S ∩Q′ for some x′2},

then we can estimate the cardinality of the difference set A−A′ using (4.2):

(4.3) |A−A′| < K0εNψ(N).

On the other hand, since S is well distributed, we must have

(4.4) |A|, |A′| � N.

Hence by Corollary 3.2 we have

(4.5) dA � εψ(N).

We may now repeat the same argument with the vertical side of ∂BX replaced
by its other sides. In particular, using the horizontal segment in ∂BX instead, we
obtain the following. Let

B = {x2 : (x1, x2) ∈ S ∩Q for some x1},

then there is a set B′ ⊂ R such that

(4.6) |B|, |B′| � N,
16



(4.7) |B −B′| < K0εNψ(N),

(4.8) dB � εψ(N).

Furthermore, assume that ∂BX contains a segment of a line x1 + αx2 = β, then

(4.9) |{x1 + αx2 : (x1, x2) ∈ S ∩Q}| ≤ K0εNψ(N);

this estimate is an easier analogue of (4.3) obtained by counting distances between
points in Q and just one point in the appropriate analogue of Q′.

Suppose that ∂BX contains segments of lines x1 + α1x2 = C1, x2 + α2x2 = C2

(i.e. with slopes −1/α1, −1/α2), where α1, α2 are neither 0 nor ∞, and that the
ratio α1/α2 is transcendental. Let G = (A×B)∩S, then |G| ≥ c4N

2 since S is well
distributed. By (4.4), (4.6), and (4.9) with α = α1, the assumptions of Lemma 3.8
are satisfied with N replaced by K0εNψ(N) and δ = c4(K0εψ(N))−2. We conclude
that there are subsets A1 ⊂ A and B1 ⊂ B such that

(4.10) |(A1 ×B1) ∩G| � N2εc(logN)−c,

(4.11) |A1 − α1B1| � N−1ε−c(logN)c|(A1 ×B1) ∩G|.

Here and below, c denotes a constant which may change from line to line but is
always independent of N . We also simplified the right sides of (4.10) and (4.11) by
noting that ψ(N) ≤ logN .

Similarly, applying Lemma 3.8 with G replaced by (A1×B1)∩G and α1 replaced
by α2, we find subsets A2 ⊂ A1 and B2 ⊂ B1 such that

(4.12) |(A2 ×B2) ∩G| � N2εc(logN)−c,

(4.13) |A2 − α2B2| � N−1ε−c(logN)c|(A2 ×B2) ∩G|.

Clearly, (4.11) also holds with A1, B1 replaced by A2, B2.
Thus A2, B2 satisfy the assumptions (3.14), (3.15) of Corollary 3.7, with K =

ε−c(logN)c. By (4.4), (4.5) and Corollary 3.7, we must have for some constants
c,K2,

cN ≤ |A2| < (ε−1 logN)K2ε log N/ log log N ,

hence
log c+ logN ≤ K2ε logN

log logN
(log logN − log ε) ≤ 2K2ε logN,

a contradiction if ε was chosen small enough. This proves that if (0.5) fails, then
the ratio between any two slopes, other than 0 or ∞, of sides of BX is algebraic.

To conclude the proof of the theorem, we first observe that if BX is a rectangle,
then there is nothing to prove. If BX is a hexagon with slopes 0,∞, α, we may
always find a coordinate system as in Theorem 3 (i); namely, if we let

(4.14) x′1 = x1, x
′
2 = αx2,

17



then the slopes 0 and ∞ remain unchanged, and lines αx1 − x2 = C with slope α
are mapped to lines x′1 − x′2 = C/α with slope 1. Finally, suppose that BX is a
polygon with slopes 0,∞, α1, α2, . . . , αl, and apply the linear transformation (4.14)
with α = α1. Then the sides of ∂BX with slope α1 is mapped to line segments
with slope 1; moreover, since the ratios αj/α1, j = 2, 3, . . . , l, remain unchanged in
the new coordinates, and since we have proved that these ratios are algebraic, all
remaining sides of ∂BX are mapped to line segments with algebraic slopes.
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[ST01] J. Solymosi and Cs. Tóth, Distinct distances in the plane, Discrete
Comput. Geometry 25 (2001), 629–634.

18



[SV04] J. Solymosi and V. Vu, Distinct distances in high dimensional homoge-
neous sets, in: Towards a Theory of Geometric Graphs (J. Pach, ed.), Contemporary
Mathematics, vol. 342, Amer. Math. Soc. 2004

[W99] T. Wolff, Decay of circular means of Fourier transforms of measures, Int.
Math. Res. Notices 10 (1999), 547–567.

Department oF Mechanics and Mathematics, Moscow State University, Moscow,

119992, Russia, e-mail: konyagin@ok.ru

Department of Mathematics, University of British Columbia, Vancouver, B.C.

V6T 1Z2, Canada, e-mail: ilaba@math.ubc.ca

19


