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DISTANCE SETS, RATIO SETS AND CERTAIN TRANSFORMATIONS
OF SETS OF REAL NUMBERS

TiBor NEUBRUNN and TIBorR SALAT, Bratislava

(Received Juny 13, 1967)

For a ncn-empty set A of real numbers let D(A) denote the set of all numbers
|x — y| where x, y € A. D(4) is said to be the distance set of the set A. The symbol

R(A) stands for the set of all x/y where x, ye 4, y + 0. R(A) is said to be the ratio
set of the set 4.

Many papers are devoted to the study of the sets D(4) and R(4) for various 4.
A survey of fundamental results on the sets D(A4) is given in the monography [1]
and in the survey paper [2]. The paper [3] transfers some fundamental results on the
sets D(A), especially thoss. of metrical character, to the sets R(4). The present paper
is a contribution to the study of properties both of the sets D(4) and R(4).

In the first part certain transformations of the sets of real numbers will be studied.
These transformations are a generalization of those leading to the sets D(4) and R(A4).
In the second part some new results on D(A) and R(A) are given and some strength-
ening of known results concerning this problem is done.

1. CERTAIN TRANSFORMATIONS OF THE SETS OF REAL NUMBERS

In all what follows, E; denotes the set of all real numbers. % denotes the family of
all Lebesgue measurable subsets of the set E,. If 4 € % then |A| stands for the Lebes-
gue measure of the set 4. Suppose that with each element w belonging to a metric
space  certain transformation T, of the system . into & is associated.

Let the following assumptions be satisfied:

(i) There exists w, € 2 such that for every interval <a, b) < E; and every sequence

{w,}&, of elements belonging to 2 and converging to o,

lim (inf T,,,(Ca b)) = @ lim (sup T,,(<a, b)) = b

n—+oo
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holds;

(i) If E, F € & and E < F then for every w € , T,(E) c T,(F);
(iii) If E e £ and w, — w, (in Q), then

lim |T..(E)| = |Too(E)| = |E].

Example 1,1. Put @ = E, (E, is supposed to be the metric space with the
Euclidean metric). If E € & then let T,(E) = E + o (i.e. the set of all numbers of the
form x + w, x € E). Taking 0 as w, one can check easily that properties (i) —(iii) are
satisfied.

Example 1,2. Put @ = (0,1) ((0,1) is supposed to be the metric space with the
Euclidean metric). If E € 2, then for w € (0,1) T,(E) = «E (i.e. the set of all numbers
of the form wx, x € E). If we put w, = 1 then properties (i)—(iii) are satisfied.

Further examples may be constructed putting a set E + f(w) or f(w). E instead
of T,(E) (2 <= E,) where f is a given real function fulfilling certain conditions.

The known Steinhaus theorem states that D(4) contains an interval (0, 7), n > 0,
if |4| > 0 (see [2], [4]). An analogical results for the sets R(A) is valid. If |4] > 0,
then R(A) contains an interval of the form (1, 1), 0 < n < 1 (see [3]).

The following theorem gives a unified view on both above results. They both
follow as special cases from Theorem 1,1 (see corollaries 1,2 and 1,3).

Theorem 1,1. Let Q and T,(w € Q) have the same meaning as above and let con-
ditions (i), (ii), (i) be satisfied. Let Ae &, lA| > 0 and w, > w, (in Q). Then
there exists a natural number n, such that for n = ny, AT, (A4) + 0 holds.

Proof. Let A& .2, lA] > 0. Then there is an interval I with the end points a, b
such that

(1) [AnI] >3, 6=|]
(éee [5] p.- 72). Let w, € 2, w, = w,. Put
a, =inf T, (I), b,=supT,(I) (n=1,2..).

On account of condition (i) there exists n, such that for n = n, we have
é o

2) - a, —al <-, |b,— bl <-.

® o= el <2, -] <

Further, according to (iii) let n, be such that if n = n, then
o
€) T (AnD| - |and|| < 7
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Put ny = max (ny, 12). We shall show thatif n 2 ng the sets A n I and T4 N I
are not disjoint. If they were disjoint then according to (1) and (3)

(€3] v=|[AnD)uT,(An])| =

=Anl +|T,(An])| > 3542522735,
4 4 4 4
On the other side, (2) and (ii) imply that both these sets are contained in the interval
Za — 68, b + 6[8), hence v < (b — a) + 5[4 = 5. This is a contradiction to (4).
Sowehave (ANI)NT,(ANnI)*0forn 2 n, and according to (i) 4 N T, (4) *
* @ifn = n,. The proof is finished.

Corollary 1,1. Let a mapping g, of the set E, into E, be associated to every v €
such that the image of any set belonging to £ belongs to &. If Ae & we put
T, (A) = g,(A). Then condition (ii) for T, is evidently fulfilled. Assume that (i)
and (iii) are also satisfied. Let w, — wy, lA| > 0. Then by the foregoing Theorem
there is nq such that if n = n, then x, € A exists such that g, (x,) € A.

Corollary 1,2. If |A| > 0, then D(A) contains an interval (0, 3), n > 0.
Proof. If w € E, then it is sufficient to put g,(x) = x +  and to use the foregoing
result. )

Corollary 1,3. If |A| > 0 then R(A) contains an interval (n,1), 0 < n < 1.

Proof. It is sufficient to put @ = (0, 1), @, = 1 and g,(x) =wxforwe (0, 1.
Then we apply Corollary 1,1 to the set A.

In the following theorem we restrict ourselves to the transformations T,(w € Q)
from & to & which are induced by mappings g,, of the set E, into E, (see Corollary
1,1). As we have seen condition (ii) is satisfied in this case. We shall assume that (i)
and (iii) are satisfied as well. Instead of T,({x}) = {y} we shall write T, (x) = y. The
following condition will be supposed to be valid:

(iv) Xf w,, @, € Q, 0, * w, then for every x € E,, T, (x) * T,,(x).

Further we shall say that (v) is satisfied on a set G = Qif

(v) Either T,(x) > x for all w € G, w # w, and all x € E; or T,(x) < x holds for
alwe G, v + wyand all x e E,.

The following theorem gives a unified view on two results of the papers [3], [4]

In what follows M for M < Q denotes the closure of M in Q.

Theorem 1,2. Let Q, T, w, have the above meaning while {T,}, w e Q forms
a group (under the usual composition of transformations). Let conditions (i), (iii),
(iv) be satisfied. Let G be a countable subset of Q such that w, € G — {w,} and for
every w,, w, € G there is @ € G such that T, T,,, = Ty. Let (v) be satisfied on G. Let
Ee?, |E| > 0. Then, given n = 2 there exists an n-tuple (x,, Xy e ee x,,) of points
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belonging to E such that x, + x; for i +j (i,j = 1,2, ..., n) and for each two
indices i,j < n, i # j there exists @ = o(i, j) € G such that T,(x;) = x; or T,(x;) =
= x;.

Proof. The proof will be given for the case when T,(x) > x for all we G and
all x € E,. We shall apply the mathematical induction. For n = 2, Theorem follows
from Corollary”1,1. Suppose that it is true for some n = 2. It means that in every
set A € & of a positive measure there exist n points x4, X,, ..., X, with the properties
stated in Theorem. We may suppose x, < X, < ... < X,. In this case (owing to the
fact that T,(x) > x) choosing i < j < n there is w = (i, j) € G such that x; =
= T,(x,) (the case T,(x;) = x, is obviously impossible). Now we shall prove the
assertion for n + 1. Let |E| > 0. Denoting by F the set of all those x € E which appear
as the last (the largest one) coordinate in some n-tuple mentloned above (see the
assertion of the theorem), then

(5 . F=UEnT,(E)n...nT, _(E)

where the union is taken with respect to all (n — 1)-tuples (w,, @,, ..., ®,-4) for
which 0, € G, w; + wo (i =1,2,...,n — ) and v, + w;if i,j S n~1,i*j.

We shall verify (5). Let x e F. Then there is some n-tuple (x,, ..., X,—y, X) such
that x;€E (i=1,..,n—1), x;<x;if i<j<n—1and toevery i<n—1
there exists w; € G such that x = T, (x;). We have o; + wo, @; + w;if i % j,i,j =
<n-1 owing to the fact that x, + x; if i j, i,j S n—1 and x;, = T;,'(x)
where T,,.! is the inverse transformation to T,,,. Hence x belongs to the nght -hand
side of (5)

Let x belong to the right-hand side of (5). Then x € E and

(6) ‘ . x = T,(x),

where x;€ E(i = 1,...,n — 1). Since x; < T,,(x;) = X, we conclude, that x is the
largest among the numbers x;, ..., X,_y, X. Since w; + w; if i + j we have, in view
of (iv) and (6), x; * x;. Hence x € F.

We shall show that [E - F] = 0. In fact, if ]E - F I > 0 then by the induction
hypothesis there exists an n-tuple (x,, x,, ..., X,) of numbers x;€ E — F(i = 1,2, ...
..., n) such that x; # x; if i % j and for i < j, T,(x;) = x;. Then by the definition
of F, x, € E — F. But this is not possible.

Hence |E| = |F| > 0. From the first induction step there exist in F two numbers
¥, 2,y < z such that T,(y) = z where w € G. Since y € F, there exist x; (i = 1, ...

.»n ~ 1) in E such that (xl, .++s X1, ¥) is an n-tuple with the properties described
in Theorem ‘

Now by the assumption of Theorem we have

z = T,(9) = T,T,(x) = Ty,(x) (@; € G)
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forevery i £ n — 1. From here there follows that the (n +.1)-tuple (Bt wees Xy Xp1)
where x, = y, x,+1 = z consists of mutually distinct numbers and- for every two
X, %; (I < j, i,j £ n > 1) there exists o = (i, j) € G such that x; = T,(x;).. The
proof is finished.

Corollary 1,3. Any linear set of positive measure contains for every n 2 2,
n mutually distinct points such that the distance of any two of them is rational.

Proof. It is sufficient to put in the preceding theorem G = R* (R* is the set of all
positive rational numbers), 2 = E,, wo =0, T,(x) = x + o.

Note. The assumption that {T,,} is a set of transformations from E, into E, is not
substantial. We may consider transformations from I to I where I is a fixed interval
on the real line. Then, if the other assumptions are satisfied, Theorem 1,2 is obviously
true. :

In view of this note we obtain the followmg result using Theorem 1, 2

Corollary 1,4. Any linear set of positive measure contains for any n 2 2, n mutual-
ly distinct numbers such that the ratio of any two of them is rattonal.

Proof. Evidently it is sufficient to prove the corollary for the sets of positive
numbers. For this case let us consider the transformations T,(x) =-wx where x €
€(0, + o) while 2 = (0, + ), G =R" n(0,1), w, = 1.

By means of Corollary 1,3 a result is proved in [4] asserting that any ‘linear set of
positive measure contains a sequence of mutually distinct points such that the distance
of any two-of them is rational. A similar result for the ratio set is glven in [3] Here
we are giving without proof a generalizing Theorem which may be obtained from the
above result.

Theorem 1,3. Under the assumptions of Theorem 1,2 there exists an infinite
sequence X, X, ..., Xp, ... of mutually distinct elements of the set E such that for
any two natural numbers i % j there is o = w(i,j)e G such that elther X;
= T,(x;) or x; = T,(x;).

In paper [2] there is proved that if A is a set with the Baire property (m E,) and
of the second category (in E,) then D(4) contains an interval (0, #), # > 0. This fact
will now be proved for a certain set of transformations of subsets of E,. This result
will give a generalization of that mentioned above and it will include at the same tlme
the proof of an analogical result for the ratio sets (see Theorem 1,5).

In what follows Q has the same meaning as in the beginning of the paper. Let to
each w e Q a transformation F, of subsets of E, be associated, induced by some
mapping from E, to E,. A mapping F from 2" to 2™ is said to be category preserving
if F(A) is of the first category in E, if and only if A is of the first category in E,. For
the sake of brevity we shall write again y = F,(x) instead of {y} = F,({x}).
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Theorem 1,4. Let Q be a metric space. Let to each w € Q a mapping F,, from 2%
into 2%t (induced by some mapping g, from E, to E,) be associated. Suppose that
Jfor every w € Q the mapping F, is category preserving and if I is an interval then
Fw(l) is also interval. Let there be an wy € Q such that for every sequence w, € £,
w, = wo and for every two real numbers a,b; a < b the following holds: If
F,({a, b)) has the end points a,, b,, then a, —» a, b, —~ b. Let E < E; have the
Baire property “and let it be of the second category in E,. Then for every sequence
o, ~ @, there exists ny such that if n 2 ngy then En F, (E) * 0.

Proof. Since E is of the second category in E,, there exists an interval I = {a, b)
such that E n I is of the second category in E,. Since E has the Baire property it may
be expressed in the form E = (G — P) u Q where P, Q are of the first category in E
and G is open in E,. This representation implies that

EnlI=(GnI-P)uQ,, P,=Pnl, Q,=QnI,

Py, Q, are of the first category in E,. Since E n I is of the second category in E, we
have G n I + (. Consequently there is an interval I, = {ay, b,) containedin G n [
such that

@) a<ay, b <bh.
Then evidently
Ii—E=I~Enl=(,~(Gnl-P)n(Il, - Q).

But GnI>Iy, hence I, —(GnI—-P)cI — (I, —P;)< Py and so I, —
— (G n1 — Py) is of the first category in E,; therefore I, — E is also of the first
category in E,. As a consequence the set E N I, is of the second category in E,.
Now let w, - w,. Then with regard to both the assumptions of the theorem and to
inequalities (7) there is n, such that F,, (I,) < I holds for n = n,. Let n = n,. Then

(8) Fwn(Ii - E) > Fcon(Il) - an(E) .

Since F,,, is category preserving, the set F,, (I, — E) is of the first category. From the
assumption of Theorem and on account of the fact that E n I, is of the second
category, the existence of an interval I7 < I, follows so that for sufficiently large n
(if » = ng = n,) we have F,, (I,) = If and E n I} is of the second category in E,.
Then (8) implies that I7 — F,, (E) is a set of the first category in E, and then the set

rl Fwn(E) = U (I* - Fwn(E))

n=no

is of the first category in E, as well. Hence also ENI* — En | F ol E) is a set of
n=ny

the first category in E,. But E n I7 is a'set of the second category in E,, hence in view
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of the foregoing consideration E n () F,,(E) + 9. Consequently En F olE) + 0
n=no

(for n Z n,). The proof is finished.

Note. If we choose particularly Q@ = E;, wy = 0, Fm(x) = x + o we get from the
foregoing theorem a result analogical to the mentioned result of paper [2].

Theorem 1,5. Let E(E < E,) have the Baire property and let E be of the second
category in E,. Then the set R(E) contains an interval (n,1),0 < n < 1.

Proof. Put Q =(0,1), wo =1, g,(x) = F,(x) = wx. The assumptions of
Theorem 1,4 are satisfied. In fact, g,, is a homeomorphism from E, onto E, and hence
it is category preserving. Further F,(I) is evidently an interval if I is an interval.
If w, = w, (=1), then the end points of F,, (I) (I is an interval) converge to the end
points of I. So the present theorem is an easy corollary of Theorem 1,4.

2. SETS OF DISTANCES AND RATIO SETS OF SPECIAL LINEAR SETS

In paper [3] a theorem, is proved which we have mentioned above. According to
it the set R(A4) contains an interval (1, 1), 0 < n < 1, if |4| > 0. The proof of this
theorem is given in [3] in an analogous way as that of the mentioned Steinhaus
theorem in paper [4]. Both the proofs are based on the following fundamental result
on the sets of positive measure: If IAl > 0 then for every « € (0, 1) there is an inter-
val I such that |4 n I| > a|I| (see [5], p. 72). This result was used also by us in the
proof of Theorem 1,1. .

Now we shall show that the mentioned result of paper [3] may be also derived as
an easy consequence of the Steinhaus theorem. We shall give a new proof of the fol-
lowing theorem, which is evidently equivalent to the mentioned result of paper [3]

Theorem 2,1. Let |A| > 0. Then R(A) contains an interval (1, 1), n > 1.

Proof. Let |4]| > 0. Put 4; = A N (—0,0), 4, = A A (0, +0). If |4;| = 0 then
|[4;] >0, 4, = (0, +) and R(4,) = R(4). If |4;] >0, put AT = {xeE;
—x€A,}. Then evidently |A}] > 0, 4% = (0, + ) and R(4}) = R(4). In both
cases there exists a set M < (0, +o0), |M| > 0 such that R(M) = R(A4). -Since
IMI > 0 there exist numbers a, b, 0 < @ < b such that IM N {a, b>| > 0. Put
M; = M n<a, b). Evidently R(M,) = R(M). The function ¢(f) = log t is absolutely
continuous on <a, b). Thus we have for the measure |(M )| of the set (M, ) (see [6],
p. 281—282)

o] = |

My

(p’(t)dt=J —ldtgj- Lar=Limy>o0.

According to Steinhaus theorem, D(¢(M,)) contains an interval (0, n,), #, > 0. Put
n = exp {n;} > 1 and choose d € (1, 7). Then log d € (0, 7;) and as a consequence of
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Steinhaus theorem there exist x, y € ¢(M,), x > y such that x — y = log d. Further
x=¢(t,) =logt,, y=o(t;) =logt,; t,,t,e M, and consequently t,[t, = d.
Hence R(M;) = (1, n) and evidently R(4) > R(M,). The proof is finished.

Also sets of zero measure may have the property that their distance set contains an
interval (0, q), n > 0. STEINHAUS has proved that for the Cantor discontinuum C,
D(C) = <0, 1> holds (see [7]). In paper [8], Author proves that for almost all
d € €0, 1) the following assertion is true: For the number d there is an uncountable
of the power of continuum set of pairs (x, y)e C x C such that |[x — y| =d. In
connection with this the question arises what is the situation for the sets of positive
measure. In particular: Does there exist for a set 4 of positive measure an interval
(0, 8), 6 > 0 such that for every d e (0, 5) the equality [x — y] = d holds for an
uncountable (of the power of continuum) pairs (x, y)e 4 x A? The following
theorem gives the affirmative answer to the question.

Theorem 2,2. Let |E| > 0. Then there exists a 6 > 0 such that (0, 5) = D(E) and
for each.d € (0, 6) there holds: the set of all x € E for which there exist y € E with
lx - yl = d has positive measure.

Proof. Let [E| > 0. Choose an interval I such that |E n 1| > 3|I|. Put § = |1]]2.

At first we shall show that (0, ) « D(E). The sets En and (EnI) + d are
included in an interval whose length is at most 36. These sets are not disjoint since
if they were, the measure of their union would be equal to 2|E n 1| — 31| = 35.
Hence the sets E N I, (E n ) + d must have a non-empty intersection. Consequently
there exists y € (E nI) n ((E n 1) + d). This implies that y is of the form y =
=x+d,xeEnl,hencey —x=d,x,yeE.

Let us denote by F, the set of all x € E for which there is a y € E such that Ix - y] =
= d. Evidently

Fy=[En(E+ d]u][En(E - d)].

We shall show that |F,| > 0. Conversely, let [F,| = 0. Put H = E — F,. Then |H| =
= |E| > 0. Let I have the same meaning as above. Then |H n1I| = |E n 1} > .
By a similar reasoning as was applied before to the set E it may by shown now that H
and H + d have a non-empty intersection. Hence there exist x, y € H such that
|x - y| = d. But then x € F; and we have F;, n H = (. This is a contradiction to the
definition of H.

Now we shall show that taking ¢ sufficiently small we can achieve the result that
for every d e (0, 5) the number |F,| will be bounded from bellow by a positive
constant which does not depend on d.

Theorem 2,3. Let |E| > 0. Then there exist positive numbers 5 and c such that
(0, 8) = D(E) and for every d (0, 5) we have |F;| > c.

Proof. Choose an interval I such that [E ~I| > {I]. Put & = [1|/4, ¢ = 5/2.
Let d e (0, 5). We shall prove ]F,,l > ¢. Let the converse hold. Then there exists
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a number d, 0 < d < & such that |F,| < c. Then
(E—F)nl|=|End| - |Find| > 31| - 3|1 = #{1].

The sets (E — F)) n I, [(E — F;) nI] + d are included in an interval having the
length less or equal 56. If these sets were disjoint then the measure of their union
would be greater than %ll | = 50, but this is impossible. Hence the intersection of
these sets contains a point y. We have y € E — F,; and simultaneously y = x + d,
x € E — F,; Hence ]x - yl = d and by the definition of the set F, the element x
must belong to F,. But this is a contradiction to the fact that xe E — F,.

From Theorem 2,3 in a simple way follows this known result (see [4], Theorem 1,3
and the text before the theorem).

Theorem 2,4. Let ]E] > 0. Then there exists a sequence {x,,}ﬁll of mutually distinct
elements belonging to E such that for every m,n = 1,2, ... |x,,, - x,,’ is rational.

Proof. Let 6 have the'same meaning as in the above Theorem. Choose a sequence
{d,}s-, of distinct rational numbers belonging to (0, 5). By Theorem 2,3 there exists
¢ > 0 such that |F, | > ¢ (n = 1,2,...). Since

|tim sup F, | = lim | Gdel 2 limsup |[Fy| 2 ¢,
n~ o0 n—rw k=n n-» oo :

we have lim sup F, = 0. The last inequality implies that a number x belonging to

n>w

infinitely many F,, exists. Let x € F,, (n = 1, 2,...). By the definitjon of the sets Fy
the existence of a sequence {x,}n~, of elements belonging to E follows such that
[x, — x| = dy, (n=1,2,..)). Since X = Xy = (X — %) + (x — x,) and x,, — x,
X — x, are rational numbers, the number x, — x, is a rational number different
from zero for m #+ n on account of the fact that {d, },., is a one-to-one sequence.

In paper [9] there is proved that if A < (0, +0), |4| > 0 and R,(4) denotes the
set of all d for which there exists an infinite number of pairs (x, y)e A x A with
x{y = d, then R,(A) contains an interval (1, ), n > 1. But from the proof it may be
seen that the author of [9] has proved if fact this more general assertion which is
analogous to our Theorem 2,2.

Theorem 2,5. Let [A| > 0. Then there is an interval (1,4), n > 1 such that for
every d € (1, n) the following assertion is true: if P, denotes the set of all x € A for
which there exist y € A such that x|y = d, then |P,,| > 0.

Note that Theorem 2,5 may be derived from Theorem 2,2 by a procedure analogous
to that applied in the proof of Theorem 2,1. A similar note concerns also the formula-
tions and the proofs of those theorems (for the sets R(4)) which are analogous to
Theorems 2,3 and 2,4. The reader himself will be able to complete the proofs in an
easy way.
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Now let us come back to the mentioned result of R. P. Boas according to which
there holds for almost all d € €0, 1): to the number d there exists an uncountable of
the power of continuum set of pairs (x, y)€ C x C such that |x — y| = d. In what
follows a strengthening of this result will be given. The strengthening will be done in
detail for the discontinua W (see [10], [11]). For C it may be done in an analogous
way.

In papers [10]s [11] the following result is proved:

Given A=Y a,< 4+0,0<a,£2R, =2 a,, (n=1,2,..)), let W be the

n=1 k=1~

set of all x of the form
(8a) x=Yea,, =1 or -1 (n=1,2,..).
n=1

Then D(W) = (0, 24). v

If moreover |W| =0 and a,> R, (n=1,2,...), then for almost every de
€ {0, 24) there is an uncountable of the power of continuum set (x',x")e W x W
such that x" — x' = d.

We shall both strengthen the above result and show that the set of those d € €0, 24>
for which the existence of uncountable set of pairs (x', x") e W x Wwithx” — x’ = d
is not guaranteed, may be better estimated. '

In what follows dim M denotes the Hausdorff dimension of M with respect to the
system of measure functions

p@) =1, te(0, +x), ae(0,1)
(see [12]).
Theorem 2,6 a) Let A =) a, < +0, a,>0 (n=1,2,...). Let W have the
n=1
same meaning as above. Let
9) R,<a, (n=1,2,..).

Then for every d € W + A except a countable set there holds: To the number d there
is an uncountable of the power of continuum set of pairs (x', x") e W x W such that
x" —x' =d. -

b) If IWI =0 and R, < a, X 2R, (n=1,2,...), then there exists a set M =
= (0,24 such that M| =0, dim M = dim W and for every de{0,24) — M
there exists an uncountable of the power of continuum set of pairs (x',x")e W x W
such that x" — x' = d.

First, the following lemma will be proved.
Lemma 2,1. Let H <« E,, y & 0. Then
dim (yH) = dim H..
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Proof. Let A = E,, 4 + 0. We shall show that
(9a) dim (Ad) < dim 4 .
Let « > dim A, o € (0,1). Then u®{A} = 0 where
KA} = lim (), () = int S

Vet (n,A) iV

U(n, A) is the set of all g-covers of A *) (see [12]). Let¢ > 0. Put ¢’ = ¢&f|4|" > 0. By
the preceding reasoning for ¢ > 0 there is 7, > 0 such that if 0 <5 £ 7, then

1P{4} < ¢ holds. This implies by the definition of u{"{A4} that forany 7,0 < 7 < 5,
there is an y-cover ¥, = {i} of the set 4 such that
(9b) YlilF<e.

ieVy,

Now let ' be any positive number fulfilling the inequality ' < || no. Put ¥’ = {Ai},
ieV,n=r1 Iil Then V' is evidently an n'-cover of the set AA Further, in view of
(9v) and by the definition of &’ Z il = |f* Z |i|* < & holds. Hence

p®{A4} = lim p?{24} = 0.
7’0+
Hence (9a) holds.
Now put A =7y, A = H. Then according to (9a) we have dim (yH) < dim H.
Further put A = 1y, A = yH, then again according to (9a) dim H £ dim (yH).
Thus we have dim H = dim (yH).

Proof of Theorem 2,6. a) From condition (9), the unicity of the expansions (8a)
of elements of the set W follows in an easy way. Let us denote by Y the set of all
numbers of the form

(10) y=2%a, $,=0 o 2 (n=12..).
n=1

Hence Y = W + A. Obviously all the elements of the set Y except elements of a coun-
table set have such property that their expansions (10) contain an infinite number of
factors 9, which are equal to zero. If y (see (10)) has such an expansion in which
9, = 0 for an infinite number of indices n’s, then choose x" = Ze a,e W, x"

n=1
= z &na, € W such that

(11) &~e=39, (n=12.).

This is evidently possible and if 3, = 0 we can choose ¢, &, in two different ways so
that (11) is true (we can put either ¢, = &, = 1, or ¢, = &, = —1). From the unicity

' #) g-cover of a set A is any countable system of intervals which is a cover of 4, the length of
every interval of the system not exceeding 7. :
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of the expansions of elements belonging to W, validity of a) immediately follows.
Now b) will be proved. In [10] a proof was given according to which every x e
€ {(—A, A) may be written in the form

[ o]

(12) x=znnan’ ’1»=0,1 or —1 (n=1,2,...).

n=1

Denote by M, the set of all those x € { — A4, A) for which the following is true: There
is at least one expansion of the form (12) of the element x, such that 0 appears in the
sequence {r,}: exactly k-times. Then M, = W, dim M, = dim W and |M,| = 0.

Further M, = {J N, where N, is the set of all those x for which the following is true:
=1

There is at least one expansion of the form (12) of the element x, such that 7, = 0 and
n, = 1 or —1 for every n % I. Obviously
(13) Ny+a)o(N, + (—a)) = W.

Hence according to the invariancy with respect to a translation of the Hausdorff
dimension, we have '

(14) dimN, < dimW (I=1,2,..).

If B c U B,, then as it is known (see e.g. Lemma 4 in [12]) dim B £ sup dim B,
’ n=1 n=1,2,...
Put as.a special case B; = N; + a;, B, = N, + (—a,), B,=0fork>2 B=W.
Then according to the above inequality,

(15) dimW<dimN, (I=12..).

(14) and (15) yields dim N; = dim W (I = 1, 2, ...) and using again Lemma 4, [2] we
get dim M, = dim W.
Further we shall show that also dim M, = dim W holds. Evidently

(16) MZ = G Nm,n

mmn=1
where N,, »1s the set of all those x € (— A4, A) for which there holds: There is at least
one expansion of the form (12) of the element x such that n, = 0if I =m or l = n
and n, = 1 or —1 for every ! + m, n. Evidently

[Non + (@m + a)] U [Npo + (an — a,)] U
U [N + ("'am + a,,)] v [Nm,n + (—'am - a,,)] =W
and b& vthe procedure used above we get
dimN,,,=dim W (mn=12..).

Then (16) implies dim M, = dim W. By the same method it is possible to show that
dim M, = dim W also if k > 2. :
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Put M = (0,24 n {J 2M,. Notice that My 1 <0,24) = W {0, 24). Since W
k=0 '

is symmetric with respect to the point 0, we have according to the foregoing facts
dim M = dim W. Lemma 2,4 and Lemma 4, [12] give dim M < dim W. Hence
dim M = dim W.

Letd¢ M, de<0,24). Then d[2¢ M, (k = 0, 1, ...) and thus a sequence {n,};%,
of numbers 0, 1, —1 containing an infinite number of zeros exists such that d =

2n,a,. Now the proof may be completed in a similar way as that of the case a).
n=1

To complete the proof of the Theorem it is sufficient to prove that lM ‘ = 0. To
prove this it is sufficient to prove that |M k| = 0(k =0, 1,...). We have already seen
that |M,| = |W| = 0. Further, (13) implies |[N,| = 0 (I = 1,2,...), hence |M,| = 0.
It may be shown in a similar way that ‘M kl = Qfork > 1.

In an analogous way the following theorem which is a strengthening of the men-
tioned result of R. P. Boas, may be proved.

Theorem 2,7. There exists a set M < {0,1> such that

log2

dimM =dim C = <1

and for every d € {0,1> — M there is an infinite of the power of continuum set of
pairs (x', x") e C x C such that x" — x' = d. '
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