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Abstract 
This paper introduces a new innovation data source to re-examine how spatial 
distance affects the diffusion of ideas and innovations in an economy. We 
exploit the descriptions of products and services contained in U.S. trademark 
registrations during 1980-2012 to identify terms (tokens) not previously used by 
firms to describe products and services. From these we select tokens frequently 
re-used by follower firms. By linking the new tokens to the business addresses 
of innovator and follower firms, our data encompass all instances in which 
innovations captured by trademark tokens arise within and diffuse across the 
United States. We aggregate innovations at the year and ZIP code level and 
estimate Poisson models of the likelihood and intensity of diffusion between 
locations. After endogenising the creation of new diffusion links between ZIP 
codes, our results show that spatial distance no longer affects the creation of 
diffusion links within the US after 1996. However, contingent on previous 
diffusion from a sending to a receiving ZIP code, we find persistent, strong and 
negative effects of greater spatial distance on the intensity (extent) of diffusion 
for existing transfer links between locations within the US. 
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ABSTRACT

This paper introduces a new innovation data source to re-examine how spatial distance affects the dif-

fusion of ideas and innovations in an economy. We exploit the descriptions of products and services

contained in U.S. trademark registrations during 1980-2012 to identify terms (tokens) not previously

used by firms to describe products and services. From these we select tokens frequently re-used by

follower firms. By linking the new tokens to the business addresses of innovator and follower firms, our

data encompass all instances in which innovations captured by trademark tokens arise within and diffuse

across the United States. We aggregate innovations at the year and ZIP code level and estimate Poisson

models of the likelihood and intensity of diffusion between locations. After endogenising the creation

of new diffusion links between ZIP codes, our results show that spatial distance no longer affects the

creation of diffusion links within the US after 1996. However, contingent on previous diffusion from a

sending to a receiving ZIP code, we find persistent, strong and negative effects of greater spatial distance

on the intensity (extent) of diffusion for existing transfer links between locations within the US.
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1 Introduction

The scholarly consensus holds that geographical distance affects not only the intensity of trade and mi-

gration patterns, but also the diffusion of ideas and innovations (Clark et al., 2018). Kolko (2000) noted

that the reduction in communication costs and improvements in the speed and quality of interactions

might lead to the “death of distance,” and possibly an end to agglomeration effects, but found evidence

only to support the former. Given the intangible nature of ideas, distance may have become less of an im-

pediment to knowledge diffusion after the Internet dramatically lowered communication and interaction

costs (Keller and Yeaple, 2013; Head et al., 2018).

Following the early recognition that distance impedes knowledge transfer among people and firms

(Marshall, 1920), researchers employed patent data to show that the diffusion of codified knowledge

lessens with spatial distance (Henderson et al., 1993).1 Other researchers have confirmed this distance-

impeding effect by exploring the transfer of ideas codified in both patents and scientific publications

(Peri, 2005; Belenzon and Schankerman, 2013; Singh and Marx, 2013; Li, 2014). Comin et al. (2012)

find that distance impeded diffusion in 20 major technologies over 140 years, while Keller and Yeaple

(2013)’s study of trade among corporate affiliates shows that distance lessens knowledge transfer even

within firms.

In contrast, Head et al. (2018) rely on more recent data to show that distance is no longer a significant

impediment to idea diffusion in the field of mathematics. Using rich data on personal networks of

mathematicians, they show that ideas flow primarily through person dyads (i.e., mentor-mentee), and

that over time spatial distance, ceterus paribus, has ceased to negatively affect knowledge transfer across

such dyads. This finding supports the notion that personal ties are essential for the flow of ideas and

innovations, as has also been shown by Singh (2005) and Breschi and Lissoni (2009).

Does this recent ”death of distance” in mathematics reflect a more systematic phenomenon across

other disciplines and technologies? We investigate the spatial diffusion of innovation across a broad

range of industries and firms by exploiting data from the trademark register of the U. S. Patent and

Trademark Office (USPTO) to answer this question. This data source allows us to study the diffusion

of innovations through the lens of words that identify significant new product and service innovations,

for example GPS (global positioning systems), MP3, and the DVD. Specifically, we examine the intro-

duction of new words (tokens) among the 4.5 million words contained in the USPTO trademark register

used to describe goods and services during 1980-2012,2 and identify as ”significant innovations” those

tokens that are then re-used frequently. We observe both the first occurrence of a token in this word cor-

pus by an ”innovator” and its diffusion among the trademark filings of all ”follower” firms and entities

within one year of first use. Address location data on both innovator and follower firms are available

in the records, enabling us to aggregate new-token emergence and diffusion to the year and ZIP code

1Because patents protect only a subset of all technology innovation and are used selectively, this finding may not be

general (Hall and Harhoff, 2012).
2The goods and services declarations are largely codified by trademark offices. For instance WIPO provides applicants

with the Madrid Goods & Services Manager, a tool to help them select appropriate terms and descriptions for the statements

that delineate what type of product or service is being protected. However, registrants are not bound to the existing set and

can introduce novel descriptors which may in time enter into the official list of descriptors proposed by the offices. We exploit

this regularity to study when new terms enter into the trademark register, and how they subsequently diffuse.
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level.3 Accordingly, we are able to examine how geographical distance affects the probability and degree

of diffusion in market-based innovation in the United States from 1980-2012.

The paper first provides descriptive results to support the claim that new tokens from the USPTO

trademark register measure innovations that are ”new to the world” in the sense of the Oslo Manual

(OECD and Eurostat, 2018). We present map visualisations to show that such tokens have primarily

arisen in densely populated metropolitan areas associated with innovation activity in the previous litera-

ture (Peri, 2005; Forman et al., 2016)4 and that they tend to diffuse primarily to these same areas. The

visualisations also show that the 1996-2005 period saw a substantial increase in the establishment of

intensive, long-range diffusion links connecting innovators situated in New York, Los Angeles and the

San Francisco Bay Area. To further validate trademark tokens as indicators of innovation, we compare

the diffusion of several important innovations in patents to diffusion of trademark tokens and confirm

that trademark tokens capture substantially the same innovation dynamics for these innovations. This

suggests that trademark tokens can capture innovation activity in all sectors and not primarily in manu-

facturing, as is the case with patents.

To test the effect of distance on innovation diffusion, we construct a panel of 11,587 directed ZIP

code-to-ZIP code links over 33 years. We analyze both incidence of first diffusion and the intensity of

diffusion between ZIP codes. Building on a simple model of diffusion between ZIP codes, we estimate

Instrumental Variables Poisson models of the intensity of diffusion between sending and receiving ZIP

codes. These models allow us to address the potential endogeneity of diffusion links and their associated

absorptive capacity. Our results show that, for new tokens emerging after 1996, spatial distance no

longer affects the likelihood that an innovation will diffuse from its origin ZIP code to a follower ZIP

code consistent with Head et al. (2018). However, contingent on previous diffusion from the sending

to the receiving ZIP code, we find that geographic distance still exerts a strong, negative affect on the

intensity (extent) of diffusion between ZIP codes. And, if anything, this effect has grown stronger over

time according to our results. We also find that the degree of innovativeness of a sending ZIP code,

and the degree to which the receiving ZIP code has absorbed previous innovations, both determine the

establishment of a persistent transfer link between these locations, and increase the intensity at which

innovations diffuse between them.

This paper provides a first application of a new measure of innovation drawn from trademark data.

We thus contribute to a growing literature on innovation measures derived from a range of novel infor-

mation sources. Alexopoulos (2011) shows that counts of new books focused on emerging technologies

can be used to track the rate of innovation, arguing that innovation measures should i) be available for

long periods, in at least annual frequency, ii) be objective, iii) contain innovation dates, iv) reflect the

economic importance of innovations, and v) capture a broad range of innovation.

The innovation measure introduced here could in principle be extended as far back as Britain’s first

trademark register in 1876 (Bently, 2008). In light of our research question we restrict our dataset to the

registration years 1980-2012. Since trademarks cover a broad range of goods and services, much wider

3In the U.S., post codes are called ”ZIP” codes. Almost all trademark registrants addresses recorded at the USPTO

include ZIP codes; where missing, we geocode street addresses to obtain ZIP codes. While some US ZIP codes have been

re-assigned over time, we provide robustness checks of our main analytical results using stable U.S. census tracts to validate

our key results.
4Patenting intensive regions in the U.S. include New York City, the San Francisco Bay Area, and Greater Los Angeles.
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for instance than patents, the measure of innovation we propose reaches an economy-wide breadth simi-

lar to the publication measure used by Alexopoulos (2011).5 Using trademark data to capture innovation

has several additional benefits: the trademark register reflects both arrival and diffusion of innovations

in a way that can be cleanly established. It is possible to identify firms that originate new tokens, thus

allowing us to observe the spatial concentration and distribution of new token arrivals, and to capture

temporal and spatial diffusion to ”followers” who subsequently use the same token. Moreover, because

trademark registration is associated with products and services being introduced in the marketplace, we

are arguably focusing on more economically or commercially important tokens than the wider publish-

ing source used in Alexopoulos (2011). Since we focus on new tokens that have been used relatively

frequently, we increase the likelihood that we are examining tokens linked to important innovations that

have diffused widely, and can also explore how distance affects such diffusion. That said, an innova-

tion measure based on trademark tokens has a key limitation: it may be conservative in that not all

innovations may use new tokens in their trademark descriptions. Establishing the significance of this

limitation and its temporal evolution will be an important step in determining whether our proposed

measure captures the overall amount of innovation adequately.

Since Schmoch (2003) suggested service marks could be used as service innovation indicators,

economists have increasingly employed trademark data to provide additional insights into innovation

(Mendonca et al., 2004; Flikkema et al., 2014; Thoma, 2015; Graham et al., 2018). Trademarks are

frequently registered close in time to a new product or service being introduced to the market, so are

much nearer to launch date than are patents,6 and more comparable to the publication dates of technical

manuals and books. The trademark registers also reflect activity from a much wider set of sectors and

firms than U.S. and European patents (Graham et al., 2013; Dinlersoz et al., 2018). This wider coverage

stems from the lower cost of filing trademarks and from their primary objective: to protect a brand or

logo against imitation, and to protect consumers from fraud. As such, trademarks are used at least as

widely in service industries as they are to sell products. Moreover, because companies selling physical

products frequently do not patent (Moser, 2012; Fontana et al., 2013), trademark data can capture in-

novation missed in the patent data. Trademarks are also filed nearer in time to market introduction of

innovations than patents.

This paper is structured as follows: In the next section we discuss existing measures of innovation

and diffusion, introduce our own measure and provide validation. Section 3 contains a discussion of the

empirical model we implement and a description of our trademark word-token data set. In Section 4 we

present results from estimating the model. Section 5 concludes.

2 Measuring Innovation and Diffusion

This section provides a description of innovation and diffusion patterns in the United States after 1980.

The section begins by reviewing the literature on the diffusion of ideas and innovations, including prior

research on measuring innovation. We then introduce our new trademark measure and describe several

5One limitation of our indicator re: Alexopoulos (2011) is its basis in trademarks; books were published much earlier

than trademark registers were established, providing for a longer time horizon.
6In pharmaceuticals, patent filing often precedes product introduction by 7-10 years (Grabowski and Vernon, 2000).
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innovation and diffusion patterns reflected in these data, also providing comparisons of these patterns

with those observed in patent data.

2.1 Diffusion of Ideas and Innovations

Because patent data has been widely available for decades, analysis of how technological inventions dif-

fuse has commonly relied on patent data, and specifically on patent citation patterns. Jaffe (1986) showed

that patent citations could be used to capture knowledge spillovers and Trajtenberg (1990) demonstrated

that the number of times a patent is cited captures the technological significance of the patented inven-

tion. Henderson et al. (1993) then showed that spillovers of innovations decline with distance.7 Scientific

publications (e.g., journal articles) constitute a separate source of data for studying knowledge diffusion.

Publications, like patents, contain citations that may reflect reliance on prior ideas.8 Head et al. (2018)

use rich data from mathematics to demonstrate that distance has ceased to affect the spread of ideas in

mathematics. Their finding, based on more recent data, contrasts with the results from most papers on

diffusion based on patents which generally employ older data.

Measuring knowledge diffusion using information on technology usage is onerous because links

between the innovation and its (ultimate) use must be inferred. Examples include Comin et al. (2008)

and Comin and Hobijn (2010), who provide evidence on the diffusion of a wide range of technologies

from data constructed to study the adoption of 115 technologies over 200 years, across many countries.

Comin et al. (2012) also employ these data and find that distance negatively affects technology diffusion.

While the literature studying the diffusion of ideas and innovations has continued to grow, there are a

number of data-related reasons to be careful when interpretating these results. Nelson et al. (2014) argue

that firms may over- or underreport adoption of innovations. Moreover, the common use of patent data in

these studies can introduce bias since not all sectors or firms rely on patents to protect their innovations

(Levin et al., 1987; Cohen et al., 2000). It is also well established that many patents are not associated

with product introductions (Hall and Harhoff, 2012), which may lead to an overestimate of innovation

diffusion, though not possibly of ideas, through patent-based indicators.

In this respect the trademark data we use for our study present some advantages. The USPTO

requires that the scope of a mark is restricted to its use in the market. While this requirement is not

always met,9 it increases the strength of the correlation, relative to patenting, between use of a token

in a good and service declaration and the actual introduction of a corresponding product in the market.

Another benefit of using trademark data to study innovation derives from the low cost of applying for

trademarks, thereby increasing the likely range of firms employing and innovations reflected in the

trademark register.

A limitation of innovation measures noted by Nelson et al. (2014) may affect our data, however:

When new goods and services are introduced there may be considerable variation in the terminology

7This result has been replicated in a number of recent papers (Peri, 2005; Belenzon and Schankerman, 2013; Singh and

Marx, 2013; Li, 2014).
8However, recent research investigates the incidence of so-called negative citations in science (Catalini et al., 2015).
9USPTO conducted a Proof of Use pilot in 2012, requiring trademark owners to submit additional evidence of trade-

mark use on the goods or in connection with the services identified in the registration. In just over half of the randomly

selected registrations, owners were unable to verify previously claims of use, resulting in either narrowing of protection

through deletion of goods and/or services or outright registration cancellation. See the Post Registration Proof of Use Pilot

Final Report (accessed 12 August 2019).
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used to refer to them across firms. It can take time for a commonly accepted term to emerge. This

pattern means that we may not correctly identify the date on which some innovations first emerge; rather

we may observe the date at which the most widely adopted name for the innovation emerges.10

2.2 Measures of Innovation

Innovation can be measured for different purposes and at different levels of aggregation, from the firm

or unit, up to the economy or world. The Oslo Manual (OECD and Eurostat, 2018), which sets out a

standard for collecting and using innovation data, defines an innovation as a new or improved product

or service. The most widely used measures of innovation derive from R&D investment data, but these

input measures are arguably the least precise measures of innovation. Existing innovation output mea-

sures derive from a limited range of sources: Data from the patent registers are widely used to study

technological inventions and inventor locations while data from company surveys are widely used to

track innovation processes within and across firms and universities. Since patent data reflect innovation

in a limited range of technologies, surveys present a more comprehensive tool in their coverage of tech-

nologies and industries, but are expensive to conduct and usually reflect activity in only a small subset

of firms. Surveys frequently focus on the degree of novelty of innovations, reflecting the approach taken

by the Oslo Manual, while studies using patent data largely rely on the idea of the inventive step inherent

to the patenting process and typically present patent counts. That said, the degree of novelty inherent in

a specific invention is much harder to identify in the patent data.

Recently, new sources of data have produced a richer understanding of innovation. Alexopoulos

(2011) and Alexopoulos and Cohen (2011, 2019) exploit data on new book titles covering computers

and technology. Hippel et al. (2010) survey consumers in the UK and show that a significant proportion

engage in developing and modifying of consumer products. Moser (2012) uses historical data to study

innovation beginning in the 1800s when neither patents nor trademarks were widely available. These

papers have primarily addressed the question of how much innovation there is (was) as well as when and

how innovation arises.

In terms of innovation in recent decades, Forman et al. (2016) study where innovations have arisen

in the United States using patent data. They identify an increase in the share of patents originating

from the San Francisco Bay area in California, mainly at the expense of the New York City metro

area. Much of the shift they identify occurred between 1990 and 2000, yet was not concentrated in

ICT technologies: the re-concentration is more general across technologies at least those reflected in

patenting. In contrast to a general innovation re-configuration, Hannigan et al. (2015) illustrates the local

persistence of automotive innovation in Detroit, Michigan, even as the manufacturing of automobiles has

declined in the region. Their analysis documents the simultaneous importance of local and long-distance

links to the continued vibrancy of this geographic technology cluster. This paper also relies on patent

data as automotive innovations are frequently patented, although survey data suggests the patenting

share in automobile technologies may be as low as 49% for product inventions, and 20% for process

inventions (Cohen et al., 2000).

The trademark register derived measures of innovation we introduce in this paper cover a much

10A more focused study of only a small subset of innovations in our data could address this issue, but our approach here is

to include as wide a range of innovations as possible.
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broader range of industries than the patent data. For instance, trademark protection extends to service

industries,11 an economically vibrant area that patent data largely misses. Moreover, the administrative

character of the trademark data means that we are able to link registrant addresses to geographical

locations, thus allowing us to study where innovation occurs, and the possible effects of distance on

diffusion. The next section provides a first descriptive look at this aspect of our data.

2.3 A New Measure of Innovation and Diffusion

We propose to measure innovation through words (tokens) that are entirely new to the corpus of words

used to describe products or services in the US trademark register. These we call new to the world

tokens at their time of first use. We then extract the subset of tokens that is most frequently re-used

within the subsequent five years. Our cutoff for most frequent re-use is those words in the ninth decile

of the distribution of re-use frequencies within each Nice class during 1980-2012. We then identify

and geocode the addresses of all firms introducing these tokens into the trademark register (hereafter

innovators).12 Figure 1 shows the distribution of these innovators across the United States, subdivided

into three periods to show timing effects on the spatial distribution of innovations. Our mapping of

trademark-based innovations in Figure 1 comports with findings based on patenting reported in Forman

et al. (2016) and Hannigan et al. (2015): the cluster of innovation in and around the San Francisco

Bay Area is clearly visible, as is the significant cluster in the Northeast megalopolis from Boston to

Washington DC and persistent innovation around the rust-belt cities of Minneapolis, MN, Detroit, MI,

Cleveland, OH, Pittsburgh, PA, and Buffalo and Rochester, NY.

We extend our analysis by exploiting subsequent uses of fast growing new tokens in the trademark

register, and map the diffusion of these tokens within one year of filing. Figure 2 provides two separate

ways of analyzing this diffusion. The first visualizes the locations (left panel) of firms that subsequently

used these tokens in another trademark filing (hereafter followers). Followers tend to be proximately

located to their matched token-innovator firms, and file very quickly following the first trademark. In

fact, a large share of followers are located less than 100 miles from the innovator, and in 15% cases file

their trademark within 3 days of the first mark. This finding may provide further evidence of Mertons

multiples (Merton, 1961).

The right panel of Figure 2 focuses on diffusion links that cover distances of at least 100 miles and

across which at least 10 innovations have diffused. This graph illustrates the importance of New York,

the San Francisco Bay Area and Greater Los Angeles to the supply of innovation in the United States.

In this graph of intense innovation diffusion links, the original long-distance diffusion arose primarily

between Southern California and New York.

While these figures are interesting and contain far more information that we are able to analyze in

this article, it remains to determine whether our measure of innovation is closely aligned with more

conventionally used measures of innovation, such as those derived from patent data. The next section

addresses this question.

11Due to a change in the trademark classification system introduced in 2000 we have excluded some of the service classes

(42-45) from our analysis.
12Geocoding of addresses was done with the help of two Stata packages: opencagegeo and geocodehere. We geocoded a

subset of addresses twice and checked the reliability of the packages used.
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pre 1996

1996-2005

post 2005

excluding classes beyond 41

Tokens New to the World

Figure 1

This figure provides a visualization of distinct addresses contributing new to the world word tokens in USPTO trademark

descriptions. Symbol size indicates the number of new tokens contributed (larger indicates more tokens) in three distinct time

periods (indicated by style and color of symbols). The figure identifies concentrations of innovations in spatial proximity,

similar to maps of local labour markets using commuter flows developed by Nelson and Rae (2016). These clusters occur in

ten megaregions (e.g. Northeast, Northern California, Southern California) first identified by Lang and Nelson (2007). Due

to classification changes, the figure excludes NICE classes 42-45 for consistency.

pre 1996

1996-2005

post 2005

excluding classes beyond 41

First Year Diffusion of Tokens New to Class

pre 1996

1996-2005

post 2005

excluding Nice classes beyond 41

Directed Diffusion Links between ZIP codes in the United States

Figure 2: Diffusion of innovations across the USA

This figure shows the diffusion of tokens new to the world within the first year of their introduction in the left panel. The

right panel shows arrows starting from addresses at which tokens new to the world are introduced and ending at addresses

which subsequently use these tokens within the first year of their introduction. We exclude all distances below 100 miles and

only show links across which at least 10 tokens diffused in a given period.
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2.4 Validation

To validate the use of trademark tokens as measures of innovation and diffusion, we compare the dif-

fusion of four important tokens in the trademark data to diffusion of those same tokens in the titles and

abstracts of USPTO patent documents. Figure 3 compares the diffusion patterns for the tokens GPS,

Internet, DVD and MP3 that emerged in U.S. patent documents (left panel) with the diffusion patterns

of these same tokens found in U.S. trademark registrations (right panel).
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Figure 3: Diffusion of four significant innovations measured using patent tokens (left panel) and trade

mark tokens (right panel)

The left panel presents counts of patents that contained the tokens in either the title or abstract. Note that the left panel

presents data for the years 1975-2012 while the right panel presents data for the years 1985-2015. We extended the left panel

back to 1975 in order to represent fully the variation in the GPS series.

A number of qualitative parallels emerge from these two graphs that are worth noting: Use of the

tokens Internet and MP3 peaked in 2000 during the internet bubble in both sources. Use of MP3 con-

tinued to grow strongly, after a recession induced dip, until around 2006. Turning to Global Positioning

System (GPS), it is evident that patenting in GPS technology started many years prior to commercial-

ization, likely due to restrictions imposed by the military. It is also worth pointing out that the diffusion

path for GPS in both sources is clearly different from that of the other three technologies, but still similar

across the panels. Finally, the decline of patenting related to the DVD technology after 2005 is reflected

in a fall in the number of new uses of the DVD tokens for trademarks also. Overall, this descriptive

analysis provides us additional confidence that trademark tokens reflect innovation and diffusion in a

similar manner to using patent data.

3 Model and Data

Henderson et al. (1993, 2005) discuss the primary identification problem that affects all studies seeking

to estimate how distance affects diffusion of innovation: Is diffusion localized because distance makes it

harder to learn about an innovation, or because those most likely to re-use an innovation are located in the

same area as the innovator? In the second case unobserved factors can generate a cluster that is simply

revealed by the diffusion patterns observed in the data. Henderson et al. (1993) address the identification
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problem by matching citations with potential citations that are comparable.13 Head et al. (2018) who

examine personal ties in mathematics, adopt a similar approach to identification as Henderson et al.

(1993) to show that the effects of distance on knowledge diffusion in mathematics have decreased over

time.

Due to the novelty of our data source we are not yet in a position to duplicate the micro-level ap-

proach to estimating the influence of distance on innovation diffusion. Specifically, we do not have

sufficiently detailed information on trademark filing entities and their histories to estimate models at the

firm level. Instead, we pursue another approach to the estimation of distance effects on knowledge flows

by aggregating our trademark innovation index to the ZIP code level. We then employ these location-

level data to estimate gravity models of innovation diffusion between sending and receiving ZIP codes.

Previous work by Peri (2005) and Li (2014) used gravity models to show strong negative effects of

greater distance on knowledge flows.

After aggregating to localities, we estimate the capacity of locations to generate and absorb innova-

tions, and borrow from the literature modeling international trade flows to analyze a fixed set of regional

links. We find that the number of potential sending-and-receiving pairs is far greater than the actual pairs

where we observe innovations diffusing.

However, since our data span many years and ZIP codes are generally fixed, we are able to observe

repeated diffusion of innovations between locations over time. Rather than relying on matching citing

and non-citing ZIP codes to construct controls, we include only those ZIP code pairs where we observe at

least one diffusion event but include these pairs for the entire 33 years of our sample. We adopt a gravity-

model estimation approach suggested by Silva and Tenreyro (2006) allowing us to keep observations

where diffusion counts are zero. We augment this approach by allowing for endogeneity of first diffusion

from one location to another by employing lagged variables to instrument the formation of diffusion links

between ZIP codes and the absorptive capacity of firms located in the receiving ZIP code.14

A further motivation for estimating gravity-type models at the ZIP code level can be found in the

literature on regional innovation systems and clusters. Hannigan et al. (2015) suggest that capabilities

which spawn innovation reside in local and global linkages between clusters. These capabilities endure,

and can survive the death or migration of specific entities like firms or research centers which may help

to explain our showing of persistent innovation clusters in older rust-belt cities like Detroit and Buffalo.

3.1 Model

We adopt a model of innovation diffusion comparable in spirit to the model proposed by Peri (2005).

We posit that diffusion ds,r,t from a sending (s) to a receiving (r) area in year t is a function of distance

between these areas Ds,r, innovation Is,t in the sending location and absorptive capacity Ar,t in the

receiving location and area, time and technology fixed effects Xs,r,t,n:

ds,r,t = Xs,r,t,n (Ds,r)
βD (Is,t)

βI (Ar,t)
βA . (1)

13 This approach was subsequently critically tested by Thompson and Fox-Kean (2005) and commented on in Henderson

et al. (2005). Singh and Marx (2013) extend the methodology used to estimate this type of matching model.
14 Methods used to endogenise variables in a Poisson framework are developed by Windmeijer and Santos Silva (1997).
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This specification can be estimated using a Poisson model. In order to address the identification problem

with which the micro-level literature has grappled (Henderson et al., 1993), we endogenise the first

instance of diffusion from sending to receiving location and control for the age of the link between them.

We also allow for the endogeneity introduced by a receiving areass absorptive capacity, but assume that

the arrival of new to the world innovations at the sending location is uncorrelated with ZIP code-pair

specific unobserved effects.15

This leads us to estimate the following Poisson model with endogenous covariates and an additive

error term (Windmeijer and Santos Silva, 1997; Silva and Tenreyro, 2006):

δs,r,t = exp
(

β0 + βD lnDs,r,t + βI ln Is,t + βA lnAr,t + γLLs,r,t + F ′
s,r,t,nλ

)

+ us,r,t, (2)

where δs,r,t is a count of the number of tokens introduced as new to the world in year t in the sending

location which are used within one year at the receiving location. This forms our index of innovation

diffusion ds,r,t.

lnDs,r,t is the logarithm of the median distance between sending and receiving addresses for each

pair of ZIP codes and can vary across years within each pair, ln Is,t is the logarithm of the innovation

count in the sending region and lnAr,t is the count of all terms diffusing to the receiving area net of those

from the sending area. Ls,r,t = 1 identifies the first year of diffusion from the sending to the receiving

location. When estimating this model we control for sending and receiving ZIP code fixed effects at the

two digit level as well as trademark Nice-class fixed effects and year fixed effects, all subsumed under

Fs,r,t,n.

We model the probability of first diffusion (Ls,r,t) using lagged innovative potential and lagged ab-

sorptive capacity of receiving areas and lagged absorptive capacity of sending areas. The evolution of

current absorptive capacity of the receiving area (Ar,t) is modeled using the same instruments.

3.2 Data

Using the USPTO trademark data we are able to analyze the appearance of new tokens after 1979.

Because we are interested in important innovations we define significant new tokens as those in the top

diffusion decile (by re-use frequency, within Nice class in a five-year forward window) of the distribution

of all new tokens, and identify 28,686 significant new tokens in our data. These significant tokens

originate from addresses in 3,523 distinct ZIP codes and are received by (diffuse to) addresses in 5,370

distinct ZIP codes. In 17% of these cases, the sending and receiving addresses lie within the same ZIP

code.16

We construct local area aggregates of new to the world token introductions and their diffusion using

ZIP code locations. This method allows us to generate location aggregates by year.17 We identify 11,587

15The latter assumption may be quite strong. We cannot test this as estimation of Instrumental Variables Poisson models

is challenging with large numbers of endogenous variables. In future work we may be able to relax this assumption, once a

larger range of years in which diffusion takes place can be accommodated. For instance, extending the diffusion period from

one year (as is now) to five years requires geocoding of twelve times more addresses than our present data contains.
16This does not affect our analysis of distance effects as we construct the distance between sending and receiving addresses

per ZIP code pair as the median distance within each pair and year. As we have geocoded the addresses of all filing entities

we are able to construct distances even within the same ZIP code.
17ZIP codes can change over time. This has the effect of splitting records of ZIP code pairs into two or more separate
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pairs of ZIP codes having at least one instance of new to the world token diffusion between a sending

and a receiving ZIP code, and construct a panel for all these pairs covering 33 years. Table 1 sets out

several descriptive statistics.

Table 1: Descriptive Statistics (N = 382, 364)

Variable mean sd median min max

Diffusions,r,t 0.052 0.606 0 0 158

lnNet Diffusionr,t 0.011 0.139 0 0 5.242

Link dummy 0.030 − 0 0 1

lnDistances,r,t 5.659 2.560 6.725 0 9.335

ln Innovations,t 0.041 0.196 0 0 4.443

lnYears linkeds,r,t 0.891 1.153 0 0 3.497

lnNet Diffusions,t−1 0.018 0.195 0 0 5.602

lnNet Diffusionr,t−1 0.006 0.105 0 0 5.242

ln Innovationr,t−1 0.077 0.258 0 0 4.443

The dependent variable of our main model is the count of diffusion events between sending and receiving

ZIP codes per year: Diffusions,r,t. Our model includes an endogenous dummy variable that is set to one

when significant innovations diffuse from a sending to a receiving ZIP code for the first time. The

models we estimate contain three principal variables:

Distances,r,t in miles calculated as the median distance of all sending - receiving firm pairs per year

for each ZIP code pair. Distance can vary within a pair of ZIP codes over different years to re-

flect changes in the concentration of economic activity in different locations within each ZIP code.

Each individual distance is the geodesic distance between the sending and receiving locations, cal-

culated using the haversine formula. The literature suggests that this variable will have a negative

effect on diffusion.

Innovations,t is the count of all new to the world tokens generated in the sending ZIP code per year.

We also use the lagged count of innovation per year in the receiving ZIP code as an instrument.

Innovation is treated as being exogenous throughout.

Net diffusionr,t, is the count of all new to the world tokens diffusing to a receiving ZIP code, net of those

from a sending ZIP code per year. This variable can be thought of as a proxy for the absorptive

capacity of the firms within the receiving ZIP code location (Cohen and Levinthal, 1990). We

instrument this variable in our main specifications.

records in our data. We have identified cases in which there are multiple ZIP code pairs for the same locations and test

whether these cases affect our conclusions. We find no significant differences. The results of this robustness check are

relegated to the Appendix, Table 5.
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In addition, we include several covariates:

Years linkeds,r,t measures the number of years that have passed since the first diffusion of an innovation

from the sending to the receiving ZIP code.

Period has three phases: before 1996, between 1996 and 2005 and after 2005. The phases are

chosen so as to separate out the decade centered on the Dot com boom in 2000, during which

significant investments in Internet mediated communication took place and U.S. trademark regis-

trations were unusually high (Graham et al., 2013).

4 Results

This section contains estimation results obtained from estimating the empirical model set out in Section

3.1 with the data described in the previous section. We begin with a discussion of the two first stage mod-

els and then present and discuss the main results. Appendix, Section B contains further results, which

are obtained by estimating the main model without instrumenting the link dummy and net diffusion to

the receiving ZIP codes.

4.1 First Stage Models: Probability of Diffusion and Net Diffusion

Table 2 provides two sets of results. The first is obtained from estimation of a model for the probability

that an innovation new to the world diffuses from a sending ZIP code to a specific receiving ZIP code

in a specific year. This model endogenizes the instance of first diffusion between two ZIP codes. The

second set of results is obtained from estimating a model for the net rate of diffusion to a receiving ZIP

code in a specific year.

These models all contain the distance between sending and receiving ZIP codes as well as the in-

novation rate in the sending ZIP code. We estimate two versions of each model: The first contains all

variables listed in the table, while the second allows for interactions between distance and the time pe-

riod. We introduce three variables to instrument the endogenous variables: lagged net diffusion to the

receiving ZIP code, lagged net diffusion to the sending ZIP code, and lagged innovation in the receiving

ZIP code.

The probability that a new to the world innovation arising in a sending ZIP code diffuses to a re-

ceiving ZIP code decreases with the median distance between all sending and receiving firms in the

two locales in a given year. While this effect is statistically significant, it is small in absolute value:

An increase in the distance from zero to the maximum distance recorded in the data between any two

locations reduces the probability of diffusion by only 0.2% (Model 1). Moreover, the interaction with

dummies for periods two (1996-2005) and three (post 2005) results in insignificant effects for distance

in those two periods (Model 2). These results support the notion that distance is not, or is no-longer, an

meaningful impediment to innovation diffusion between even fairly remote areas in the United States.

This finding is notable given the countrys large land area (9.8 million km2).

Table 2 also shows that innovation in either the sending or receiving ZIP code increases the prob-

ability that innovations will diffuse between them. Interestingly however, a higher rate of diffusion in

the past from other ZIP codes to the receiving ZIP code reduces that probability of diffusion, suggesting
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that persistent transfer links between specific locales may pose barriers to entry to ideas and innovations

from different locations.

Table 2: First Stage Models: First Diffusion and Net Diffusion

Dependent Variable First Diffusion Net Diffusion

Distance & Periods in levels interacted in levels interacted

(1) (2) (3) (4)

lnDistances,r,t −0.0002∗∗∗ −0.0006∗∗∗ −0.0003∗∗∗ −0.0005∗∗∗

(0.0000) (0.0001) (0.0001) (0.0001)

ln Innovations,t 0.2509∗∗∗ 0.2509∗∗∗ 0.0931∗∗∗ 0.0931∗∗∗

(0.0092) (0.0092) (0.0050) (0.0050)

lnNet Diffusionr,t−1 −0.0065∗ −0.0065∗ 0.0071∗ 0.0071∗

(0.0026) (0.0026) (0.0030) (0.0030)

ln Innovationr,t−1 0.0133∗∗∗ 0.0133∗∗∗ 0.0091∗∗∗ 0.0092∗∗∗

(0.0020) (0.0020) (0.0012) (0.0012)

lnNet Diffusions,t−1 −0.0017 −0.0017 0.0003 0.0002

(0.0022) (0.0022) (0.0015) (0.0015)

Period(= 2)× lnDistances,r,t 0.0008∗∗ 0.0000

(0.0003) (0.0002)

Period(= 3)× lnDistances,r,t 0.0009∗∗ 0.0007∗∗∗

(0.0003) (0.0002)

Constant 0.0145∗∗∗ 0.0169∗∗∗ −0.0034 −0.0025

(0.0030) (0.0030) (0.0021) (0.0021)

Observations 382364 382364 382364 382364

F-Test 141.07 140.11 50.95 50.66

1 Robust standard errors clustered at ZIP code level 2 in parentheses: + p < 0.10, ∗ p < 0.05, ∗∗

p < 0.01, ∗∗∗ p < 0.001.

2 All models include fixed effects for Nice class, year, sending and receiving ZIP code at level 2.

The first stage models for net diffusion to the receiving ZIP code is largely similar to the models just

discussed. There is one clear difference: Net diffusion to a receiving locale is a positive function of its

own lag. This positive feedback outcome is to be expected.

4.2 Instrumental Variables Models for Diffusion of Innovations

Table 3 contains four models for the level of diffusion between a sending and a receiving ZIP code.

The first two models presented do not control for the time passed between a first instance of diffusion

from sending to receiving ZIP code. Models 2 and 4 allow for interactions between distance and time

periods. The table also provides marginal effects for the distance variable, in each time period, below

the main results. Table 4 contains analogous results from models in which we neither instrument the
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first diffusion dummy nor net diffusion to the receiving ZIP code.

Table 3: IV Poisson Models for Diffusion of Innovation

Distance & Periods in levels interacted in levels interacted

(1) (2) (3) (4)

First Diffusion (1/0) 1.3321 1.3095 −0.0750 −0.0692

(1.4218) (1.3786) (1.7232) (1.7325)

lnNet Diffusionr,t 1.9293∗∗ 2.0072∗∗ 2.3561∗∗∗ 2.4231∗∗∗

(0.6962) (0.6547) (0.6414) (0.6614)

lnDistances,r,t −0.1405∗∗∗ −0.1598∗∗∗ −0.1496∗∗∗ −0.1521∗∗∗

(0.0254) (0.0191) (0.0297) (0.0295)

ln Innovations,t 1.4470∗∗ 1.4437∗∗ 1.4418∗∗ 1.4379∗∗

(0.4972) (0.4974) (0.4421) (0.4520)

lnYears linkeds,r,t −2.2294∗∗∗ −2.2137∗∗∗

(0.4573) (0.4852)

Constant −4.1320∗∗∗ −4.0576∗∗∗ −3.6898∗∗∗ −3.6339∗∗∗

(0.5482) (0.4946) (0.5984) (0.5834)

Observations 382364 382364 382364 382364

Marginal Effects

lnDistancepre 1996 −0.0047∗∗∗ −0.0053∗∗∗ −0.0049∗∗∗ −0.0050∗∗∗

(0.0009) (0.0007) (0.0011) (0.0011)

lnDistance1996−2005 −0.0114∗∗∗ −0.0091∗∗ −0.0123∗∗∗ −0.0100∗∗

(0.0020) (0.0028) (0.0025) (0.0032)

lnDistancepost 2005 −0.0077∗∗∗ −0.0106∗∗∗ −0.0081∗∗∗ −0.0128∗∗

(0.0016) (0.0028) (0.0020) (0.0045)

1 Robust standard errors clustered at ZIP code level 2 in parentheses: + p < 0.10, ∗ p < 0.05, ∗∗

p < 0.01, ∗∗∗ p < 0.001.

2 All models include fixed effects for Nice class, year, sending and receiving ZIP code at level 2.

3 Instruments: ln Innovationr,t−1, lnNet Diffusionr,t−1, lnNet Diffusions,t−1

In contrast to the first stage models, these results show that distance has a statistically significant large

and negative effect on the number of innovations that diffuse from a sending to a receiving ZIP code:

A one-standard deviation change in the logarithm of distance reduces the count of diffusion events by

approximately 50% relative to the mean during the post-2005 period. Also notable is that instrumenting

first diffusion and net diffusion to the receiving ZIP code increases the estimated coefficient on distance

by 12%.

Table 3 shows that net diffusion to a receiving ZIP code increases the number of innovations gener-

ated in the sending ZIP code that diffuse to the receiving ZIP code (suggesting an absorptive capacity

pull effect) as does an increasing number of innovations arising in the sending ZIP code (suggesting an
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innovation supply effect). Coefficients on both of these variables are severely downward biased when

we do not instrument first diffusion and net diffusion to the receiving ZIP code. Our results also show

that the count of innovations diffusing from sending to receiving ZIP codes tends to fall over time, as

the diffusion links between ZIP code pairs age.

To summarize, our results show that spatial distance no longer affects the creation of diffusion links

after 1996. However, contingent on previous diffusion from a sending to a receiving ZIP code, we find

persistent, strong and negative effects of greater spatial distance on the intensity (extent) of diffusion for

existing transfer links between locations.

5 Conclusion

This paper contains new evidence on the effect that geographic distance has on the diffusion of inno-

vations. A primary contribution is the description and application of a previously unused source of

information on innovations and their diffusion, namely the emergence and re-use of new to the world

terms (tokens) contained in the goods and services descriptions of administrative trademark registra-

tions. While this paper considers U.S. trademark information generated during only three decades, there

is wide scope for this measure to be constructed from public trademark information in any country, and

for periods beginning as early as the late-1800s.

While the consensus scholarly view is that the diffusion of ideas and innovation decreases as spatial

distance increases, recent scholarship questions this relationship. By linking new trademark tokens to

the business addresses of innovator and follower firms, and defining substantial innovations as new to

the world tokens in goods and services classes that are most often transferred between locations, we are

able to analyze the diffusion patterns of the most impactful innovations from 1980 through 2012.

Our results largely confirm findings in previous work, which has shown that distance hampers the

spread of innovations and ideas. The novelty of our findings lies in the source of information about

innovation and diffusion, which is entirely different from that exploited in previous work. We address

some of the endogeneity likely to affect this type of work. However, we do not have experimental or

quasi-experimental data at our disposal and are not in a position to control for the personal networks

which may mediate the diffusion of innovations. Therefore we cannot entirely rule out that diffusion is

primarily local, because even in the age of the Internet, the networks of innovators and gatekeepers in

the sense of Roberts and Fusfeld (1980) remain local networks.

Trademark tokens, as described in this paper, open opportunities for research into the diffusion of

innovations. The trademark token data are particularly useful for analysis of technologies, industries,

firms, and economies for which patents - the most common data used to analyze diffusion - are less

suitable. Accordingly, our descriptive analysis of the trademark token data suggests that further work

is warranted to better understand what additional insights trademark tokens can reveal about diffusion

patterns post 1876. If it can be established that the propensity for new tokens describing radical new

technologies has remained relatively constant over the period after 1876, trademark tokens would be

useful indicators of the amount of innovation generated since. Such a finding would help to answer

many questions, including those being raised in the recent literature about the productivity slowdown

affecting advanced economies (Gordon, 2018; Alexopoulos and Cohen, 2019).
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A Innovation and Diffusion Indicators using Trademark Tokens

All trade mark applications contain a description of the goods and services which the mark will be used

for. These descriptions contain widely used terms that are familiar to both the examiners at USPTO

and trade mark attorneys. The use of such standard terms simplifies disputes about overlap of goods

and services and makes translation easier. We refer to the list of all terms used to describe goods and

services as a corpus of tokens and exploit the introduction of new tokens into this corpus18.

Goods and services descriptors attached to each trade mark application filed at USPTO provide a

good approximation to the range of products marketed under the trade mark name. This is due to the

requirement that applicants provide USPTO with proof of the use of their marks in commerce as they

are described in the application. When applicants introduce entirely new types of products or services,

e.g. GPS, they will often also need to introduce new tokens into the corpus. Should the market for such

new products and services grow we would expect many firms entering these markets and filing marks

to take up new tokens in their own filings. In order to identify innovation we study the introduction of

those new tokens in the corpus that are subsequently widely adopted.

From data about such new, fast growing terms we extract the fastest growing 10% applying an

algorithm with four steps:

1. determine the year in which new tokens first appear in the corpus of all tokens in a given Nice

class;

18In natural language processing a collection of texts used as a basis for a descriptive analysis is referred to as a corpus of

text. The term token is used to refer to individual words within such a corpus.
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2. obtain the frequency with which new tokens are used in the first five years within that Nice class;

3. obtain the 9th decile of the new tokens frequency distribution, where this distribution is con-

structed relative to the Nice class and the sub-corpus of all new tokens in that Nice class across all

years;

4. retain those tokens used more frequently than the 9th decile in the distribution of frequencies.

This algorithm contains a number of parameters that can be adjusted, such as the number of years over

which the impact of the new tokens is measured and the quantile used to define significant tokens.

Exploration of variants is left to future work.

We restrict our sample of diffusion events to subsequent uses of each significant token within the

first year (365 days not calendar year) of its introduction into the corpus. This restriction is adopted to

limit the extent to which addresses had to be geocoded. It also has the benefit of limiting the likelihood

that diffusion takes place indirectly.

B Further Results

Table 4: Poisson Models for Diffusion of Innovation

Distance & Periods in levels interacted in levels interacted

(1) (2) (3) (4)

First Diffusion (1/0) 4.9500∗∗∗ 4.9486∗∗∗ 4.3737∗∗∗ 4.3715∗∗∗

(0.1870) (0.1876) (0.1841) (0.1850)

lnNet Diffusionr 0.0781 0.0793 −0.1998 −0.1972

(0.0484) (0.0486) (0.2540) (0.2542)

lnDistance −0.1291∗∗∗ −0.1327∗∗∗ −0.1277∗∗∗ −0.1356∗∗∗

(0.0046) (0.0101) (0.0046) (0.0099)

ln Innovations 0.9701∗∗∗ 0.9705∗∗∗ 0.9836∗∗∗ 0.9850∗∗∗

(0.0858) (0.0863) (0.0949) (0.0954)

lnYears linked −1.1776∗∗∗ −1.1786∗∗∗

(0.1944) (0.1943)

Constant −6.0315∗∗∗ −5.9998∗∗∗ −5.6613∗∗∗ −5.6109∗∗∗

(0.3256) (0.3298) (0.3082) (0.3088)

Observations 382364 382364 382364 382364

1 Robust standard errors clustered at ZIP code level 2 in parentheses: + p < 0.10, ∗ p < 0.05, ∗∗

p < 0.01, ∗∗∗ p < 0.001.

2 All models include fixed effects for Nice class, year, sending and receiving ZIP code at level 2.

This section contains additional results. These support the main results presented in the paper. There are

three tables below: Table 4 contains results from estimating Poisson models without instrumenting the
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probability of link formation or absorptive capacity at the receiving ZIP code; Table 5 contains results

from re-estimating the models presented in Table 3 with two additional dummies capturing cases in

which ZIP codes are altered and Table 6 contains results from estimating Instrumental Variables Poisson

models for which counts of innovations and diffusion events are aggregated to census tracts rather than

ZIP codes. We briefly comment on the results contained in each table here.

Table 5: Robustness Check - IV Poisson Models for Diffusion of Innovation

Distance & Periods in levels interacted in levels interacted

(1) (2) (3) (4)

First Diffusion (1/0) 1.3111 1.3246 −0.0977 −0.1130

(1.3990) (1.3553) (1.6891) (1.7021)

lnNet Diffusionr,t 1.9220∗∗ 1.9815∗∗ 2.3446∗∗∗ 2.4103∗∗∗

(0.6766) (0.6470) (0.6249) (0.6407)

lnDistances,r,t −0.1408∗∗∗ −0.1603∗∗∗ −0.1498∗∗∗ −0.1526∗∗∗

(0.0245) (0.0181) (0.0290) (0.0284)

ln Innovations,t 1.4598∗∗ 1.4478∗∗ 1.4522∗∗∗ 1.4538∗∗∗

(0.4896) (0.4872) (0.4324) (0.4403)

lnYears linkeds,r,t −2.2483∗∗∗ −2.2388∗∗∗

(0.4460) (0.4686)

Change ZIPr 0.2034 0.2019 0.3186 0.3120

(0.2264) (0.2268) (0.2374) (0.2445)

Change ZIPs 0.3498 0.3796 0.6047∗ 0.6455∗

(0.2695) (0.2676) (0.2465) (0.2597)

Constant −4.1342∗∗∗ −4.0646∗∗∗ −3.7035∗∗∗ −3.6510∗∗∗

(0.5386) (0.4906) (0.5902) (0.5708)

Observations 382364 382364 382364 382364

Marginal Effects

lnDistancepre 1996 −0.0047∗∗∗ −0.0054∗∗∗ −0.0049∗∗∗ −0.0050∗∗∗

(0.0009) (0.0007) (0.0010) (0.0010)

lnDistance1996−2005 −0.0115∗∗∗ −0.0091∗∗∗ −0.0124∗∗∗ −0.0100∗∗

(0.0020) (0.0027) (0.0024) (0.0031)

lnDistancepost 2005 −0.0077∗∗∗ −0.0105∗∗∗ −0.0081∗∗∗ −0.0127∗∗

(0.0015) (0.0027) (0.0020) (0.0044)

1 Robust standard errors clustered at ZIP code level 2 in parentheses: + p < 0.10, ∗ p < 0.05, ∗∗

p < 0.01, ∗∗∗ p < 0.001.

2 All models include fixed effects for Nice class, year, sending and receiving ZIP code at level 2.

3 Instruments: ln Innovationr,t−1, lnNet Diffusionr,t−1, lnNet Diffusions,t−1

Table 4 shows that even in a ”naive” Poisson model distance has a statistically significant negative
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effect on diffusion of innovations. The coefficients presented in the table are around 12% below those we

obtain when instrumenting the probability of first diffusion between two ZIP codes and the absorptive

capacity of the receiving ZIP code (cf. Table 3).

Table 4 also shows that our proxy for absorptive capacity (Net Diffusionr) at the receiving location

is not statistically significant in these ”naive” models. This is because the coefficients are very signifi-

cantly downward biased when compared to those presented in Table 3. The coefficients on the level of

innovation in the sending ZIP code are also significantly downward biased with respect to the results

presented in Table 3.

Table 6: IV Poisson Models for Diffusion of Innovation

Distance & Periods in levels interacted in levels interacted

(1) (2) (3) (4)

First Diffusion (1/0) 2.9065∗ 3.5714∗∗∗ 2.2281 2.8985∗∗

(1.3576) (0.8869) (1.6865) (1.0242)

lnNet Diffusionr,t 2.2968∗ 2.5902∗∗∗ 2.2130∗ 2.5803∗∗∗

(0.9123) (0.3974) (0.9844) (0.4060)

lnDistances,r,t −0.4192∗∗∗ −0.2482∗ −0.4137∗∗∗ −0.2369∗

(0.1108) (0.1259) (0.1070) (0.1207)

ln Innovations,t 1.4029∗∗∗ 0.8033∗ 1.4344∗∗∗ 0.8093∗

(0.3773) (0.3316) (0.3833) (0.3290)

lnYears linkeds,r,t −1.0992∗ −0.8859∗

(0.4381) (0.3636)

Constant −73.3123 −72.5021 −1.1e+ 02 −97.6554

(43.1934) (51.1024) (72.1243) (58.9651)

Observations 268917 268917 268917 268917

Marginal Effects

lnDistancepre 1996 −0.0167∗∗ −0.0098 −0.0165∗∗ −0.0093

(0.0061) (0.0059) (0.0059) (0.0056)

lnDistance1996−2005 −0.0270∗∗∗ −0.0370∗∗ −0.0260∗∗∗ −0.0364∗∗

(0.0071) (0.0118) (0.0065) (0.0119)

lnDistancepost 2005 −0.0293∗∗ −0.0159 −0.0288∗∗ −0.0161

(0.0104) (0.0098) (0.0099) (0.0100)

1 Robust standard errors clustered at combination of sending and receiving census tracts: + p <

0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

2 All models include fixed effects for the sending census tract. Models also include dummies for

same state and same city as well as a time trend variable.

3 Instruments: ln Innovations,t−1, ln Innovationr,t−1, lnNet Diffusionr,t−1, lnNet Diffusions,t−1

Tables 5 and 6 are provided to address the question whether the results presented in Table 3 might be
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affected by changes in ZIP codes during the period we study. We have no reason to expect that ZIP code

changes will be endogenous to the diffusion of innovations in the United States, but it is conceivable that

they might be.

Table 5 shows that dummy variables capturing cases in which the same location (longitude, latitude)

is present under at least two different ZIP codes in our data are not significant or just significant at the

5% significance level in our data. Including these dummy variables also does not change the coefficients

on the main variables of interest in a significant way. This indicates that ZIP code changes are not likely

to affect our findings.

Table 6 is based on a different basis for local aggregation from the remaining results in the paper.

Here we aggregate using US census tracts, which are made available through Manson et al. (2019). This

results in a coarser set of locations and a smaller sample. The advantage of using this basis for regional

aggregation is that census tracts are consistently defined for the entire sample period. The disadvantage

is that we cannot use all of the same fixed effects controls as in our main models - the Poisson estimators

do not converge when we do this.

Qualitatively the results we obtain from this aggregation are quite similar to our main findings:

distance has a significant negative effect on diffusion and both absorptive capacity and innovation have

positive effects on the level of diffusion. As we are unable to control for time fixed effects and Nice

class fixed effects we do not place too much emphasis on these results.
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