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Abstract

This paper is concerned first with the behaviour of differences
T (t) − T (s) near the origin, where (T (t)) is a semigroup of opera-
tors on a Banach space, defined either on the positive real line or a
sector in the right half-plane (in which case it is assumed analytic).
For the non-quasinilpotent case extensions of results in the published
literature are provided, with best possible constants; in the case of
quasinilpotent semigroups on the half-plane, it is shown that, in gen-
eral, differences such as T (t) − T (2t) have norm approaching 2 near
the origin. The techniques given enable one to derive estimates of
other functions of the generator of the semigroup; in particular, con-
ditions are given on the derivatives near the origin to guarantee that
the semigroup generates a unital algebra and has bounded generator.
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1 Introduction

The first subject of this note is the behaviour of expressions such as T (t)−
T (s) near the origin, where (T (t))t is a semigroup of operators on a Banach

space, defined either on R+, or on a sector

Sα = {z ∈ C : Re(z) > 0 and | arg(z)| < α}

in the right-hand complex half-plane C+ = {z ∈ C : Re(z) > 0}; in the case

of a sector, we assume further that the semigroup is analytic. The results we

shall derive are stronger forms of those of Bendaoud, Esterle and Mokhtari

[1, 5], in the case of semigroups defined on the positive real line. For example,

they show that if

lim sup
t→0

‖T (t)− T ((n + 1)t)‖ <
n

(n + 1)1+1/n
, (1)

then either the semigroup is trivial, or it generates a unital closed subalgebra

A, and indeed T (t) = exp(tu) for some u ∈ A. Moreover, this constant is

shown to be optimal.

In Section 2, we relax Condition (1) to

‖T (t)− T (t(n + 1))‖ <
n

(n + 1)1+1/n
,

for all t in an interval (0, δ). In fact, there are two cases to consider, the

easier non-quasinilpotent case, and then the general case. Further, we show

that, unlike the results of [5], these results cannot be extended to a result

using only T (t) for t in any proper measurable subgroup of R (for example,

Q).

For analytic semigroups defined in a sector Sα, we shall show in Section 3

that a similar result holds, where the optimal constants are given explicitly in

terms of α. In fact, these results are put in a much more general framework,
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which enables us to study quantities such as T ′(t) = AT (t) (the derivative of

the semigroup) and indeed linear combinations of elements of the semigroup

and its derivatives. In the limiting case of the half-plane, an analogous result

is proved by different methods for T (t)−T ((γ +1)t), although it will be seen

that no such result can hold in the more general situation. We conclude by

extending and applying results of Hille [8, 9] to show that if

sup
t∈Sα,0<|t|<δ

‖tnT (n)(t)‖ <

(
n

e cos(α)

)n

for some δ > 0, then the closed algebra generated by the semigroup is unital,

and the generator of the semigroup is bounded.

2 Semigroups on R+

2.1 The non-quasinilpotent case

The following result is a strengthening of Theorem 2.3 of [5]:

Theorem 2.1 Let (T (t))t>0 be a non-quasinilpotent semigroup in a Banach

algebra, let A be the closed subalgebra generated by (T (t))t>0 and let γ > 0

be a real number. If

ρ(T (t)− T (t(γ + 1))) <
γ

(γ + 1)1+ 1
γ

for 0 < t ≤ t0, for some t0 > 0, then A/ Rad(A) is unital, and there exist an

idempotent J in A, an element u of JA and a mapping r : R+ → Rad(JA),

with the following properties:

(i) φ(J) = 1 for all φ ∈ Â;

(ii) r(s + t) = r(s) + r(t) for all s, t ∈ R+;

(iii) JT (t) = etu+r(t) for t ∈ R+, where ev = J +
∑

k≥1

vk

k!
for v ∈ JA;

(iv) (T (t)− JT (t))t∈R+ is a quasinilpotent semigroup.
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Proof : Let φ ∈ Â; then, by Lemma 2.1 of [5] there exists c ∈ C such that

φ(T (t)) = ect for all t > 0. We have

||φ(T (t))|− |φ(T (t))|γ+1| ≤ |φ(T (t))− φ(T (t))γ+1|

<
γ

(γ + 1)1+ 1
γ

for t ∈ (0, t0].

Then either |φ(T (t))| <
1

(γ + 1)
1
γ

, or else |φ(T (t))| >
1

(γ + 1)
1
γ

,

and the set (|φ(T (t))|)0<t≤t0 is an interval I which does not contain
1

(γ + 1)
1
γ

.

Since lim
t→0+

φ(T (t)) = 1, we have

I ⊂
(

1

(γ + 1)
1
γ

, +∞
)

,

and |φ(T (t0)| > 1

(γ+1)
1
γ

for all φ ∈ Â.

Thus Â is compact. By Theorems 3.6.3 and 3.6.6 of [11], the quotient algebra

A/ Rad(A) is unital, there exists an idempotent J in A such that φ(J) = 1

for all φ ∈ Â, and (T (t)− JT (t))t∈R+ is a quasinilpotent semigroup.

Consider the algebra B = JA with unit J, and define S(t) = JT (t) for

t ∈ R+. Let ψ ∈ B̂; the mapping φ : x → ψ(Jx) is a character of A. We

have

1

(γ + 1)
1
γ

|1− ψ(S(tγ))| ≤ |φ(T (t))||1− ψ(S(tγ))|

= |φ(T (t))− φ(T (t(γ + 1)))| ≤ γ

(γ + 1)1+ 1
γ

for t ∈ (0, t0]. Thus

|1− ψ(S(tγ))| ≤ γ

(γ + 1)
< 1,
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and ρ(J − S(t)) < 1 for 0 < t ≤ t0. We write

ut =
∑

k!1

(−1)k+1(S(t)− J)k

k
for t ∈ (0, t0] .

We have S(t) = eut . We now extend this expression to R+.

Let t ∈ R+, and let n be the least positive integer such that t ≤ nt0. We

define ut = nu t
n
, and then S(t) = eut for t ∈ R+.

Now consider once more ψ ∈ B̂ and let

φ : x → ψ(Jx)

be the character of A associated with ψ. There exists c ∈ C such that

ψ(S(t)) = φ(T (t)) = ect

for t > 0. We have

ψ(ut) =
∑

k!1

(−1)k+1ψ(S(t)− J)k

k
,

thus ψ(ut) coincides with the principal value of the logarithm of

1 + ψ(S(t)− J) = ψ(S(t)) = ect

for 0 < t ≤ t0. Thus

ψ(ut) = ct for 0 < t ≤ t0.

We obtain ψ(ut) = nψ(u t
n
) = ct for t > 0. Let u = t−1

0 ut0 and r(t) = ut− tu.

We have

ψ(r(t)) = ct− ct = 0,

thus r(t) ∈ Rad(A) for t ∈ R+; also

er(s)+r(t) = e−(s+t)uS(s + t) = er(s+t).
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Since the mapping x → ex is injective on Rad(A), it follows from Lemma 2.2

of [5] that we have

r(s + t) = r(s) + r(t)

for s, t ∈ R+.

!
We deduce the following corollary:

Corollary 2.2 Let (T (t))t∈R+ be a non-trivial semigroup in a commuta-

tive semi-simple Banach algebra, let A be the closed subalgebra generated

by (T (t))t∈R+ and let γ > 0. If

ρ(T (t)− T ((γ + 1)t)) <
γ

(γ + 1)1+ 1
γ

,

then A is unital and there exists an element u ∈ A such that T (t) = etu for

t ∈ R+.

2.2 The general case

We begin with a preliminary result about quasinilpotent semigroups. Note

that the lemma remains true if we replace R+ by K+ := K ∩ R+, where K

is a subfield of R.

Lemma 2.3 Let (T (t))t∈R+ be a quasinilpotent semigroup, and let n ≥ 1 be

an integer. If

‖T (t)− T (t(n + 1))‖ <
n

(n + 1)1+ 1
n

for t ∈ (0, t0] for some t0 > 0, then T (t) = 0 for t ∈ R+.

Proof : Let t0 > 0. If (T (t))t>0 is non-zero, then there exists t1 ∈ (0, t0]

such that T (t1) += 0. For p ≥ 1 we have

‖T (t1/p)‖ ≥ ‖T (t1)‖
1
p , and ‖T (t1/p)‖ ≥ 1

(n + 1)
1
n
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for p sufficiently large. It follows therefore from Theorem 4.4 of [5] that
∥∥∥∥T

(
t1
p

)
− T

(
t1(n + 1)

p

)∥∥∥∥ >
n

(n + 1)1+ 1
n

,

which is a contradiction. Hence T (t) = 0 for t ∈ R+.

!
The following result appears implicitly in the proof of Theorem 3.2 of [5].

Lemma 2.4 Let A be a Banach algebra and let θ : (0, +∞) → A satisfy

θ(s + t) = θ(s) + θ(t) for s > 0, t > 0.

If lim sup
t→0+

‖θ(t)‖ < +∞ then θ(t) = tθ(1) for t > 0.

We employ Lemma 2.4 in the following result.

Lemma 2.5 Let (T (t))t>0 be a non-quasinilpotent semigroup in a Banach

algebra. Suppose that there exist γ > 0 and t0 > 0 such that

‖T (t)− T (t(γ + 1))‖ <
γ

(γ + 1)1+ 1
γ

for 0 < t < t0. Let J be the idempotent in the closed subalgebra A generated

by the semigroup satisfying Properties (i)–(iv) of Theorem 2.1; then there

exists v ∈ JA such that JT (t) = etv for t > 0.

Proof : Let U be the open disc centred at 0 and with radius γ

(γ+1)
1+ 1

γ
, and

let g : U → C be the holomorphic function on U satisfying g(0) = 0 and

eg(z) − e(γ+1)g(z) = z

for z ∈ U. Let

bt = JT (t)− JT (t(γ + 1)) for t > 0.

Since

‖bk
t ‖ ≤ ‖J‖

(
γ

(γ + 1)1+ 1
γ

)k

for k > 1,
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the series ∑

k≥1

g(k)(0)

k!
‖bk

t ‖

converges. Write

g(bt) :=
∑

k≥1

g(k)(0)

k!
bk
t .

It follows from standard properties of the holomorphic functional calculus

that

eg(λbt) − e(γ+1)g(λbt) = λbt for λ < 1.

By continuity we obtain, with the notation of Theorem 2.1, that

eg(bt) − e(γ+1)g(bt) = bt = etu+r(t) − e(γ+1)(tu+r(t)).

For 0 < t < t0 we have

ρ(tu + r(t)) = tρ(u),

thus

lim
t→0+

ρ(tu + r(t)) = 0,

and so

ρ(bt) = ρ(etu+r(t) − e(γ+1)(tu+r(t))) = ρ(etu − et(γ+1)u) ≤ etρ(u)ρ(J − etγu),

from which we conclude that lim
t→0+

ρ(bt) = 0. Since g(0) = 0 we have

lim
t→0+

ρ(g(bt)) = 0.

Let f : z ,→ ez − e(γ+1)z, and define

F (z1, z2) =






f(z1)− f(z2)

z1 − z2
if z1 += z2,

f ′(z1) if z1 = z2.

Then f and F are entire functions. Since f ′(0) += 0 there is an open disc

D(0, α) such that f is injective and F (z1, z2) += 0 for z1, z2 in D(0, α). Let t1

be such that ρ(g(bt)) < α for 0 < t < t1. For t ∈ (0, t1] we have

0 = f(g(bt))− f(tu + r(t)) = (g(bt)− (tu + r(t)))(F (g(bt, tu + r(t)))).
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For φ ∈ ĴA we also have

φ(F (g(bt), (tu + r(t))) = F (φ(g(bt), φ(tu + r(t))) += 0

and thus F (g(bt), (tu + r(t))) is invertible in JA and

g(bt) = tu + r(t), for t ∈ (0, t1].

On the other hand, by Lemma 2.1 of [1] we have

lim sup
t→0+

‖g(bt)‖ ≤
∑

k≥1

|g(k)(0)|
k!

‖bk
t ‖ = −

∑

k≥1

g(k)(0)

k!

[
γ

(γ + 1)1+ 1
γ

]γ

< +∞.

Thus

lim sup
t→0+

‖r(t)‖ < +∞,

and it follows from Lemma 2.4 that r(t) = tr(1). We therefore have JT (t) =

etv for t > 0 with v = u + r(1).

!
We now come to the main theorem of this section, which combines the

results in Lemmas 2.3 and 2.5.

Theorem 2.6 Let (T (t))t>0 be a non-trivial semigroup in a Banach algebra,

let A be the closed subalgebra generated by (T (t))t>0 and let n ≥ 1 be an

integer. If there exists t0 > 0 such that

‖(T (t)− T (t(n + 1)))‖ <
n

(n + 1)1+ 1
n

for 0 < t ≤ t0, then A possesses a unit J, lim
t→0+

T (t) = J and there exists

u ∈ A such that T (t) = etu for all t > 0.

Proof : Since

ρ(T (t)− T (t(n + 1))) ≤ ‖T (t)− T (t(n + 1))‖,
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there exists an idempotent J in A satisfying the conditions of Theorem 2.1.

In particular, S(t) := T (t) − JT (t) is quasinilpotent for t > 0. Let π :

A→ A/JA be the canonical surjection. Since π(S(t))t>0 is a quasinilpotent

semigroup in A/JA, it follows from Lemma 2.3 that

π(T (t)) = π(S(t)) = 0,

and T (t) ∈ JA, for t > 0. Thus T (t) = JT (t). By Lemma 2.5 there exists

v ∈ A = JA such that T (t) = JT (t) = etv for t > 0.

!

2.3 Counterexamples for subgroups of R

We now show that Theorem 2.6 is sharp, in the sense that analogous re-

sults do not hold when we consider certain additive subgroups of the real

line. Indeed, we give a counter-example applying to any proper measurable

subgroup of R.

Proposition 2.7 Let G be an additive subgroup of R which is measurable

and with G += R. Then, given a sequence (γn)n in R+ such that tγn ∈ G for

all t ∈ G, t > 0, there exists a semigroup (S(t))t∈G,t>0 in c0 such that

‖S(t)− S(t(γn + 1))‖ <
γn

(γn + 1)1+1/γn
,

for all t ∈ G, t > 0.

Proof : Note that the measure of G is zero, as otherwise G−G contains

an interval (−δ, δ) with δ > 0 (cf. [7, Thm. 16.B]), and then G = R. Let

S(t) = (at
k)k≥1, where 0 < ak < 1 for all k ≥ 1 and ak → 0 as k →∞. Thus

S(t) ∈ c0. Further conditions will be imposed on ak later. Since ak → 0, we

have

‖S(t)− S(t(γn + 1))‖ = max
k

|at
k − at(γn+1)

k |.
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Observe that

|at − at(γn+1)| ≤ γ

(γ + 1)1+1/γ
, (2)

for all a ∈ (0, 1), t > 0 and γ > 0. Indeed, its maximum value over t occurs

when (ln a)at = (γ + 1)(ln a)at+tγ, i.e. at = 1
(1+γ)1/γ . For this value of t

Equation (2) is an equality, otherwise it is a strict inequality. Therefore,

‖S(t)− S(t(γn + 1))‖ ≤ γn

(γn + 1)1+1/γn
(3)

and provided that at
k += 1

(1+γn)1/γn
for all k, the inequality in (3) is strict. The

set

H =

{(
1

1 + γn

)1/g

: g ∈ G, g > 0, n ≥ 1

}

is a set of measure 0. So there exists a sequence (ak)k in (0, 1) tending to 0

and such that ak +∈ H for all k. With this choice we have

‖S(t)− S(t(γn + 1))‖ <
γn

(γn + 1)1+1/γn
,

for all t > 0 with t, tγn ∈ G.

!

Remark 2.8 The same conclusion holds if we assume that G is meagre,

since H will also be meagre as a countable union of meagre sets

3 Sectorial semigroups

Let T (t)t>0 be a strongly continuous semigroup of bounded operators on a Ba-

nach space X. Denote by DA the set of all x ∈ X for which T (t)x−x
t has a limit

as t → 0+. Then DA is a linear subspace of X which is dense in ∪t>0T (t)X,

since it contains all vectors of the form
∫ β

α T (s)xdx, x ∈ X, 0 < α < β,

and the (infinitesimal) generator of the semigroup is the linear operator

A : DA → A defined for x ∈ DA by the formula
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Ax = lim
t→0+

T (t)− x

t
.

We will say that the generator of the semigroup T (t) is bounded if there

exists K > 0 such that ‖Ax‖ ≤ K‖x‖ for every x ∈ DA. This condition is

equivalent to the fact that there exists P ∈ B(X) such that limt→0+ ‖T (t)−
P‖ = 0. In this situation DA =

[⋃
t>0 T (t)X

]−
, we can consider A as a

bounded operator on X by using the formula Ax := APx for x ∈ X, and we

have, for x ∈ X, t > 0,

T (t)x = PetAx.

We thus see that for a strongly continuous semigroup (T (t))t>0 of bounded

operators on a Banach space X, the conclusions of Corollary 2.2, Lemma 2.5

and Theorem 2.6 are equivalent to the fact that the generator of the semi-

group is bounded.

Now assume that a semigroup (T (t))t>0 of bounded operators on a Banach

space X is differentiable on (0, +∞), which means that

T ′(t) := lim
h→0

T (t + h)− T (t)

h

exists in (B(H), ‖.‖) for every t > 0. Then
⋃

t>0 T (t)X ⊂ DA, and we have,

for t > 0, (see for example [9, 10.3.6]

T ′(t) = AT (t).

More generally if (T (t))t>0 is n-times continuously differentiable on (0, +∞),

then
⋃

t>0 T (t)X ⊂ DAn , and we have, for t > 0,

T (n)(t) = AnT (t).

We will say that a semigroup (T (t))t > 0 of bounded operators on a

Banach space X is norm continuous if limh→0 ‖T (t+h)−T (t)‖ = 0 for every

t > 0. Notice that if the closed subalgebra A of B(X) generated by a norm
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continuous semigroup (T (t))t>0 of bounded operators on a Banach space X is

unital, then the generator A of the semigroup is bounded. Indeed there exists

in this situation a strictly increasing finite sequence (ti)1≤i≤n of positive real

numbers and a family (λi)1≤i≤n of nonzero complex numbers such that

‖P −
n∑

i=1

λiT (ti)‖ < 1,

where P denotes the unit element of A. This shows that

T (t1)

[
P +

n∑

i=2

λiT (ti − t1)

]
=

n∑

i=1

λiT (ti)

is invertible in A. Hence T (t1) is invertible in A, and P = T (t1)−1T (t1) =

T (t1)−1 limh→0+ T (t1+h) = limh→0+ T (h), and the generator of the semigroup

is bounded.

It is more convenient to consider more generally norm continuous semi-

groups (T (t))t>0 in Banach algebras. In this case we can set X = A, where

A is the closed subalgebra generated by the semigroup. Then
⋃

t>0 T (t)A,

which contains
⋃

t>0 T (t), is a dense ideal of A. When A has a unit ele-

ment P, then the dense ideal DA equals A, P ∈ DA and we see again that

A = limt→0+
T (t)P−P

t is bounded.

We now study the behaviour of ‖T (t)−T ((γ +1)t)‖ as t → 0 in C+ when

(T (t))t∈C+ is analytic on the open right-hand half-plane C+. Later we look

at other sectors, by a different method.

First, we require an easy technical lemma

Lemma 3.1 Let S be a sector of C+, say

S = Sα,β := {z ∈ C+ : −α < arg(z) < β}

with α, β > 0, and let θ : S → C be a nonzero analytic function such that

Θ(s + t) = Θ(s)Θ(t) for all s, t ∈ S such that s + t ∈ S. Then there exists

c ∈ C such that Θ(t) = e−ct for all t ∈ S.
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Proof : The result is clear for t ∈ Q+ with c such that Θ(1) = e−c. By

continuity and analyticity it is also true on S.

!

Theorem 3.2 Let (T (t)t∈C+ be an analytic non-quasinilpotent semigroup in

a Banach algebra. Let A be the closed subalgebra generated by (T (t))t∈C+ and

let γ > 0. If there exists t0 > 0 such that

sup
t∈C+,|t|≤t0

ρ(T (t)− T (γ + 1)t)) < 2

then A/ RadA, is unital, and the generator of (π(T (t))t>0 is bounded, where

π : A→ A/ RadA denotes the canonical surjection.

Proof : Choose Φ ∈ Â. By Lemma 3.1, there exists c(Φ) ∈ C such that

Φ(T (t)) = e−c(Φ)t for all t ∈ C+. Denote by Q the set {t ∈ C+, |t| < t0}. By

hypothesis, we have:

sup
t∈Q

|T (t)− T (t(γ + 1))| < 2.

It follows that c(Φ) +∈ { iπ
γt ,−

iπ
γt : t ∈ Q}, where Q denotes the closure of

Q. Indeed, if ct = iπ
γ or ct = − iπ

γ , then |e−ct − e−c(γ+1)t| = 2. Therefore,

there exists δ > 0 such that |c(Φ)| ≤ δ for all Φ ∈ Â. It follows that

|Φ(T (t0))| ≥ e−δt0 for all Φ ∈ Â, and thus Â is compact. Using Theorem 3.6.3

and Theorem 3.6.6 in [11], we conclude that A/ RadA is unital. Since the

algebra generated by the norm-continuous semigroup (π(T (t))t>0 is dense in

A/ RadA, the generator of this semigroup is bounded.

!
A semigroup T (t) defined over the positive reals or on a sector is said to be

exponentially bounded if there exists c1 > 0 and c2 ∈ R such that ‖T (t)‖ ≤
c1ec2|t| for every t. A classical result of Beurling [2] shows that there exists a

universal constant k such that every exponentially bounded weakly measur-

able semigroup (T (t))t>0 of bounded operators satisfying lim supt→0+ ‖I −
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T (t)‖ = ρ < 2 admits an exponentially bounded analytic extension to a

sector Sφ,φ, with φ ≥ k(2− ρ)2.

It follows immediately from this result that if a semigroup (T (t)) is an-

alytic on a sector Sφ,ψ, and if this semigroup does not admit any analytic

extension to any sector Sφ1,ψ with φ1 > φ, then we have, for −ψ < α < φ,

lim sup
t→0+

‖I − T (teiα)‖ ≥ 2−
√

φ− α

k
.

Similarly, if this semigroup does not admit any analytic extension to any

sector Sφ,ψ1 with ψ1 > ψ, then we have, for −ψ < α < φ,

lim sup
t→0+

‖I − T (teiα)‖ ≥ 2−
√

ψ + α

k
.

Now if an analytic semigroup (T (t))t>0 on the open half plane has an

analytic extension to any larger open sector, then T (t) is invertible in the

closed subalgebra generated by the semigroup for some t > 0, and so the gen-

erator of the semigroup is bounded. So the following result is an immediate

consequence of Beurling’s theorem.

Theorem 3.3 Let (T (t))t∈C+ be an analytic semigroup of bounded operators

on a Banach space X. If the generator of the semigroup is unbounded, then

we have, for −π
2 < α < π

2 ,

lim sup
t→0+

‖I − T (t)‖ ≥ 2−
√

π
2 − |α|

k
,

where k is Beurling’s universal constant.

This suggests that supt∈C+

|t|≤δ
‖T (t)− T ((γ + 1)t)‖ ≥ 2 for every δ > 0 if the

generator of a semigroup (T (t))t ∈ C+ is unbounded. We can prove this for

a large class of analytic semigroups.
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Theorem 3.4 Let (T (t))t∈C+ be an analytic semigroup in a Banach algebra.

Assume that there exists η > 0 and c ∈ R such that

sup
y∈R

e−c|y|‖T (η + iy)‖ < +∞.

If the generator of the semigroup is unbounded, then we have, for every γ > 0

and every δ > 0, supt∈C+

|t|≤δ
‖T (t)− T ((γ + 1)t)‖ ≥ 2.

Proof : Let A be the closed subalgebra generated by (T (t))t>0. Since the

semigroup is exponentially bounded on a vertical line, and since the generator

of the semigroup is unbounded, it follows from an elementary construction

of [3], based on a method which goes back to [6], that there exists a Ba-

nach space (X, ‖.‖1) and a norm-decreasing homomorphism θ : (A, ‖.‖) →
(B(X), ‖.‖1 such that if we set T̃ (t) := θ(T (t)) for t ∈ C+ the following

conditions are satisfied

1. there exists µ ∈ R such that ‖T (t)‖ ≤ eµ|t| for t ∈ C+,

2. (T̃ (t))t∈C+ admits a strongly continuous extension to C+ such that

T̃ (0) = IX ,

3. the generator of (T̃ (t))t>0 is unbounded.

Notice that the generator of the semigroup (T̃ (it))t>0 is unbounded, for

otherwise there would exist u ∈ B(X) such that T̃ (it) = etu for t > 0. Hence

we would have T̃ (it) = etu for t ∈ R. The analytic semigroup (e−ituT̃ (t))t∈C+

would be constant on vertical lines, hence constant on C+. Since limt→0T̃ (t)x =

x for every x ∈ X, we would have T̃ (t) = e−itu for t ∈ C+, which contra-

dicts the fact that the generator of (T̃ (t))t>0 is unbounded. This implies in

particular that lim supt→0+ ‖IX − T̃ (it)‖1 ≥ 2.

We have, for x ∈ X, δ > 0, 0 < t ≤ δ,

‖(IX − T̃ (iγt))x‖1 ≤ ‖T̃ (−it)‖1‖(T̃ (it)− T̃ (i(γ + 1)t))x‖1

≤ e|µ|δ‖(T̃ (it)− T̃ (i(γ + 1)t))x‖1.
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Hence, for t ∈ (0, δ], we have

‖IX − T̃ (iγt)‖1 ≤ e|µ|δ lim inf
α→π

2
+
‖T̃ (teiα)− T̃ ((γ + 1)teiα)‖1.

Hence for every η ∈ (0, δ], we have

2 ≤ lim sup
t→0+

‖IX − T̃ (it)‖1 ≤ e|µ|η sup
t∈C+

|t|≤η

‖T̃ (t)− T̃ ((γ + 1)t)‖1

≤ e|µ|η sup
t∈C+

|t|≤δ

‖T (t)− T ((γ + 1)t)‖,

and supt∈C+

|t|≤δ
‖T (t)− T ((γ + 1)t)‖ ≥ 2.

!
Notice that the argument above shows in fact that

lim inf
α→π

2
−

[
sup

0<t≤δ
‖T (t)− T (γ + 1)t)‖

]
≥ 2

and

lim inf
α→−π

2
+

[
sup
0<≤δ

‖T (t)− T (γ + 1)t)‖
]
≥ 2

for every analytic semigroup with unbounded generator which admits expo-

nential growth on a vertical line. More precise lower estimates for the distance

near the origin of elements of such a semigroup in the quasinilpotent case are

given in [3].

Remark 3.5 1. In Theorem 3.2, 2 is the best constant and moreover the

lim sup cannot be replaced by a pointwise condition, contrary to [1], as

shown by the following example:

Let S(t) : x ,→ xt for x ∈ [0, 1] with t ∈ C+. The function S(t)

belongs to C0([0, 1]), the Banach algebra of continuous functions on

[0, 1] vanishing at 0, equipped with the supremum norm. Obviously

‖S(t)− S((γ + 1)t)‖∞ ≤ 2
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because ‖S(t)‖∞ ≤ 1 since Re(t) > 0. For t = i π
γ log x , note that

|S(t)(x)− S((γ + 1)t)(x)| is equal to

|eiπ/γ − eiπ(γ+1)/γ| = 2.

In this case we have

lim sup
t→0,t∈C+

‖S(t)− S((γ + 1)t)‖∞ = ρ(S(t)− S((γ + 1)t)) = 2,

but the conclusion of Theorem 3.2 is not satisfied, since C0([0, 1]) is a

Banach algebra without any idempotent element.

2. If the semigroup is not holomorphic, Esterle and Mokhtari [5, Ex. 2.5]

proved that 1/4 is the best constant (consider S(x + iy) of the form

S(x + iy) = S(x) and use their example S(x)(w) = wx, providing a

semigroup on R+ with elements in C[0, 1]).

We now consider similar results on smaller sectors than the half-plane,

and in fact the result we prove will be stated in a far more general context.

Theorem 3.6 Let 0 < α < π/2, and let

Sα = {z ∈ C : Re(z) > 0 and | arg(z)| < α}.

Let f be an entire function with f(0) = 0 and f(R) ⊆ R, such that

sup
Re z>r

|f(z)|→ 0 as r →∞, (4)

and f is a linear combination of functions of the form zm exp(−zw) for

m = 0, 1, 2, . . . and w ∈ Sα. Let (T (t))t∈Sα = (exp(−tA))t∈Sα be an analytic

non-quasinilpotent semigroup in a Banach algebra and let A be the subalgebra

generated by (T (t))t∈C+. If there exists t0 > 0 such that

sup
t∈Sα,|t|≤t0

ρ(f(tA)) < k(Sα),

with k(Sα) = supt∈Sα
|f(z)|, then A/ RadA is unital and the generator of

π(T (t))t∈Sα is bounded, where π : A → A/Rad(A) denotes the canonical

surjection.
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Note that f(tA) is well-defined by means of T (t) and its derivatives.

Proof : By the maximum principle, for each θ ∈ (−π/2, π/2), f attains

its maximum absolute value Mθ, say, on the ray Rθ = {z : arg z = θ} and

Mθ is an increasing function of θ on [0, π/2). So, indeed, Mθ = k(Sθ) for

θ ∈ (0, π/2). Moreover, Mθ = M−θ.

Clearly there exists a d > 0 such that the maximum value of f on each

ray Rθ is attained at a point z such that Re z ≤ d.

By Lemma 3.1, the hypotheses of the theorem imply that for each Φ ∈ Â
there exists c(Φ) ∈ C such that Φ(T (t)) = e−c(Φ)t for all t ∈ Sα, and hence

Φ(f(tA)) = f(c(Φ)t). Moreover, we know that

|f(c(Φ)t)| < k(Sα)

for all t ∈ Sα with |t| ≤ t0.

If for any point t in the sector {t ∈ Sα : |t| ≤ t0} we have Re c(Φ)t > d,

and | arg c(Φ)t| ≥ α, then

|f(λc(Φ)t)| ≥ k(Sα)

for some real λ between 0 and 1, giving a contradiction. Thus if | arg c(Φ)t0| ≥
α, then Re c(Φ)t0 ≤ d.

Now suppose that 0 ≤ β = arg c(Φ)t0 < α (the other case is simi-

lar); then we know that Re(c(Φ)t0ei(α−β)) ≤ d; writing c(Φ)t0 = reiβ and

c(Φ)t0ei(α−β) = reiα, we deduce that Re c(Φ)t0 ≤ d cos β/ cos α. Hence, in all

cases, we obtain Re c(Φ)t0 ≤ d/ cos α and

|Φ(T (t0))| ≥ exp(−d/ cos α),

and this holds for every Φ ∈ Â. As in the proof of Theorem 3.2, it follows

that A/ RadA is unital and the generator of π(T (t))t∈Sα is bounded.

!
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Remark 3.7 Suitable choices of f(z) are linear combinations of zm exp(−z),

m = 1, 2, 3, . . ., and exp(−z)− exp(−(γ + 1)z); also indeed real linear com-

binations of the form
∑n

k=1 ak exp(−bkz) with bk > 0 and
∑n

k=1 ak = 0. This

provides results analogous to those of [10, Thm. 4.12], where the behaviour

of expressions such as ‖tA exp(−tA)‖ and ‖ exp(−tA) − exp(−stA)‖ was

considered for all t > 0.

Remark 3.8 Another function considered in [10] is f(z) = e−sz sin z, where

we now require s > tan α for f(tA) to be well-defined for t ∈ Sα. This does

not satisfy the condition (4), but we note that it holds for z ∈ Sα, while for

z +∈ Sα there exists a constant C > 0 such that for each z with Re z > C there

exists λ ∈ (0, 1) such that |f(λz)| ≥ supz∈Sα
|f(z)|. Using this observation,

it is not difficult to adapt the proof of Theorem 3.6 to this case.

Remark 3.9 As before, the sharpness of the constants can be shown by con-

sidering examples in C0([0, 1]).

One particular case of the above is used in the estimates considered by

Bendaoud, Esterle and Mokhtari [1, 5].

Corollary 3.10 Let γ > 0, 0 < α < π/2, and

Sα = {z ∈ C : Re(z) > 0 and | arg(z)| < α}.

Let (T (t))t∈Sα be an analytic non-quasinilpotent semigroup in a Banach alge-

bra and let A be the subalgebra generated by (T (t))t∈C+. If there exists t0 > 0

such that

sup
t∈Sα,|t|≤t0

ρ(T (t)− T (t(γ + 1))) < k(Sα),

with k(Sα) = supt∈Sα
| exp(−t)−exp(−(γ+1)t)|, then A/ RadA is unital and

the generator of π(T (t))t∈Sα is bounded, where π : A → A/Rad(A) denotes

the canonical surjection.
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Proof : This follows immediately from Theorem 3.6 on taking f(z) =

exp(−z)− exp(−z(γ + 1)).

!

Remark 3.11 1. As in Remark 3.5, it is easy to write down examples in

C0([0, 1]) which show that the constant Mα = k(Sα) is sharp.

2. The constant Mα = k(Sα) initially grows rather slowly with α: numer-

ical calculations with γ = 1 give M0 = 0.25, Mπ/12 = 0.26, Mπ/6 =

0.29, Mπ/4 = 0.35, Mπ/3 = 0.47, M5π/12 = 0.80 and M11π/24 = 1.18.

Nonetheless, Mα → 2 as α → π/2.

3. For sectors Sα,β that are not symmetric it is clear that a similar result

holds with the constant k(Sα,β) = max(k(Sα), k(Sβ)).

The same results hold for norm-continuous semigroups (T (t))t>0 satisfy-

ing lim supt→0+ ‖f(tA)‖ < k0 := maxt>0 |f(t)|.
These results suggest that if an analytic semigroup (T (t))t∈Sα satisfying

supt∈Sα,0≤t≤δ ‖f(A)‖ < k0 for some δ > 0, then the generator of the semigroup

is bounded. We do not know whether this property holds in general, but we

will prove it in the special case of functions of the form f(z) = zne−z, where

n ≥ 1 is an integer. We will use a well-known result proved in 1950 by

Hille [8] (see also [9, Thm. 10.3.6]). This result is usually stated for n = 1,

but Hille’s argument works for any positive integer.

Theorem 3.12 Let (T (t))t>0 be a n-times continuously differentiable semi-

group over the positive reals. If lim supt→0+ ‖tnT (n)(t)‖ < (n
e )n, then the

generator of the semigroup is bounded.

Proof : Fix a > 0. We have, for p ≥ 1, by Taylor’s formula

T (t) =
p−1∑

k=0

(t− a)k

k!
T (k)(a) +

1

(p− 1)!

∫ t

a

(t− s)p−1T (p)(s)ds.
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Set β = 1
2

([
lim supt→0+ ‖tnT (n)(t)‖

]1/n
+ n

e

)
, set λ = eβ

n ∈ (0, 1), and

let δ > 0 such that t‖T (n)‖1/n ≤ β for t ∈ (0, δ]. We have, for q ≥ 1, s ∈ (0, δ],

T (nq)(s) = AnqT (s) = [AnT (s/q)]q = [T (n)(s/q)]q, ‖T (nq)(s)‖ ≤ λnq (nq)nq

(es)nq
.

We obtain, for a ∈ (0, δ], t ∈ (0, δ],

∥∥∥∥
1

(nq − 1)!

∫ t

a

(t− s)nq−1T (nq)(s)ds

∥∥∥∥ ≤
λnq(nq)nq

enq(nq − 1)!

1

min(a, t)nq

∣∣∣∣
∫ t

a

|t− s|nq−1ds

∣∣∣∣

=

[
λ|t− a|
min(a, t)

]nq (nq)nq

enq(nq)!
.

It follows then from Stirling’s formula that

lim
q→+∞

∥∥∥∥∥T (t)−
nq−1∑

k=0

(t− a)k

k!
T (k)(a)

∥∥∥∥∥ = 0

if |t− a| < min(δ − a, λ+1
a ).

Now consider again a ∈ (0, δ), let µ ∈ (0, 1), and let k ≥ n be an integer.

We have k = nq + r, with q ≥ 1, 0 ≤ r ≤ n− 1, and we obtain

T (k)(a) = Anq+rT (a) =

[
AnT

(
µa

q

)]q

.ArT ((1−µ)a) =

[
T (n)

(
µa

q

)]q

T (r)((1−µ)a).

Set m = max0≤r≤n−1 ‖T (r)((1− µ)a). We obtain, for k ≥ n,

∥∥∥∥
T (k)(a)

k!

∥∥∥∥ ≤
m

(nq + 1)...(nq + r)

1

(nq)!

∥∥∥∥T (n)

(
µa

q

)∥∥∥∥
q

≤ m

(k − n + 1)n−1

(
λ

µa

)nq

.
(nq

e

)nq

.
1

(nq)!
=

m(1 + εk)√
2πnq(k − n + 1)n−1

(
λ

µa

)nq

,

with limk→∞ εk = 0.

Hence lim supk→+∞

∥∥∥T (k)(a)
k!

∥∥∥
1
k ≤ λ

µa for every µ ∈ (0, 1), which gives
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lim sup
k→+∞

∥∥∥∥
T (k)(a)

k!

∥∥∥∥

1
k

≤ λ

a
<

1

a
.

So the radius of convergence R of the series
+∞∑
k=0

zk T k(a)
k! satisfies R ≥ a

λ ,

and the series converges for t ∈ (a − a
λ , a + a

λ). But it follows from the

discussion above that the map t → T (t) is analytic on (0, δ), and so we have,

for t ∈ (0, δ),

T (t) =
+∞∑

k=0

(t− a)k

k!
T (k)(a).

Hence we have

lim
t→0+

∥∥∥∥∥T (t)−
+∞∑

k=0

(−a)k

k!
T (k)(a)

∥∥∥∥∥ = 0,

which shows that the generator of the semigroup is bounded.

!
Now set fn(z) = zne−z, and set kn(α) = maxz∈Sα fn(z). An immediate

computation shows that kn(α) =
(

n
e cos(α)

)n

.

If A is the generator of a semigroup (T (t))t∈Sα analytic on Sα, we have

fn(tA) = tnT (n)(t). So the following result means that if supt∈Sα,0<|t|<δ ‖fn(tA)‖ <

kn(α) for some δ > 0, then the generator of the semigroup is bounded.

Theorem 3.13 Let n ≥ 1 be an integer, let α ∈ (0, π/2) and let (T (t))t∈Sα

be a semigroup analytic on Sα. If supt∈Sα,0<|t|<δ ‖tnT (n)(t)‖ <
(

n
e cos(α)

)n

for

some δ > 0, then the closed algebra generated by the semigroup is unital, and

the generator of the semigroup is bounded.

Proof : Let β ∈ (0, α) such that
(

n
e cos(β)

)n

> supt∈Sα,0<|t|<δ ‖tnT (n)(t)‖.
Set

R(t) = ([teiβ]nT (n)(teiβ)([te−iβ]nT (n)(te−iβ)

= t2nA2nT (teiβ + te−iβ) = t2nT (2n)(2t cos(β)).
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We have, for t ∈ (0, β],

‖t2nT (2n)(2t cos(β))‖ ≤
∥∥[teiβ]nT (n)(teiβ)

] ∥∥[te−iβ]nT (n)(te−iβ)
]

<

(
n

e cos(β)

)2n

=

(
2n

2e cos(β)

)2n

.

Hence

‖(2t cos(β)2nT (2n)(2t cos(β))‖ <

[
2n

e

]2n

for every t ∈ (0, δ], lim supt→0+ ‖t2nT (2n)(t)‖ <
[

2n
e

]2n
, and the result fol-

lows from Hille’s theorem applied to the derivative of order 2n of the given

semigroup.

!
The third author showed in [4] that if (T (t))t>0 is a nontrivial strongly

continuous quasinilpotent semigroup, then there exists δ > 0 such that we

have, for 0 < t < s ≤ δ,

‖T (t)− T (s)‖ > (s− t)
s

s
s−t

t
t

s−t

.

It is easy to deduce from this result that ‖tT ′(t)‖ ≥ 1
e for t ∈ (0, δ] if

(T (t))t>0 is a quasinilpotent differentiable semigroup. In the other direction

it does not seem that the inequality from [4] can be deduced from Hille’s

theorem, which implies a weaker inequality.
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