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Abstract: We explore the metric structure of networks with higher-order interactions and introduce a
novel definition of distance for hypergraphs that extends the classic methods reported in the literature.
The new metric incorporates two critical factors: (1) the inter-node distance within each hyperedge,
and (2) the distance between hyperedges in the network. As such, it involves the computation of
distances in a weighted line graph of the hypergraph. The approach is illustrated with several ad hoc
synthetic hypergraphs, where the structural information unveiled by the novel metric is highlighted.
Moreover, the method’s performance and effectiveness are shown through computations on large
real-world hypergraphs, which indeed reveal new insights into the structural features of networks
beyond pairwise interactions. Namely, using the new distance measure, we generalize the definitions
of efficiency, closeness and betweenness centrality for the case of hypergraphs. Comparing the values
of these generalized measures with their analogs calculated for the hypergraph clique projections,
we show that our measures provide significantly different assessments on the characteristics (and
roles) of the nodes from the information-transferability point of view. The difference is brighter for
hypergraphs in which hyperedges of large sizes are frequent, and nodes relating to these hyperedges
are rarely connected by other hyperedges of smaller sizes.

Keywords: hypergraphs; higher-order networks; distances on hypergraphs; linegraphs

1. Introduction

The modeling of social, biological, and technological systems as complex networks
(or graphs) has gained significant attention across areas of research as diverse as computer
science, statistical physics, biology, neuroscience and social science, among others. Network
science has, in fact, become ubiquitous [1]. In particular, as it was found that there is a
deep interplay between the structural and dynamical features of networked systems, the
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analysis of the network topology therefore helps in understanding the network functional
properties, such as robustness, efficiency in information transmission, and resiliency [1].
Metric parameters play a central role in deciphering information diffusion processes.
Indeed, complex networks are renowned for their ability to efficiently transfer information
or signal(s) from node to node; a proper way to quantitatively analyze the information
flow is through the use of structural measures, such as the diameter, the characteristic path
length, the closeness, the betweenness centralities, the efficiency, etc. [1–3].

The basis for the definition of all metric measures is the concept of distance between
two nodes. If one deals with only dyadic node–node interactions, then there are no doubts
as to how to define the distance between nodes, as the only way to construe a path from
node s to node t is by means of a sequence of intersecting edges with the first one containing
s and the last one containing t. Then, the corresponding path length is just the number of
edges in the series, and the distance (or geodesic distance) between the two nodes is just
the length of the shortest path.

However, the description of many processes in the real world requires to account for
group interactions, i.e., interactions of more than two nodes, and it is, therefore, critical to
refer to other mathematical objects that allow a better representation of such higher-order
relationships [4,5]. These objects are called hypergraphs, and the quantification of efficiency
of the spreading processes needs here the effort to extend the classical definitions of graph
structural measures to such a hypergraph setting.

The simplest generalization to the higher-order case of any graph topological measure
is just its computation in the hypergraph clique projection, a representation where each
hyperedge is replaced by a clique of pairwise interactions among all its nodes. However,
considering the clique projection, one obviously loses very important information about the
structure of such higher-order interactions. This was brightly demonstrated in the series
of recent studies, where it was shown that more complex generalizations of topological
measures were needed in order to provide significant and meaningful information about
the hypergraph structure [6–11]. In our study, we introduce a new concept of distance
among nodes in a hypergraph.

Moreover, a series of fundamental macroscopic network topology descriptors (such as
the betweenness centrality, the closeness centrality, or the efficiency) are explicitly based
on the concept of metric structure or distance in the graph. As we will show further in
more detail, the current literature contains some attempts to generalize the concept of
distance [4,7,8,12–14], which, however, are not systematic, and are mostly only on one of
the distinguishing features that higher-order structures display.

A first, naive extension for the term distance would be just replacing the word “edge”
by the word “hyperedge” in the graph’s path definition given above, and leaving the
rest of the definition unchanged. This way, one would obtain the so-called “distance
in the hypergraph clique projection”. While such a definition frequently appears in the
literature [15–22], it actually oversimplifies the rich structure of higher-order interactions.
Indeed, in the case of a classic (unweighted) graph, all edges are roughly equivalent, as they
all have the same cardinality (equal to two), and furthermore, all their intersections have
the same cardinality (equal to one). This is not, however, the case of higher-order systems,
where hyperedges may differ in their size and may intersect differently. Therefore, it
seems reasonable that such extra information be somehow considered in the hypergraph
distance definition.

To make an illustrative example, let us refer to the two panels of Figure 1. In both
cases, the hypergraphs are composed of two communities (of arbitrary internal structure)
and contain hyperedges bridging the communities. Let us consider the hypergraph of
Figure 1a, and let us suppose that a random walker starts at node u in the first community.
Then, the probabilities to get from node u to node v by using no more than two steps either
through the path including only the hyperedge e1 (pa

1) or by using the path e2, e3 (pa
2,3) are
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pa
1 =

1
ku
· 1
|e1| − 1︸ ︷︷ ︸

v is chosen randomly on the first step

+
1
ku
· |e1| − 2
|e1| − 1

· 1
|e1| − 1︸ ︷︷ ︸

some other node from e1 is chosen on the first step

=
1
ku
· 2|e1| − 3
(|e1| − 1)2 ,

pa
2,3 =

1
ku
· 1

2
,

where |e1| is the edge e1’s cardinality (in Figure 1a |e1| = 9) and ku is the number of
hyperedges incident to node u. It is clear that pa

1 is significantly smaller than pa
2,3, so it is

natural to suppose that the length of the path {e1} should be larger than the length of the
path {e2, e3}.

Now, if one considers instead the hypergraph of Figure 1b and, as before, compares
the probabilities pb

1,2 with pb
3,4 of getting from node u to node v by using no more than two

steps, then one has

pb
1,2 =

1
ku
· 2

5
· 1

2
· 1

5
,

pb
3,4 =

1
ku
· 1

5
· 1

2
· 1

5
.

Now, one has pb
1,2 = 2pb

3,4, and therefore the path {e1, e2} should be assigned a distance
shorter than that assigned to {e3, e4}.
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Figure 1. Illustrative sketch of two hypergraphs made of two communities of nodes, which are
bridged by a series of hyperedges. Hypergraph in the panel (a) is used to provide explanation of the
hyperedges’ cardinality importance for the path length calculation, while the one in the panel (b)
illustrates the impact of hyperedges intersection size (see explanation in the text).

As a consequence, the concept of length of a path in a hypergraph should not only
take into account the number of hyperedges involved but also their size and the size of
their intersection: the bigger the size of a hyperedge, the larger the associated distance
should be, and the bigger the intersection between hyperedges, the closer the nodes should
be. Such two distinguishing features (varying sizes of hyperedges and sizes of hyper-
edges intersections) are indeed separately discussed in the literature, with the following
in particular:

(1) If one assigns weights to hyperedges as proper functions of their sizes, then the
distance between a couple of nodes s, t is the sum of the weights of all hyperedges in
the shortest path, i.e.,

d(s, t) = min
P∈Pst

(
∑
e∈P

f (|e|)
)

, (1)

where Pst is the set of paths between s and t and f (|e|) is the weight of the hyperedge
e of size |e|. The heuristics behind this definition come from social networks: if one
assumes that the size of each hyperedge is the size of a company of friends, then
when the company size grows, it becomes more difficult for the members of the
network to keep in touch with each other. This idea was used in Refs. [7,14], where
the authors define hypergraph random walks, arguing that “the walkers may give more
or less importance to hyperedges depending on their size”.



Entropy 2023, 25, 923 4 of 14

(2) The difference in the size of intersections between hyperedges was taken into account
in the definition of k-walks introduced in Refs. [4,8,12,13]. A k-walk is a sequence
of hyperedges such that each pair of successive hyperedges are adjacent, and they
intersect in at least k vertices.

Despite the fact that both ingredients are separately considered in the structural
analysis of hypergraphs, these two features have never, so far, been considered to be
present together for the description of the metric structure of hypergraphs. The main
goal of this paper is, therefore, to combine them in order to obtain a tailored metric
structure for hypergraphs that would properly extend that of classic (dyadic) networks.
Once this structure is defined (in the next section), network efficiency, closeness and
betweenness centralities can also be defined as basic metric structural measures of the
hypernetwork topology.

Our manuscript includes, therefore, three novel contributions to the literature. First, it
introduces a new distance measure. Second, it gives the generalizations for the three crucial
characteristics of network topology listed above. Third, it provides a series of examples
showing the efficiency of the new concepts in uncovering meaningful information about
higher-order networks. An illustration of such a novel approach is made with specific
synthetic networks, where one immediately realizes that it provides important information
on the properties of information transfer through the networks. Finally, our numerical
testings on real-world higher-order networks reveal that the new metric measures uncover
several important features of the hypergraphs properties. In particular, we show that our
measures reveal different assessments of the nodes importance and of other network’s
features from the information-transferability point of view. Finally, we show that our
measure is particularly suitable to describe the structure of hypergraphs, which are highly
distinguishable from graphs, i.e., in which hyperedges of large size are frequent and nodes
in these hyperedges are rarely connected by other hyperedges of smaller sizes.

2. Methods

The basic notation used here is the same as that of Ref. [5]. In particular, a (dyadic) com-
plex network is a (undirected and unweighted) network G = (V, E), where V = {1, · · · , n}
for some n ∈ N is the set of nodes (or vertices) and E is the set of links (or edges), i.e., a
finite family of (unordered) pairs of nodes. Throughout this paper, only undirected and
unweighted networks are considered, but all our results can be straightforwardly extended
to the case of directed and weighted networks. A hypergraph is a pairH = (V, H), where
V = {1, · · · , n} is a (finite) set of nodes and H = {e1, · · · , em} is a (finite) family of (non-
empty) subsets of V, i.e., ei ⊆ V for all 1 ≤ i ≤ m. Each element of H is called a hyperedge
ofH.

Notice that every complex network is a hypergraph, but the reverse is not true.
Despite this latter fact, if one takes a hypergraph H = (V, H), one can define its com-
plex network projection π2(H) = (V, π2(H)), where each hyperedge ei ∈ H is replaced
by the clique made of all the pairwise interactions among the hyperedge’s nodes, i.e.,
π2(H) = {{i, j}; i, j ∈ ek for every ek ∈ H}. π2(H) is called the clique projection ofH.

In order to introduce a metric structure in H = (V, H) (i.e., a notion of distance
between nodes ofH), we first need to establish the notion of paths inH. If one takes a pair
of nodes i, j ∈ V, a path from i to j is a (finite) sequence of hyperedges (ẽ1, · · · , ẽk) ∈ H such
that i ∈ ẽ1, j ∈ ẽk and ẽ` ∩ ẽ`+1 6= ∅ for all 1 ≤ ` < k. One can associate a (positive) real
number to every path from i to j (the length of the path), and then the distance between i
and j will be the minimal length among all the paths from i to j, so the critical point, as we
will see in Section 2.1, is how to define the length for each path in a hypergraph.

The missing mathematical ingredient is the concept of the linegraph. Given a hy-
pergraph H = (V, H), its (unweighted and undirected) linegraph L(H) = (H, L(H)) is a
graph, whose node set is the set of hyperedges ofH and for which there is a link between
ei, ej ∈ H if ei ∩ ej 6= ∅. Notice that the linegraph has self-loops in all its nodes since for
every ei ∈ H, one has that ei ∩ ei 6= ∅. A weighted linegraph is introduced in Section 2.1 in
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order to define the path length in a hypergraph by assigning a non-negative weight to each
link in L(H). Further properties and results about hypergraphs and their linegraphs can be
found in Refs. [4,5].

2.1. Weighted Linegraphs

The use of weights in the links of the linegraph allows quantifying either the size of
the hyperedges and that of the intersections among hyperedges. Given a hypergraphH,
there is not a unique way of assigning weights to the links of its linegraph, so a weight
distribution mechanism must be included. As we will show momentarily, the weights of the
self-loops (wii) depend only on the size of corresponding hyperedge ei, while the weights
of the edges in the line graph are calculated as proper functions of the corresponding
hyperedges’ sizes and the size of the intersection of these hyperedges.

For the sake of illustration of our definitions, let us initially refer to the hypergraph
(made of 11 nodes and 3 hyperedges) depicted in Figure 2, and its associated linegraph.

i

e1 e2 e3 e1 e2 e3

w11
w22 w33

w12 w23

j k

Figure 2. A 11-node and 3-hyperedge hypergraph H and its weighted line graph with self-loops
L(H)

For every node i ∈ V of a hypergraph H = (V, H), one can denote by Ei the set of
hyperedges incident to the node i (in the example of Figure 2, Ei = {e1}, Ej = {e1, e2}
and Ek = {e3}). Then, one can define the weighted distance between the pair of nodes
i 6= k ∈ V as

dw(i, k) = 1 + min
e∈Ei , ẽ∈Ek

dL(e, ẽ), (2)

where dL(e, ẽ) is the distance between the hyperedges e and ẽ (e 6= ẽ) in the weighted
linegraph ofH, while dL(e, e) is the weight of the self-loop {e, e} in the weighted linegraph.
The critical point is now defining the weights of the linegraph in order to give sense to the
definition given above.

In particular, the weight function w : L(H) −→ [0,+∞) on the linegraph L(H) =
(V, L(H)) must have the following properties:

1. The distance between the nodes obtained from Formula (2) must be the same as the
classic distance in a graph at all times that one considers a (dyadic) complex network
G = (V, E) as a hypergraph.

2. The bigger the intersection of the hyperedges, the smaller the distance should be.
For instance, if one considers the case illustrated in Figure 3, then the weighted
distance between i and j in panel (a) should be smaller than that in panel (b). Therefore,
the distance should be inversely proportional to the intersection size.



Entropy 2023, 25, 923 6 of 14

i j

i j

(a)

(b)

Figure 3. Two paths from nodes i to j in a hypergraph, each of them with 2 hyperedges of the same
size but with different intersection size. The weighted path length in panel (a) should be smaller than
that in panel (b).

3. The bigger the hyperedges involved, the larger the weighted distance should be.
In particular, taking as an illustrative example the case of Figure 4, the weighted
distance in panel (b) should be larger than that in panel (a) since the sizes of edges are
bigger in case (b), while the size of the intersection is the same.

(b)

(a)

j

i j

i

Figure 4. Two paths from nodes i to j in a hypergraph, each of them with two hyperedges with the
same intersection size, but with different number of nodes in each hyperedge. The weighted path
length in panel (a) should be smaller than that in panel (b).

4. Finally, the larger is the number of hyperedges involved in the path, the larger
weighed distances one should obtain. In other words, the new metric structure should
be sensitive to the number of hyperedges in the paths considered. In particular, if one
takes two paths, one with only one hyperedge and another with two hyperedges but
with the same number of nodes involved in both cases, then the path length should
be smaller in the first case (see the illustration in Figure 5, where panel (b) must give a
larger distance with respect to the case of panel (a)).

(b)

i j

i j

(a)

Figure 5. Two paths from nodes i to j in a hypergraph, one involving only one hyperedge and another
with two hyperedges. Both paths include the same number of nodes. The weighted path length in
panel (a) should be smaller than that in panel (b).
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A possible choice for the weight function w : L(H) −→ [0,+∞) that verifies the four
desired properties is to assign, for every (ei, ej) ∈ L(H), a weight

wij = wji = w(|ei ∪ ej|, |ei ∩ ej|) =
1
3

(
|ei ∪ ej|+

|ei ∪ ej|
|ei ∩ ej|

)
− 1. (3)

It is easy, indeed, to verify that the function in Equation (3) accomplishes the follow-
ing properties:

• As the Jaccard index [23] between ei and ej is given by J (ei, ej) =
|ei ∩ ej|
|ei ∪ ej|

, then

wij =
1
3

(
|ei ∪ ej|+

1
J (ei, ej)

)
− 1.

• If one takes ei = ej, then wii = 1
3 (|ei|+ 1) − 1. Furthermore, if one starts from a

(dyadic) network G = (V, E), then wii = 0 for every ei ∈ E, and if ei 6= ej (but ei
connected with ej in L), then |ei ∪ ej| = 3 and |ei ∩ ej| = 1, which make that wij = 1.
Hence, one has that for this choice of weight function, the distance between the nodes
obtained from formula (2) is the same as the classic distance in a graph (first desired
property).

• Properties 2–4 also hold for this choice of weight function.

Let us discuss explicitly the issue of the computational complexity associated with the
calculation of our distance. It is reasonable to analyze separately two steps of the distance
calculations: the construction of the weighted linegraph and the distance calculation per se.
As for the construction of the weighted linegraph, the worst-case estimation of the com-
plexity is, obviously, O(|H|2). Moreover, looking at Formula (2), estimating the distance
dw(i, k) between nodes i and k needs the computation of the distances between all pairs
of nodes e ∈ Ei and ẽ ∈ Ek in the weighted linegraph L(H). The complexity associated
with computing dL(e, ẽ) is therefore given by the worst-case estimate for Dijkstra’s algo-
rithm, which is O(|L(H)|+ |H| log |H|) [24]. The resulting estimate of the computational
complexity is O(|Ei| · |Ek| · (|L(H)|+ |H| log |H|)).

To conclude this section, we remark that the choice of the weighting function in
Equation (3) is not, in fact, unique, in the sense that other choices can be made that equally
satisfy the four properties desired for a distance.

2.2. Some Structural Measures

The metric structure of a networked systems plays a central role in understanding the
dynamics and processes that take place on them, including robustness [25], diffusion [1] and
resilience [26]. There is a plethora of measures related to the metric structure of networks
in the literature, and we will here limit ourselves to consider network efficiency, closeness
and betweenness centrality, and to discuss their extension to the hypergraph setting by
using the weighted distance introduced in Section 2.1.

The (global) efficiency of a graph, introduced in Ref. [27], measures the performance
of the network information transfer. Formally, given a complex network G = (V, E) of n
nodes, its efficiency is defined as

E(G) = 1
n(n− 1) ∑

i,j∈V, i 6=j

1
d(i, j)

, (4)

where d(i, j) is the distance between nodes i and j.
It is straightforward to extend this measure for a hypergraphH = (V, H) of n nodes by

simply considering the metric structure inH. As we discussed already in the introduction,
one could consider a simple approach and define a metric structure in H given by its
clique projection network π2(H). By this metric, one could define the efficiency of H as
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E(H) = E(π2(H)). On the other hand, if one considers the weighted metric structure
defined by Equation (2), then one can calculate the weighted efficiency of the hypergraph
H as

Ew(H) =
1

n(n− 1) ∑
i,j∈V, i 6=j

1
dw(i, j)

. (5)

Similarly, one can introduce a weighted hypergraph analogue of closeness centrality.
If one takes again a network G = (V, E), then the closeness centrality [1–3] of node i ∈ V is

Ci(G) =
1

∑j∈V,j 6=i d(i, j)
. (6)

Notice that the top nodes (according to the closeness centrality values) can be seen as
the most aware nodes in an information/social network [1–3]. By using expression (6), it is
easy to transfer this concept to the hypergraph setting, simply by computing

Cw
i (H) =

1
∑j∈V,j 6=i dw(i, j)

, (7)

for every node i in a hypergraphH = (V, H). Additionally, in this case, if one considers the
metric structure given by the clique projection π2(H), then one can define an alternative
closeness centrality as Ci(H) = Ci(π2(H)) for every node i in the hypergraph.

Finally, the weighted centrality of a node i in a hypergraph H = (V, H) can also be
defined, but in this case, one should pay attention to some extra remarks. Let us remind
indeed that, if one takes a network G = (V, E), the betweenness centrality of each node i is
given by

bi(G) = ∑
u,v∈V,u 6=v,u 6=i,v 6=i

|P(u, v, i)|
|P(u, v)| , (8)

where P(u, v) is the set of all shortest paths between u and v, whereas P(u, v, i) is the set of
shortest paths between u and v that pass through i and | · | is the set cardinality operator,
i.e., it is the sum of fractions of shortest paths between all possible nodes pairs in the graph
going through node i.

If one wants to extend this notion to a general hypergraph H = (V, H), one should
specify first what it means that a path from u to v goes through node t when the path is a
series of hyperedges. Following Ref. [18], we assume that if we have a path described by
the sequence of hyperedges {e1, . . . , e`}, where u ∈ e1 and v ∈ e`, then it provides us with
a sequence of nodes {u, t1, t2, . . . , tl−1, v}, where ti ∈ ei ∩ ei+1 (nodes ti, i = 1, . . . , l − 1
are called bridging nodes in Ref. [18]). Once we fix this notion, the weighted betweenness
centrality of a node i in a hypergraphH = (V, H) is defined as

bw
i (H) = ∑

u,v∈V,u 6=v,u 6=i,v 6=i

∑p∈Pw
e (u,v,i)

1
inti(p)

|Pw
e (u, v)| , (9)

where Pw
e (u, v) is the set of shortest paths between nodes u and v whose lengths are

calculated by using the proposed weighted hypergraph measure, and the elements of
the set are all possible sequences of hyperedges forming a path from node u to node v;
Pw

e (u, v, i) is the set of those shortest paths between nodes u and v, for which the intersection
of one pair (or some pairs) of hyperedges includes node i; and inti(p) is the size of such
a latter intersection. Once again, if one considers the clique projection π2(H), then one
could define an alternative betweenness centrality as bi(H) = bi(π2(H)) for every node i
in the hypergraph.
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3. Results

Let us compare the new weighted metric structure with the classic approach based on
the clique projection with reference to a series of illustrative synthetic hypergraphs and
with large-sized real-world higher-order networks.

3.1. Synthetic Examples

In the first example, we consider the hypernetworkH1 described in Figure 6. The hy-
pergraph contains k nodes organized in the form of a ring, with an additional hyperedge
grouping all nodes. Let us assume that hyperedges may be eliminated with a probability
proportional to their size, an assumption which is natural in social networks since it is hard
to maintain communication within huge teams. Considering this process, in our example,
one has, therefore, a very high probability to obtain graphH2 (the right panel of Figure 6),
which consists of just a ring structure without a central hyperedge.

k
1

2
3

4 5

6

k
1

2
3

4 5

6

hyperedge
destruction

Figure 6. An illustrative example of a ring-like hypernetwork with an additional hyperedge grouping
all nodes. If the central hyperedge is removed, the hypernetwork is transformed into a ring structure.

Table 1 shows the efficiency values calculated by using the proposed weighted hyper-
graph distance (Ew(·)) and the traditional one, based on the clique projection (E(·)). One
immediately sees that the traditional measure overestimates the hypergraph robustness,
whereas the fact that the central hyper-link is not reliable is correctly reflected in the case
of our distance measure. This conclusion follows immediately from a comparison of the
E(H1) and E(H2): in the case of the new distance definition, H1 and H2 have approxi-
mately the same efficiency, while in the case of the traditional measure, efficiency drops
significantly when we destroy the central hyperedge.

Table 1. Efficiency values ofH1 andH2 calculated using different distance definitions. k = 20.

Ew(·) E(·)
H1 0.311 1

H2 0.303 0.303

In the second example, we center our attention on the hypergraph of Figure 7. There,
the assumption is made that one needs to transfer information from a source node i to a
target node j, and in each intermediate node, information is copied and errors may appear.
Therefore, the smaller the number of intermediate nodes, the less contaminated by errors
the information will arrive at the target node. In addition, one assumes that the nodes
of the hypernetwork can be attacked, and therefore some paths can be eliminated, which
makes it such that the higher the intersection size is, the more reliable the communication.

Let us now consider two existing paths from node i to node j: (e1, e2) and (e3, e4). It is
straightforward to check that these two paths are equivalent in the classic metric structure
obtained from the clique projection. However, the first path is shorter than the second by
using the weighted distance since the size of the edges union is the same for the both paths,
while the intersection size is higher in the first case.
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e1 e2

c

a b
i j

e4e3

Figure 7. Illustrative example of a hypergraph, where information transfer occurs from a source node
i to a target node j. The hypothesis is made that in each intermediate node, information is copied and
errors may appear. In the example, there are two possible paths from node i to node j: (e1, e2) and
(e3, e4). a, b, c are nodes forming the intersection between different hyperedges.

3.2. Real World Examples

We concentrate on the analysis of three real-world hypergraphs taken from https:
//www.cs.cornell.edu/~arb/data/ (accessed on 11 June 2023). The first is the Contact
High School hypergraph [28,29], where nodes are students and hyperedges represent
communications between them. The second hypernetwork is the Email Enron dataset
based on lists of e-mails’ senders and recipients (only hyperedges with a size up to 25
are considered, following Ref. [28]). The third hypergraph is reconstructed from Senate
Committees data [10,30], where nodes are members of the US Senate, and hyperedges
correspond to committee memberships.

The general characteristics and parameters of the three considered datasets are re-
ported in Table 2, where it is shown that such hypergraphs have a comparable number of
nodes, but they are significantly different in the properties of their hyperedge size distribu-
tions. In particular, the Contact High School hypergraph is characterized by the smallest
size of the largest hyperedge. Furthermore, despite the fact that in the Email Enron data,
one has significantly larger hyperlinks than in the Contact High School one, the median
hyperedge size in both hypergraphs is equal to two, and the mean hyperedge size in Email
Enron is also not far from the one characterizing the Contact High School case. The Senate
Committees hypergraph differs from the other two in all the hyperedges distribution char-
acteristics, and for this latter hypergraph, one has a relatively small number of hyperedges,
which are, however, large.

Table 2. General characteristics of the real-world hypernetworks analyzed in our study.

High School Email Enron Senate Committees

Number of nodes 327 143 282

Number of unique hyperedges 7818 1457 315

Maximal hyperedge size 5 18 31

Minimal hyperedge size 2 2 4

Mean hyperedge size 2.3 3.1 17.2

Median hyperedge size 2 2 19

In order to point out the additional information provided by the proposed weighted
distance measure, one can calculate (and compare) the distances between all pairs of nodes
in the considered hypergraphs by using our measure and the clique projection approach.
The distributions of the differences between the results obtained with our measure and
those obtained with the clique projection are presented in Figure 8. From these diagrams,
one clearly sees that in the Contact High School data, the difference is not significant.
Therefore, one can conclude that in this hypergraph, there is a large number of relatively
short paths going only through edges of size two, alternative to the paths including edges
of larger sizes. This conclusion is, however, incorrect for the other two hypernetworks,

https://www.cs.cornell.edu/~arb/data/
https://www.cs.cornell.edu/~arb/data/
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especially for the Senate Committees one. One sees, indeed, that the distance in the clique
projections of the hypergraphs is significantly smaller then the weighted one. Therefore,
one expects a higher vulnerability of these latter graphs with respect to large edge removal.

If one wants to give a more quantitative ground to the last remark, one can calculate
for each of the hypergraphs two efficiency measures: the one using the proposed weighted
distance (Ew(·)) and the other based on traditional distance measure (E(·)). The results are
shown in Table 3, where it is shown that the estimates have close values for the Contact
High School hypergraph, whereas the values are significantly different for Email Enron and
Senate Committees. If one compares the hypernetwork efficiencies using the traditional
measure, one should conclude that the most efficient hypergraph is the Senate Committees
one. On the contrary, by using the proposed weighted distance, one actually is led to the
opposite conclusion. Notice that if our hypothesis that in social networks larger groups
are less stable is correct, then only the Ew(·) measure provides a correct comparison of the
hypergraph efficiencies.
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Figure 8. Distributions of differences between the proposed weighted hypergraph distance measure
and the one calculated in the clique projection approach, for the real world hypergraphs analyzed in
our study. In the first histogram, the number of pair of nodes is reported for which the difference
between the two calculated distances takes the values specified in the horizontal axis. In the second
and third histograms, we report instead the number of pairs of nodes, for which the difference
between the two distances lies within the intervals indicated in the horizontal axis.

Table 3. Efficiency of the real-world hypergraphs computed using the proposed weighted hypergraph
distance measure (Ew(·)) and the traditional distance measure (E(·)).

Contact High School Email Enron Senate Committees

Ew(·) 0.505 0.443 0.106

E(·) 0.510 0.546 0.670

Besides efficiency, one can analyze node rankings based on the closeness and be-
tweenness centralities by using either the traditional or the weighted hypergraph distances,
as described in Section 2.2. In order to compare the rankings, one can use the Kendall rank
correlation (KRC) and a measure µ that quantifies correlation given by

µN(x, y) =
|topN(x) ∩ topN(y)|

N
, (10)

where N is the number of top nodes considered, x and y are the two rankings, and
topN(x) is the set of the N top nodes in the ranking x. In particular, we compare rankings
b = (b1(H), . . . , bN(H))′ and bw = (bw

1 (H), . . . , bw
N(H))′ obtained with the betweenness

centrality, and rankings C = (C1(H), . . . , CN(H))′ and Cw = (Cw
1 (H), . . . , Cw

N(H))′ ob-
tained with the closeness centrality for the three real hypergraphs.

The results are presented in Figure 9, and the following conclusions can be drawn:
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1. In the Contact High School hypergraph, the difference in rankings is significantly less
considerable than that occurring in the other two hypergraphs, especially for the case
of closeness centrality;

2. The sets of the first 50 top nodes for the cases of the Email Enron and Senate Com-
mittees hypergraphs are significantly different when one uses the traditional dis-
tance measure and our measure for both betweenness and closeness centralities (see
Figure 9b,d);

3. The KRC coefficient is low in the case of betweenness centralities, even for the case of
the Contact High School hypergraph (see Figure 9a);

4. The KRC coefficient for the case of closeness centrality is low for the Email Enron and
Senate Committees hypergraphs (see Figure 9c), being even negative for the case of
the Email Enron graph.

Summarizing the above evidence, one can say that the proposed distance measure
provides significantly different assessments on the characteristics (and roles) of the nodes
from the information-transferability point of view. The difference is brighter for the hyper-
graphs which are principally distinguished from graphs, i.e., in which hyperedges of large
size are frequent and nodes in these hyperedges are rarely connected by other hyperedges
of smaller sizes.
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Figure 9. Correlations between the rankings based on betweenness (panels (a,b)) and closeness (pan-
els (c,d)) centralities, calculated using the traditional distance measure and the weighted hypergraph
one. (a,c) Kendall rank correlation (KRC) coefficients between the top nodes rankings. (b,d) The µ

measure values (see Equation (10) for the definition of the µ measure). In all panels, the horizontal
axis reports the number of top nodes considered in the rankings. The color code for identifying the
curves plotted in all panels is reported in the horizontal bar at the bottom of the figure.

4. Conclusions

In conclusion, we here introduced a novel definition of distance for hypergraphs that
extends the classic methods reported in the literature. In particular, the new distance takes
explicitly into account two critical factors (the inter-node distance within each hyperedge
and the distance between hyperedges in the network) which have never, so far, been
considered together. The consequence is that the computation of distances is made in
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a properly weighted linegraph of the original hypergraph. We illustrated the benefit of
adopting such a metric structure with reference to a series of small synthetic hypernetworks,
and we then applied our approach to large real-world hypergraphs, revealing that the
obtained information about the hypergraphs structure is far different from that which
is acquired by computing distances with the standard approach of clique projection. In
particular, the difference is significant for hypergraphs in which hyperedges of large sizes
are frequent and nodes are rarely connected by hyperedges of small sizes. This latter
evidence points to the fact that our measure may be of great help in various circumstances,
especially when a correct assessment of the roles of nodes is needed from the information-
transferability point of view.

Possible follow-ups of our study include the use of our novel definition of distance for
the measure of other topological properties of (or the analysis of processes taking places in)
hypergraphs. This is the case, for instance, for random walks, local efficiency, clustering
coefficients, community structure features, modularity, etc. Furthermore, a similar approach
can be adopted also in the case of directed and annotated hypergraphs.
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