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Abstract

In this note we describe a simple method for visualizing time-dependent

similarities and dissimilarities between the components of a high-dimensional

time series. On the base of symbolic dynamics, the time series is turned into

a series of matrices whose rows quantify pattern types in the components

of the original series. For different scales we introduce distances between

the components via the obtained pattern type distributions and approximate

them in a one-dimensional manner. The method is illustrated for 19-channel

EEG data.

1 Introduction

During the last years the method of symbolic dynamics has been established in the
qualitative analysis of time series (e.g., see Ebeling & Nicolis [1992], Schwarz et al.
[1993], Finney et al. [1998], Daw et al. [1998], beim Graben et al. [2000], beim
Graben et al. [this issue]). The idea behind this method is rather simple: Instead of
considering the exact state of a system at some time, one is interested in a coarse-
grained description. The state space is decomposed into a small number of pieces,
and states being contained in the same piece are identified.

We use symbolic dynamics in the context of high-dimensional time series. In
particular, we apply the ideas of symbolic dynamics for analyzing and visualizing
EEG data. An EEG (electroencephalogram) records the electrical activity of the
brain. In epilepsy it is used to detect and to localize abnormal brain behavior. EEG
data are mostly high-dimensional and very large since an EEG can be recorded
from many electrodes and over a long time. Usually, the medical expert visually
inspects the EEG recordings. He is looking for special wave forms and has to
distinguish between brain-relevant patterns and artefacts. This is generally a very
time-consuming procedure. So one is interested in an automatic processing, at least
for a first rough view on the data.
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In the following we propose a method based on introducing time-dependent
distances between the time series components and approximating them in a one-
dimensional manner. First we explain the ideas taken from symbolic dynamics. In
Sec. 2 we introduce the distances and describe their one-dimensional approxima-
tion. Here we generalize a method known as Correspondence Analysis. Further, we
illustrate our approach for EEG data being related to epileptic activity. Sec. 3 is
devoted to the mathematical details. We want to refer to the approach by Steuer
et al. [this issue], which in some points is similar to our method.

Symbolic dynamics: the one-dimensional case. Let us explain the idea of
symbolic dynamics in more detail, in the often considered context of a delay em-
bedding (compare Takens [1981]). Given a one-dimensional theoretical time series
(xt)t∈T={...,−2,−1,0,1,2,...}, a delay τ = 1, 2, 3, . . ., and some dimension d, one considers
the delay embedding map

t ∈ T 7→ (xt−(d−1)τ , xt−(d−2)τ , . . . , xt−τ , xt)

which assigns to each time t a d-dimensional vector containing the value at t and
some history in the form of the values at t − τ, t − 2τ, . . . , t − (d − 1)τ . The d-
dimensional space is decomposed into n pieces with names 1, 2, . . . , i, . . . ,
n − 1, n - the symbols -, and for each t ∈ T the symbol σt of the piece contain-
ing (xt−(d−1)τ , xt−(d−2)τ , . . . , xt−τ , xt) is determined. In this way the original time
series (xt)t∈T is turned into the symbolic time series (σt)t∈T . The main task is the
analysis of the symbol frequencies.

Example 1. Consider a time series . . . , x0 = 5, x1 = 7, x2 = 3, x3 = 1, x5 = 9, . . .
and let τ = 1 and d = 2. The first bisecting line divides the ‘delay embedding’ plane
into two parts, where that above the line is assigned the symbol 1 and the other
one the symbol 2. So σt = 1 if xt−1 < xt and σt = 2 if xt−1 > xt. (For simplicity,
we assume that xt−1 = xt is impossible.) Thus the obtained symbol sequence is
. . . , σ1 = 1, σ2 = 2, σ3 = 2, σ4 = 1, . . ..

Note that the type of symbolic dynamics described by Example 1 is used in
Steuer et al. [this issue].

Ordinal patterns. Clearly, there are infinitely many ways for defining a decom-
position of the state space in order to symbolize time series. For practical reasons,
it is important that the obtained symbol sequences contain as much information on
the original time series as possible, and particularly if the given data sets are large,
the determination of the symbols should be easy and fast from the computational
viewpoint.

Following an idea of Bandt & Pompe [2002], we propose a symbolization on the
base of ordinal patterns, which describe the up and down in the time series in a more
subtle way than in Example 1. However, the subsequent general considerations do
not need a special decomposition of the state space. Let us explain the concept of
an ordinal pattern by an example.
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Figure 1: Ordinal pattern

Example 2. Fig. 1 shows a part of a fictive time series. (The values given for
times 9, 10, . . . , 26, 27 are connected by thin line segments.) We want to demonstrate
what is meant by the ordinal pattern at time t = 26 given for delay τ = 4 and
dimension d = 5. The times providing the ‘delay vector’ satisfy

t − 0τ > t − 1τ > t − 2τ > t − 3τ > t − 4τ
q q q q q

26 22 18 14 10
.

On the other hand, the values considered at these times are in the order

xt−4τ > xt−2τ > xt−0τ > xt−3τ > xt−1τ ,

what can be coded in the form (4(= d− 1),2,0,3,1). The latter is no more than a
‘spatial’ permutation of the ‘time steps’ 0, 1, 2, . . . , 4.

Generally, in a one-dimensional time series (xt)t∈T the ordinal pattern of order
d at time t is the permutation (r0, r1, . . . , rd−1) of (0, 1, . . . , d − 1) if the values at
t, t − τ, . . . , t − (d − 2)τ, t − (d − 1)τ are ordered as follows:

xt−r0τ ≥ xt−r1τ ≥ . . . ≥ xt−rd−2τ ≥ xt−rd−1τ .

In order to get a unique result, we set rl−1 > rl in the case that xt−rl−1τ = xt−rlτ .
For example, if the value x14 of the data illustrated by Fig. 1 would be changed
to the given value at time 22, one would have two candidates of ordinal patterns:
(4, 2, 0, 3, 1) and (4, 2, 0, 1, 3). The above setting fixes the first one.

Clearly, each ordinal pattern defines a connected piece of the d-dimensional space.
Since there exist d ! permutations, we have d ! ordinal patterns. We identify each of
them with exactly one of the ‘symbols’ j = 1, 2, . . . , n = d !. The way of assignment
does not play a role because we are not interested in the patterns themselves but in
their distribution. Note that the computation of ordinal patterns only needs a few
number of comparisons.
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The multidimensional case. Now suppose we are given an m-dimensional time-
series

(xt)t∈T = ((xi
t)

m
i=1)t∈T

with components (xi
t)t∈T , which we want to call the i-th channels. (This is useful

in view to the EEG analysis.) For some delay τ and some dimension d, each of
the channels is transformed into a symbolic time series as described above. In
the time window [t − δ + 1, t] given for fixed window length δ, count the symbols
j = 1, 2, . . . , n for each channel i = 1, 2, . . . , m, and divide the results by mδ. The
so obtained relative frequencies pij form matrices

P = Pt = Pt(d, τ, δ) =















p11 . . . p1j . . . p1n

...
...

...
pi1 . . . pij . . . pin

...
...

...
pm1 . . . pmj . . . pmn















,

which are the base for our further considerations. Clearly,
∑m,n

i,j=1 pij = 1.

The distances mentioned at the beginning are distances between the rows of
these matrices. They depend on a scaling parameter α and measure similarities
and dissimilarities between the symbol distributions in the different channels. The
intention is that these distances are robust - in particular, they neglect small phase
transitions -, and allow a good one-dimensional approximation and visualization of
changes in the originally given time series.

2 Distances on different scales

Let us first motivate the special choice of the distance measures given below.

Contingency as mean squared profile length. The contingency, also called
ϕ2-measure, is often used for quantifying distributional inhomogeneities between the
rows (or columns) of a relative frequency matrix. Let us have a closer look to the
contingency in the situation described above. For this let t be fixed and consider
the total relative frequencies p·j =

∑m
i=1 pij of the symbols j = 1, 2, . . . , n related to

the matrix P = Pt. Here we assume that p·j 6= 0 for all j. Clearly, since the number
of measurements is the same for all channels, we have pi· =

∑n
j=1 pij = 1

m
for the

analogue ‘relative channel frequencies’.

Assuming that the p·j are not vanishing, the contingency of the matrix P = Pt

is given by

ϕ2 = ϕ2
t =

∑

i,j

(pij − pi·p·j)
2

pi·p·j
=

1

m

m
∑

i=1

(

n
∑

j=1

(mpij − p·j)
2

p·j

)

=
1

m

m
∑

i=1

(

n
∑

j=1

p·j

(

mpij

p·j
− 1

)2
)

. (1)
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So the last term in (1) shows that ϕ2 can be interpreted in a nice way: Considering
profiles

ai = (aij)
n
i=1 =

(

mpij

p·j
− 1

)n

i=1

(2)

and assigning n-dimensional vectors a = (aj)
n
j=1 the weighted Euclidean length

√

∑n
j=1 p·ja

2
j , this term is no more than the mean of the squared profile lengths.

Beyond this, the distance defined by
√

∑n
j=1 p·j(aj − ãj)2 for two n-dimensional

vectors a = (aj)
n
j=1 and ã = (ãj)

n
j=1 allows particularly to measure differences be-

tween the profiles. This is the base of Correspondence Analysis, which was developed
primarily in the 70’s by Benzécri and his students (see Greenacre [1984]) for visual-
izing categorial variables given a contingency matrix.

In Correspondence Analysis profile components are weighted according to the
total frequencies of the symbols j. In order to be able to emphasize the role of
larger or smaller frequencies we more generally consider a scalar product

〈a, ã〉α :=
n

∑

j=1

pα
·jaj ãj (3)

for n-dimensional vectors a = (aj)
n
j=1 and ã = (ãj)

n
j=1 providing length

‖a‖α =

√

√

√

√

n
∑

j=1

pα
·ja

2
j

of a vector a = (aj)
n
j=1 and the distance

‖a − ã‖α =

√

√

√

√

n
∑

j=1

pα
·j(aj − ãj)2

of two vectors a = (aj)
n
j=1 and ã = (ãj)

n
j=1. Here α is a positive parameter. The

larger α is, the more the components related to large total symbol frequencies are
emphasized, and the more those related to small frequencies are suppressed. On
the other hand, decreasing α increases the influence of components related to small
frequencies.

Remark 1. The profile lengths ‖ai‖
α can be interpreted as distances of the symbol

distributions from the total symbol distributions (taken over all channels). The
origin is indeed the centroid of the ai, i.e. it coincides with 1

m

∑m
i=1 ai. Note, that

for α = 1 there is a completely equivalent description of the considered distances in
the simplex of all distributions on an n-point set (see Greenacre [1984], Lauffer &
Keller [2002]).
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Remark 2. In the case that the symbol distributions for the channels are not too
different in a certain sense, it holds

ϕ2
t

2
≈ Ht −

1

m

m
∑

i=1

H i
t , (4)

where Ht = −
∑n

j=1 p·j ln p·j and H i
t = −

∑n
j=1 mpij ln(mpij) are the Shannon en-

tropies related to the total symbol distribution and the i-th channel symbol dis-
tributions, respectively (see Lauffer & Keller [2002]). This can be interpreted in
the way that at time t the amount of inhomogeneity between the channel symbol
distributions is proportional to the difference of the total complexity and the mean
channel complexity.

It is important to note that for all EEG experiments we did on the base of ordinal
patterns, formula (4) has turned out to be valid. We also want to mention that
the Shannon entropy on the base of ordinal patterns, called permutation entropy
by Bandt and Pompe, is interesting both from the practical and the theoretical
viewpoint (see Bandt & Pompe [2002], Bandt et al. [2002]).

One-dimensional profile approximations. Usually the system of profiles spans
a high-dimensional space. In order to visualize profile distances in dependence on
time t, we use one-dimensional approximations of the profile system for all times t

of interest. This is done on the base of Singular Value Decomposition (SVD). We
do not want to go into details at this place. For more mathematical background we
refer to Sec. 3.

Given α > 0, the mean squared profile length 1
m

∑m
i=1(‖ai‖

α)2 is a good measure
of overall inhomogeneity between the channel symbol distributions. Here recall that
according to the considerations above

ϕ2 = ϕ2
t =

1

m

m
∑

i=1

(‖ai‖
1)2. (5)

So, for getting a good one-dimensional profile representation, it is natural to ask
for a direction explaining a maximal possible amount of mean squared profile length.
More precisely, given α > 0 and a line L through the origin, one has the following
decomposition of the mean squared profile length:

1

m

m
∑

i=1

(‖ai‖
α)2 =

1

m

m
∑

i=1

(‖aL
i ‖

α)2 +
1

m

m
∑

i=1

(‖ai − aL
i ‖

α)2.

Here aL
i denotes the projection of ai onto L. The first term on the right of the

equality can be interpreted as the part of mean squared profile length explained by
L and the second term as the part of mean squared profile length not explained by
L. An optimal line Lopt - explaining as much mean squared profile length as possible
- is defined by

1

m

m
∑

i=1

(‖a
Lopt

i ‖α)2 ≥
1

m

m
∑

i=1

(‖aL
i ‖

α)2 (6)
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Figure 2: 10-20-system of electrode placement

for all lines L through the origin.

Lopt can be identified with the real line such that the origin corresponds to
0 and the distance between two points on Lopt is the absolute difference of the

corresponding real numbers. Then the projection a
Lopt

i of each profile ai corresponds
to a number wi. The time-dependent representation vectors wα

t = (wi)
m
i=1 are the

base for visualizing the channels (via the related profiles) in a coordinate system
(see Fig. 4):

Horizontally a t-axis is drawn, and for the times t the components of wα
t are given

in vertical direction. So the i-th channels are represented by a curve showing wi in
dependence on time. If two curves are near to another (far from each other) at some
time, this indicates that the symbol distributions obtained from the corresponding
channels are similar (dissimilar) at this time.

Application to EEG data. We have applied the method for exploring 19-channel
scalp EEG data from children with epileptic disorders. The experiments have shown
that it can be used for visualizing qualitative temporal changes and spatial diffe-
rences in an EEG, supplementarily to the methods in Lauffer & Keller [2002]. In
particular, the variation of the parameter α can be helpful.

Let us illustrate this by showing the numerical results for an EEG data set
obtained from an eight years old boy with epilepsy. The corresponding data were
collected according to the international 10-20-system of electrode placement. The
diagrams in Fig. 2 show the positions of the electrodes, where FP1 and FP2 are the
two most frontal ones. We use two colorings, one distinguishing all channels, and
one showing the electrodes on the right hemisphere in green and those on the left
hemisphere in red. The sampling rate was 256 Hz, and the data were filtered by

160 180 200 220 240
1

1.5

2

2.5

3

t

Figure 3: Permutation entropies
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Figure 4: Channel representation

a bandpass (0.3 − 70 Hz). In the following graphics the time is given in seconds
(1 second corresponds to 256 data points). We have used ordinal patterns of order
d = 4 for a window length δ = 2s(= 512 points) and a delay τ = 1

256
(= 1 point).

The boy the EEG was taken from has lesions predominately in the left temporal
lobe of the brain, resulting from a connatal toxoplasmosis. (Toxoplasmosis is an
infection that comes from parasites found in animal feces or undercooked meat and
that when contracted by a pregnant woman can pose serious risks to her unborn
baby.) The EEG of the boy contains much epileptic activity. Here we consider an
interval of 100 s.

From the original data it is known that there was a generalized epileptic seizure,
i.e. a seizure that takes place throughout the entire brain, starting at 228 s. This is
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Figure 5: Mean squared profile lengths and non-explained parts

reflected by Fig. 3, which illustrates the complexity of ordinal pattern distributions
of the channels related to the 19 electrodes. Here the coloring is given according
to the right diagram in Fig. 2. A fat black curve is added in order to illustrate the
complexity of the total ordinal pattern distribution. As described by Remark 1,
the complexity measure used is the Shannon entropy. One sees a loss of complexity
related to the epileptic seizure in all channels and in the whole. Phenomena of that
type were generally discussed by different authors, for example, see Lehnertz et al.
[2000]. For a discussion based on the ordinal pattern setting we refer to Lauffer &
Keller [2002].

Here we want to concentrate on the similarities and dissimilarities between the
channels. Fig. 4 provides one-dimensional channel representations for α = 1, 3, 4.
The two first drawings on the top giving the representations for α = 1 coincide up
to the coloring. The use of green and red shows more similarity of the channels on
the right side than on the left (bad) side, it is however remarkable that the whole
plots do not change much in the period of epileptic activity (compare the completely
different situation in Fig. 3). We also refer to the relationship between the plots for
α = 1 and in Fig. 3 being given according to Remark 2.
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Whereas for α = 1 there is only a weak indication of the epileptic seizure starting
at 228 s, one sees a dramatic change of the representation vector for α = 3 and in
a stronger way for α = 4. Here the drawings indicate higher profile distances and
more changing mutual positions of the ‘channels’ in the representation during the
period of epileptic activity. Recall that for large α the distance measurement is
strongly concentrated on patterns with large total frequencies. We have magnified
the left part of the representation for α = 4. Note the slowly increasing ‘channel
distances’ prior the epileptic seizure for the given data set.

For the goodness of the one-dimensional approximations see Fig. 5 and the text
below Remark 3. At this place only note that in the drawings in Fig. 5 the first
curves from the top show the mean squared profile lengths, being the contingency
for α = 1 (see (5)). Clearly, there is a strong relationship between the representation
vectors at a given time and the corresponding mean squared profile lengths.

3 Singular Value Decomposition (SVD)

We now provide the mathematical details. Here, beyond one-dimensional profile
approximations, we consider approximations for general dimension. This gives a bit
more insight into the methodology and could be useful for further investigations.

Consider the matrix

A = At =

(

pij

pi·p·j
− 1

)m,n

i,j=1

whose rows are the profiles ai (see (2)). Further, let Cα = Cα
t and R be the n×n and

m×m diagonal matrices with diagonal pα
·1, p

α
·2, . . . , p

α
·n and 1

m
, 1

m
, . . . , 1

m
, respectively.

Then the scalar product on R
n given by (3) can be written as 〈a, ã〉α = aT Cαã. We

also want to consider the scalar product 〈·, ·〉 on R
m defined by

〈b, b̃〉 = bT Rb̃ =
1

m

m
∑

i=1

bib̃i

for b = (bi)
m
i=1 and b̃ = (b̃j)

m
i=1. The corresponding norm, which we denote by ‖ · ‖,

only scales the usual Euclidean norm by
√

1
m

. However, for some further calculations

it will be convenient to use the matrix R. The approximation described above is
based on the Singular Value Decomposition (SVD) of a matrix.

Simple SVD. Each real m × n matrix M of rank k can be written in the form
M = UDV T , where D is a k×k diagonal matrix having diagonal λ1, λ2, . . . , λk with
λ1 ≥ λ2 ≥ . . . ≥ λk > 0, and U and V are m×k and n×k matrices, such that UT U

and V T V form identity matrices (compare Greenacre [1984]). This decomposition
has the following geometric consequence, which was found by Eckart & Young [1936]
and is central for the subsequent considerations:

10



Let u1,u2, . . . ,uk ∈ R
m and v1,v2, . . . ,vk ∈ R

n be the columns of U and V ,
respectively. Then for each l ≤ k the vectors u1,u2, . . . ,ul (resp. v1,v2, . . . ,vl)
span a linear subspace S of R

m (resp. R
n) which is optimal in the sense that the

sum of quadratic Euclidean distances between the row vectors (resp. column vectors)
of M and their projections onto S is minimal (or, equivalently, the sum of quadratic
projection lengths is maximal) for all subspaces of dimension not exceeding l. So S

approximates distances between the row vectors (resp. column vectors) of M in an
optimal l-dimensional way.

Generalized SVD. We need the SVD of the matrix A in a form which respects
the weights on R

m and R
n described by R and Cα, respectively: a matrix Uα

consisting of rows uα
1 ,uα

2 , . . . ,uα
k orthonormal in (Rm, 〈·, ·〉), a matrix V α consisting

of columns vα
1 ,vα

2 , . . . ,vα
k orthonormal in (Rn, 〈·, ·〉α) and a diagonal matrix Dα as

D above, such that

A = UαDα(V α)T , (7)

are looked for. Note that the case α = 1 provides one of the known approaches to
Correspondence Analysis. The decomposition (7), in a more general context called
generalized SVD, can easily be deduced from the SVD. Indeed, the matrices are
given by Uα := R− 1

2 U, V α := (Cα)−
1

2 V and Dα := D, where UDV T is the SVD of

M := R
1

2 A(Cα)
1

2 . Moreover, it holds

R
1

2 ACαAT R
1

2 = MMT = U(Dα)2UT

and

(Cα)
1

2 AT RA(Cα)
1

2 = MT M = V (Dα)2V T .

Since (Uα)T RUα and (V α)T CαV α form identity matrices, this implies

ACαAT RUα = Uα(Dα)2 (8)

and

AT RACαV α = V α(Dα)2. (9)

Note that according to (7) Uα and V α are linked by V α = AT RUα(Dα)−1 and
Uα = ACαV α(Dα)−1. Formulae (8) and (9) say no more than that the columns of
the matrices Uα and V α are eigenvectors of ACαAT R = 1

m
ACαAT and AT RACα =

1
m

AT ACα, respectively. So, using the statement of Eckart and Young, the following
is not hard to show, when bi; i = 1, 2, . . . , m are the columns of A and xS denotes
the projection of a vector x onto a subspace S. Note that the statements (I’) and (II’)
are not used and not discussed subsequently, but we give them for completeness.

Theorem. If A has rank k, for each α > 0 there exist orthonormal vectors
vα

1 ,vα
2 , . . . ,vα

k ∈ (Rn, 〈·, ·〉α) with the same span as {a1, a2, . . . , am}, orthonormal
vectors uα

1 ,uα
2 , . . . ,uα

k ∈ (Rm, 〈·, ·〉) with the same span as {b1,b2, . . . ,

bn}, and numbers λ1 ≥ λ2 ≥ . . . ≥ λk > 0, such that for all l = 1, 2, . . . , k the
following is satisfied:
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(I)
∑l

r=1 λ2
r = 1

m

∑m
i=1 ‖a

span(vα
1

,vα
2

,...,vα
l
)

i ‖α ≥ 1
m

∑m
i=1 ‖a

S
i ‖

α for all linear subspaces
S of R

n of dimension l, i.e. the span of {vα
1 ,vα

2 , . . . ,vα
l } is optimal for dimen-

sion l,

(I’)
∑l

r=1 λ2
r =

∑n
j=1 pα

·j‖b
span(uα

1
,uα

2
,...,uα

l
)

j ‖ ≥
∑m

j=1 pα
·j‖b

S
j ‖ for all linear subspaces

S of R
m of dimension l,

(II) λlu
α
l = (〈ai,v

α
l 〉

α)m
i=1,

(II’) λlv
α
l = (〈bj,u

α
l 〉)

n
j=1,

(III) uα
l and vα

l are eigenvectors for the eigenvalue λ2
l of the matrices 1

m
ACαAT and

1
m

AT ACα, respectively. ¥

Remark 3. The special form of A does not play any role, in other words, the theorem
remains true for each real m × n matrix A of rank k with rows ai and columns bj.

The statements given need some explanation. First of all, by (I) the mean
squared profile length is

∑k
r=1 λ2

r, where - when we have empirical data - A has

usually rank k = m under the assumption m < n. So
∑l

r=1 λ2
r quantifies the part of

the mean squared profile length explained by (an optimal subspace of) dimension l.

The drawings in Fig. 5 being related to those in Fig. 4 show the mean squared
profile lengths and their parts not explained by dimensions 1, 2, . . . , m from above
to below. According to formulae (1) and (2), in the case α = 1 the first curve from
the top shows the contingency. Generally, the difference between the values of the
first and the second curve provides the part of mean squared profile length explained
by dimension one, i.e. the amount of inhomogeneity visualized by the drawings in
Fig. 4. The more this difference approaches the whole mean squared profile distance
the better is the one-dimensional approximation of profile distances.

We add two graphics showing λ2
1, λ

2
2, λ

2
3, . . . related to the mean squared profile

length for some fixed time and for varying α (see Fig. 6, left), and their logarithms
(see Fig. 6, right). (The data set considered is the same as at the end of Sec. 2, and
the time taken is t = 210s, there was however no special reason for that choice.)
The graphics illustrate that for α large enough, λ2

1 - being the leading eigenvalue of
1
m

ACαAT and 1
m

AT ACα -, dominates λ2
2, λ

2
3, . . . more and more when α increases.

This is not surprising since the matrix 1
m

AT ACα decomposes into 1
m

AT A and Cα,
and so for increasing α the role of the j-th column in 1

m
AT ACα increases if p·j is a

maximal total symbol frequency.

The theorem above says that {vα
1 ,vα

2 , . . . ,vα
k} forms a base of the span of

{a1, a2, . . . , am}, and by (II) the coordinate of the profile ai in the vα
l -direction

is equal to the i-th component of λlu
α
l . Thus the first l coordinates of an optimal

approximation of ai in a subspace of dimension l are given by the i-th components
of λ1u

α
1 , λ2u

α
2 , . . . , λlu

α
l . Note that by (III) the directions defined by the vα

l and uα
l

are unique if all λl are different. One can assume that this is true for ‘real’ data
sets.

12



α

λ2

2
/
∑

λ2
r

λ2

1
/
∑

λ2
r

1 2 3 4 5

0.2

0.4

0.6

0.8

1
α

ln(λ2

1
/
∑

λ2
r)

ln(λ2

2
/
∑

λ2
r)

ln(λ2

3
/
∑

λ2
r)

logarithmic

1 2 3 4 5

-10

-8

-6

-4

-2

Figure 6: Eigenvalue ratios

One-dimensional profile approximations. In particular, since in the real data
case the directions corresponding to the largest eigenvalue can be considered to be
unique, a representation vector wα as described below (6) must be equal to λ1u

α
1 or

−λ1u
α
1 . In other words, wα is unique up to the signum. wα = wα

t can numerically
be obtained in a very simple way:

Consider the matrix Ot = 1
m

AtC
α
t AT

t . The iterates of a suitable (random) vector
w0 with respect to the operator

w 7→
Ot(w)

‖Ot(w)‖

√

‖Ot(w)‖

‖w‖
=

Ot(w)
√

‖w‖ ‖Ot(w)‖

converge to (one of the) wα
t (compare II). The reason for this is that λ2

1 is the leading
eigenvalue of the matrix Ot, hence multiplication with this matrix emphasizes the
eigendirection of λ2

1. Clearly, Ot(w)
‖Ot(w)‖

has length 1, and in course of the iteration
‖Ot(w)‖

‖w‖
approaches to λ2

1. Note that the initial vector for the iteration must not be
orthogonal to this initially unknown eigendirection, which is usually satisfied for a
random vector.

Having a good approximation of a first representation vector wα
t , it is usually

a rather good approximation of (one) wα
t+s for small s. So it can be taken as the

initial value for getting a better approximation of wα
t+s. Now clearly one iterates with

respect to the operator related to Ot+s. So representation vectors can successively
be obtained from the first one by increasing t step by step, with the advantage
that the distance of successive representation vectors is small: ‘the signum does not
jump’. (In the EEG situation described below, for s = 1 one iteration in each step
is usually enough.)

4 Conclusions

We have discussed a simple multivariate method for visualizing qualitative temporal
changes in a high-dimensional time-series and differences between its components.
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The method, which combines symbolic dynamics and a generalized version of Cor-
respondence Analysis, is based on counting pattern type frequencies. For each time
of interest, it quantifies how inhomogeneous the system of time series components is
and provides a one-dimensional representation of this system. A scaling parameter
allows to differentiate between the components with respect to a specific weighting
of the pattern frequencies.

When the underlying symbolic dynamics only refers to the ordinal structure of
the given time series as proposed by Bandt & Pompe [2002], the method is fast
and robust. Then it can be applied to very long time series of large dimension, in
particular to EEG data sets. The application to 19-channel scalp EEG data from
children with epileptic disorders has shown a potential of the method to visualize
long-term qualitative changes and local differences in brain-electrical activity. Here
the scaling parameter introduced can play a substantial role. In order to go beyond
the explorative level and to get reliable results, a general modelling approach would
be important.

Acknowledgement. I would like to thank Heinz Lauffer from the Department of
Pediatric Medicine of the University Greifswald for many fruitful discussions and
for providing the EEG data.
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