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Abstract

Conventional domain adaptation methods usually resort

to deep neural networks or subspace learning to find invari-

ant representations across domains. However, most deep

learning methods highly rely on large-size source domains

and are computationally expensive to train, while subspace

learning methods always have a quadratic time complexity

that suffers from the large domain size. This paper provides

a simple and efficient solution, which could be regarded as

a well-performing baseline for domain adaptation tasks.

Our method is built upon the nearest centroid classifier,

seeking a subspace where the centroids in the target do-

main are moderately shifted from those in the source do-

main. Specifically, we design a unified objective without

accessing the source domain data and adopt an alternat-

ing minimization scheme to iteratively discover the pseudo

target labels, invariant subspace, and target centroids. Be-

sides its privacy-preserving property (distant supervision),

the algorithm is provably convergent and has a promising

linear time complexity. In addition, the proposed method

can be readily extended to multi-source setting and domain

generalization, and it remarkably enhances popular deep

adaptation methods by borrowing the learned transferable

features. Extensive experiments on several benchmarks in-

cluding object, digit, and face recognition datasets validate

that our methods yield state-of-the-art results in various do-

main adaptation tasks.

1. Introduction

Traditional machine learning paradigms always assume

that the training data and the testing data come from the

same distribution, however, this assumption does not always

hold in real-world applications [52, 66]. To avoid the expen-

sive and time-consuming data labeling step, massive efforts
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China (Grants No. 61622310, 61721004), and Beijing Natural Science

Foundation (Grants No. JQ18017).

Figure 1. Illustrative example of centroid shift (arrows) in our ap-

proach. Larger markers indicate the source and target centroids.

over the last decade have been devoted to transfer learn-

ing [64, 8, 34, 36] and multi-task learning [14, 30, 63, 70]

that leverage the latent relationship with previous datasets

to learn a new model for an emerging dataset.

Taking a night object image recognition problem for ex-

ample, it is not desirable to neither train a model on existing

day-time object images to recognize these night object im-

ages nor acquire massive labeled object images at night to

re-train a model on them from scratch. By contrast, we ex-

pect to transfer the knowledge from existing day-time object

images to recognizing these unlabeled night object images,

which is also known as domain adaptation, and such day-

time and night images are termed as source and target do-

mains, respectively. Based on the availability of partial la-

beled target data, domain adaptation can be roughly divided

into two categories, unsupervised and semi-supervised do-

main adaptation. In this paper, we mainly focus on the chal-

lenging unsupervised domain adaptation problem where the

labels of target data are totally unknown.

Since the degradation in performance mainly arises from

the covariate shift (i.e., the change in the data distribution of

the source and target domains), early approaches [72, 58]

favor an intuitive strategy named instance re-weighting,

which tries to align two different domains via estimating

naturally the ratio between the likelihoods of being a source

or target example. Later studies [42, 7] exploit one fa-

vorite distribution measure named Maximum Mean Dis-

crepancy (MMD) [24] to weigh data instances. However,
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these instance-based adaptation methods require the strict

assumptions [52] that are hard to satisfy.

Alternatively, a growing number of recent studies focus

on learning transferable representations via deep neural net-

works or subspace discovery since they do not require the

strong assumption. Deep domain adaptation methods are

roughly divided into three main categories, discrepancy-

based methods [60, 39, 44, 73, 68], adversarial-based meth-

ods [17, 38, 2, 63, 64], and reconstruction-based meth-

ods [19, 3, 76]. However, these batch-wise deep learning

methods cannot fully exploit the global information and ad-

dress small-size source domains well. Subspace alignment

methods [23, 15] try to align the subspaces (e.g., PCA) of

different domains together. Later studies [59, 32, 73] fur-

ther consider the second-order and higher-order scatter ma-

trices (moments) across different domains. These subspace-

centric methods are rather easy and efficient to deploy, yet,

they fail to minimize the data distributions between domains

after aligning the subspaces. [41] is a typical data-centric

subspace discovery based approach that learns to project

both domains onto one subspace where the cross-domain

joint distribution discrepancy is minimized. Following stud-

ies [74, 36, 67] are built upon [41] by considering coupled

projections, discriminative target structure and joint classi-

fier learning, respectively. Even these data-centric methods

achieve promising results, yet, they always involve a heuris-

tic pseudo target label estimation step in the EM-like algo-

rithm, making the overall optimization problem hard to con-

verge theoretically. Additionally, all the methods mentioned

above involve several large MMD matrices [41], thus, they

all have a quadratic time complexity w.r.t. the domain size

and can not cope with large-scale datasets well.

In this paper, we propose a simple, efficient, yet effective

approach via subspace discovery for unsupervised domain

adaptation. Inspired by [12], we develop a unified objective

that assumes the centroids in the target domain are mod-

erately shifted from those in the source domain, and each

instance is closest to its corresponding centroid for both

domains in the projected subspace. Note that, this objec-

tive does not need to access the source domain data like

[6], making it a privacy-preserving method. Then we adopt

an alternating minimization scheme to iteratively discover

the pseudo target labels, adaptive target centroids, and in-

variant subspace learning. Specifically, each subproblem

has a closed-form solution. Theoretical analysis shows that

our algorithm is convergent and efficient with a linear time

complexity. In addition, the proposed method can be read-

ily extended to multi-source setting and domain generaliza-

tion, and it even remarkably enhances popular deep domain

methods by borrowing the learned transferable features. Ex-

tensive experiments on several benchmarks including ob-

ject (i.e., Office31 [55], Office-Caltech [21] and Office-

Home [66], VLCS [62]), Digits, and face (i.e., PIE [1])

recognition datasets validate that our methods achieve state-

of-the-art results in the vanilla unsupervised domain adapta-

tion, domain generalization, and multi-source domain adap-

tation tasks. Generally, our algorithm is impressively sim-

ple and efficient, making it a strong baseline for domain

adaptation and generalization tasks.

2. Related Work

The last decade has witnessed a boom in studies towards

domain adaptation and related applications. We refer the in-

terested reader to [66, 9] for a survey focusing on computer

vision applications. As stated above, both feature transfor-

mation [51, 41, 74, 36] and feature representation learning

[19, 53, 63, 68, 53] are much more favored by recent do-

main adaptation approaches. Here we analyze several most

closely related work from both cases to our method.

Regarding shallow feature transformation based ap-

proaches, [36] proposes a general objective in order to pur-

sue that instances from the same class of both domains are

dragged closer to each other, which includes many former

methods [51, 41] as special cases. Our method can be con-

sidered to be built upon [36] by developing a built-in clas-

sifier to infer the pseudo target labels, and it only acquires

distant supervisions, i.e., class-wise Gaussian estimators of

means and covariance matrices, instead of accessing the

entire source domain data. Besides, previous methods al-

ways involve several large MMD matrices [41, 74, 36, 67]

in the optimization procedure with a O(n2) computation

complexity, making it unsuitable for large-scale adaptation

scenarios. In fact, there are several previous studies [11, 10]

that attempt to investigate Nearest Class Means (NCM) for

domain adaptation. However, they merely integrate NCM

with other domain adaptation models [61, 5] as a novel clas-

sifier, ignoring the distribution discrepancy after projection.

Benefiting from the rapid development of deep neural

networks, deep domain adaptation methods achieve much

better performance. Generally, a majority of them (e.g.,

[65, 17, 60, 64, 68]) equip the source domain a source clas-

sification loss function and design another cross-domain

loss function (e.g., MMD or adversarial loss in Genera-

tive Adversarial Network (GAN) [22]) to align two do-

mains. SimNet [53] replaces the conventional source classi-

fier (e.g., soft-max) with a prototype similarity-based clas-

sifier and adopts a domain discriminator for domain con-

fusion, which achieves state-of-the-art performances. Fur-

thermore, [19] utilizes a reconstruction loss for target do-

main and [53] designed a similarity-based classifier for la-

beled source domain. However, these methods are always

optimized in a batch-wise manner, making it not suitable to

minimize a global loss function like MMD. Our approach,

applied to learned transferable features extracted from fine-

tuned models and deep domain adaptation methods like

DAN [39], RevGrad [17] and GTA [56], achieves better per-
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formance to these more complex methods and is expected

to be incorporated directly into the network structure.

3. Methodology

3.1. Problem Definition

In conventional domain adaptation with two domains,

we have access to labeled images Xs = {(xs
i , y

s
i )}

ns

i=1

drawn from a source domain distribution ps(x, y) and tar-

get images Xt = {(xt
i, y

t
i)}

nt

i=1 drawn from a target do-

main distribution pt(x, y). It is commonly assumed that

the label space of both domains are identical, i.e., ysi , y
t
i ∈

[1, 2, · · · , C] and the length of domain feature space is the

same, i.e., xs
i , x

t
i ∈ R

d. Note that, in the unsupervised set-

ting, we have no information about the labels on the tar-

get domain. Without loss of generality, we assume that

each feature vector is normalized to satisfy ‖xq
i ‖

2 = 1, q ∈
{s, t}, then zero-centered, i.e.,

∑
i x

s
i = 0 and

∑
i x

t
i = 0.

In fact, instead of using the original data in the source

domain, we only require the number of samples in each

class (i.e., mr), the maximum likelihood estimators of the

means µ̂r, and covariance matrices Σ̂r, r = [1, 2, · · · , C]
if we assume the data of the r-th class in the source do-

main follow a d-variate Gaussian distribution. Obviously,

these two estimators are defined as µ̂r = 1
mr

∑
ys

i
=r x

s
i and

Σ̂r = 1
mr

∑
ys

i
=r(x

s
i − µ̂r)(x

s
i − µ̂r)

T , respectively.

3.2. Formulation

To tackle the covariate shift, we propose a shallow fea-

ture transformation based domain adaptation method. Our

method consists of two main components, i.e., source do-

main classification and target domain classification, and re-

late these two parametric classifiers by assuming small per-

turbations on parameters [71]. Since we have no access to

the labels on the target domain, it is hard to directly con-

sider a target domain classification task as well as some con-

ditional distribution discrepancies. To address this issue,

JDA [41] exploits the pseudo target labels as supervision

signals for feature transformation learning. This strategy

has proven to work well for unsupervised domain adapta-

tion and has been re-utilized by later works [74, 36]. Thus,

we also consider such a discriminative component to deal

with pseudo-labeled target instances.

Inspired by the popular supervised adaptive feature re-

duction method [12], we first introduce a feature transfor-

mation matrix W ∈ R
k×d for the labeled source data points

and expect the following objective with respect to W to be

minimized as much as possible.

min
W

∑
i dW (xs

i , µ̂ys

i
)

∑
i dW (xs

i , µ̂)
=

∑
r

∑
ys

i
=r dW (xs

i , µ̂r)
∑

i dW (xs
i , 0)

, (1)

where dW (x, x′) = ‖Wx − Wx′‖22, and µ̂s = 0 denotes

the overall mean in the source domain. Furthermore, we can

rewrite the objective above as

min
W

trace(WSs
wW

T )

trace(WSs
tW

T )
, (2)

where Ss
w =

∑
i(x

s
i − µ̂ys

i
)(xs

i − µ̂ys

i
)T =

∑C
r=1 mrΣ̂r

and Ss
t =

∑
i(x

s
i )(x

s
i )

T = Ss
w+

∑
r mr(µ̂r −0)(µ̂r −0)T

are also well known as the within-class scatter and the total

scatter matrices in the source domain, respectively.

The only information we know about the target domain

is that it shares the same classes with the source domain,

therefore, we also expect that data points from the target

domain are well separated as those from the source domain,

min
W,µ̂t

r
,ŷt

i

∑
r

∑
ŷt

i
=r dW (xt

i, µ̂
t
r)∑

i dW (xt
i, 0)

. (3)

Since no labels are available for the target domain, we also

need to estimate the optimal pseudo label ŷti for each target

instance and the target means µ̂t
r, 1 ≤ r ≤ C.

For simplicity, we follow the popular framework to learn

a unique projection W for two different domains. Differ-

ent from previous works [41, 74, 36] that generate pseudo

target labels via merely exploiting the source data points,

we aim to obtain a self-training target classifier and assume

that the parameters are shifted from the parameters in the

source classifier [71]. Concretely, we adopt the nearest cen-

troid classifier and force the target centroids are close to

their corresponding source centroids in Fig. 1, that is to say,

we want to minimize the following objective function:

min
W,∆t

r
,ŷt

i

∑
r

∑
ys

i
=r dW (xs

i , µ̂r)
∑

i dW (xs
i , 0)

+
∑

r
βr‖W∆r‖

2
2

+

∑
r

∑
ŷt

i
=r dW (xt

i, µ̂r +∆r)
∑

i dW (xt
i, 0)

,

(4)

where ∆r ∈ R
d×1, 1 ≤ r ≤ C are the the so-called pertur-

bation variables and βr are the trade-off parameters which

rely on the cluster size of each class.

For the sake of simple optimization, we reformulate

these three terms in one trace-ratio objective and obtain a

relaxed ratio-trace objective in the following,

min
W,∆t

r
,ŷt

i

trace(W (Ss

w
+St

w
+
∑

r
βr∆r∆

T

r
+λI)WT )

trace(W (Ss

t
+St

t
)WT )

,

(5)

→֒ minW,∆t
r
,ŷt

i
trace{

W (Ss

w
+St

w
+
∑

r
βr∆r∆

T

r
+λI)WT

W (Ss

t
+St

t
)WT },

(6)

s.t. W (Ss
t + St

t)W
T = I,

where St
w =

∑
i(x

t
i − µ̂ŷt

i
−∆ŷt

i
)(xt

i − µ̂ŷt

i
−∆ŷt

i
)T and

St
t =

∑
i(x

t
i)(x

t
i)

T are the corresponding scatter variances

in the target domain. In fact, to avoid a solution where all
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the rows in W are identical [46], we impose an orthonor-

mal constraint W (Ss
t + St

t)W
T = I on the projection W .

Under this constraint, Fukunaga [16] showed that Eq. (5)

is essentially identical to Eq. (6). Besides, we follow pre-

vious works [41, 74, 36, 51] in this literature and impose

a regularization parameter λ to guarantee the optimization

problem to be well-defined.

3.3. Optimization

To optimize the above objective in Eq. (6), we exploit a

popular alternating optimization scheme. In the following,

we provide the solutions to each sub-problem.

W -step: Once we fix these two other groups of variables

{∆t
r}

C
r=1 and {ŷti}

nt

i=1, the objective function w.r.t. W be-

comes a classical ratio-trace optimization problem:

minW∈Rk×d trace{(WStW
T )−1(W (Sw + λI)WT )}, (7)

where St = Ss
t + St

t and Sw = Ss
w + St

w +
∑

r βr∆r∆
T
r

are two d × d scatter variance matrices. Interestingly, this

problem can be efficiently solved by generalized eigenvalue

decomposition (GEVD) Stwa = γa(Sw+λI)wa, where γa
is the a-th smallest generalized eigenvalue. The matrix W
is then constituted of the corresponding eigenvectors wa ∈
R

d×1, 1 ≤ a ≤ k as rows.

Ŷ t-step: Once we obtain the domain-invariant projec-

tion W and perturbation variables {∆t
r}

C
r=1, the objective

function w.r.t. {ŷti}
nt

i=1 has the form

min
{ŷt

i
}
nt

i=1

trace{(WStW
T )−1(WSwW

T )}

=

nt∑

i=1

min
ŷt

i
∈[1,C]

{(xt
i − µ̂ŷt

i
−∆ŷt

i
)TSp(x

t
i − µ̂ŷt

i
−∆ŷt

i
)},

=

nt∑

i=1

{(xt
i)

TSp(x
t
i) + max

ŷt

i
∈[1,C]

(hŷt

i
xt
i − bŷt

i
)},

(8)

where Sp = WT (WStW
T )−1W is a positive definite

matrix, and the parameters in the classification function

fr(x
t
i) = hrx

t
i − br of the r-th class are hr = 2(µ̂r +

∆r)Sp ∈ R
1×d and br = −(µ̂r + ∆r)

TSp(µ̂r + ∆r), re-

spectively. That is to say, we can estimate each the pseudo

target label ŷti independently via the following rule

ŷti = arg max
r∈[1,C]

hrx
t
i − br. (9)

∆-step: Once we get the domain-invariant projection

W and pseudo target labels {ŷti}
nt

i=1, the objective function

w.r.t. each perturbation variable ∆r can be written as

min
∆r

trace{Sp(
∑

ŷt

i
=r

(xt
i − µ̂r −∆r)(x

t
i − µ̂r −∆r)

T + βr∆r∆
T
r )},

⇒ min
∆r

trace{Sp((βr + nr)∆r∆
T
r − 2

∑

ŷt

i
=r

(xt
i − µ̂r)∆

T
r )},

⇒ min
∆r

(∆r −

∑
ŷt

i
=r x

t
i − nrµ̂r

βr + nr

)TSp(∆r −

∑
ŷt

i
=r x

t
i − nrµ̂r

βr + nr

),

(10)

where nr is the size of the r-th class in the target domain.

Since Sp is easily proven to be a positive definite matrix,

i.e., ∀x ∈ R
d×1, xTSpx ≥ 0. Thus, the optimal variable

∆r can be obtained via the following equation

∆r = (
∑

ŷt

i
=r

xt
i − nrµ̂r)/(βr + nr), r ∈ [1, C], (11)

and µ̂r +∆r = (βrµ̂r +
∑

ŷt

i
=r

xt
i)/(βr + nr). (12)

Carefully checking the term above, we can easily discover

that the learned perturbations indeed place the optimal tar-

get centroids/ prototypes in the routines between source

class means and pseudo target class means. Besides, when

the value βr/nr becomes larger, the learned target centroids

are much closer to their corresponding source class means.

Towards this end, we have provided three closed-form

solutions in Eq. (7), Eq. (9), and Eq. (11) for each subprob-

lem, and the complete algorithm is summarized in Algo-

rithm. 1.

Algorithm 1 Unsupervised Domain Adaptation with Mini-

mum Centroid Shift (MCS)

Input: Source domain information {mr, µ̂r, Σ̂r}
C
r=1 and target

domain {xt
i}

nt

i=1
; subspace dimensionality k, parameters λ

and α, inner/ outer maximum iterations Ti = 5 and To = 10.

Output: Feature transformation matrix W ∈ R
k×d, perturbation

variables {∆r}
C
r=1 and target labels {ŷt

i}
nt

i=1
.

1: Compute the scatter matrices Ss
w, S

s
t , S

t
t ;

2: Initialize St
w and ∆r as 0, and calculate W via Eq. (7)

3: Estimate {ŷt
i}

nt

i=1
using W and {µ̂r}

C
r=1 and update St

w;

4: Compute the size of the r-th target class lr and let βr = α∗lr;

5: while not converge iter ≤ To do

6: while not converge and iter ≤ Ti do

7: Update perturbation variables {∆r}
C
r=1 via Eq. (11);

8: Update pseudo target labels {ŷt
i}

nt

i=1
via Eq. (9);

9: end while

10: Update St
w and solve the GEVD problem in Eq. (7) for W .

11: end while

3.4. Convergence and Time Complexity

It is obvious that each solution above (i.e., Eqs. (7), (9),

(11)) monotonically decreases the overall objective function

trace{(WStW
T )−1(W (Sw + λI)WT )} in each iteration

and the objective value is always larger than zero, that is to

say, the proposed iterative algorithm in Algorithm. 1 con-

verges to the local minimizer after certain iterations.

Regarding the computation complexity, the GEVD step

occupies O(kd2), other matrix multiplies occupy O(ntd
2+

ntdk), and the Ŷ t step occupies O(Cntk
2 + Cntd +

k3). In summary, the overall complexity of our method is

O(Tikd
2+TiToCntd). When compared with massive pre-

vious methods [41, 74, 36, 67] with O(n2) complexity, our

method is more favorable by large-scale datasets. Specifi-

cally, for large-scale digit datasets like SVHN and MNIST,

previous methods (eg., [41, 74, 36, 67]) are not flexible due

to the limited memory.
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4. Experiment

In this section, we conduct extensive experiments to

evaluate the effectiveness of the proposed approaches for

unsupervised cross-domain image recognition problems, in-

cluding vanilla domain adaptation, multi-source domain

adaptation and domain generalization where the target do-

main is totally unknown in the training phase.

4.1. Unsupervised Domain Adaptation (UDA)

4.1.1 Datasets and Settings

The Office31 [55] dataset includes images of 31 objects

taken from 3 domains, i.e., Amazon (A, images downloaded

from the online web merchants), DSLR (D, high-resolution

images captured by a digital SLR camera), and Webcam

(W, low-resolution images recorded by a web camera).

They contain 2,817, 498 and 795 images, respectively.

The Office-Caltech dataset consists of images from

10 overlapping object classes between Office31 and Cal-

tech256 [25], and these domains include 958, 157, 295 and

1,123 samples for A, D, W and Caltech (C), respectively.

The Office-Home [66] dataset is a new benchmark that

contains 4 domains, with each domain containing 65 kinds

of everyday objects, i.e., Art (Ar, artistic depictions of ob-

jects), Clipart (Cl, clipart images), Product (Pr, objects

without a background) and Real-World (Re, objects cap-

tured with a regular camera). Besides, they contain 2,421,

4,365, 4,428 and 4,357 samples, respectively.

Baseline methods. We compare the proposed method

with several state-of-the-art unsupervised domain adapta-

tion approaches that can be roughly divided into two main

categories, shallow feature transformation approaches, and

deep domain adaptation approaches. 1NN is a basic method

that is trained on the raw source data without any fea-

ture transformation. Shallow UDA methods mainly include

SA [15], JDA [41], CORAL [59], Invariant Latent Space

(ILS) [27], JGSA [74], LDA-inspired Domain Adaptation

(LDADA) [45], and DICE [36]. There are also some pop-

ular baseline methods, including ATI [4], PUnDA [20],

MEDA [67], and GAKT [13].

Regarding deep end-to-end UDA approaches, we col-

lect the reported accuracies from recent studies that share

the same protocol with our method. Some representa-

tive deep methods are listed in the following, DAN [39],

RevGrad [17], DRCN [19], RTN-res [43], ADDA [64],

JAN-A [44], GTA [56], and CDAN+E [40].

Note that A→B indicates that A is the source domain and

B is the target domain. We evaluate different UDA methods

in terms of classification accuracy (%) on the target.

4.1.2 Results on the Office31 dataset

We follow the full protocol that has been widely adopted

in previous studies [44, 36, 56] by using the entire labeled

Table 1. Accuracy (%) on Office31 with the evaluation setup of

[60, 36]. The best results of methods with deep features are in

bold red and deep models with bold underlined results are better

than MCS (ours). [∗ using ResNet-34]

Method A→D A→W D→A D→W W→A W→D Avg.

1NN 59.4 57.5 47.2 96.1 44.8 99.0 67.3

SA 61.0 59.5 46.9 95.1 46.6 98.2 67.9

JDA 66.5 68.8 56.3 97.7 53.5 99.6 73.7

CORAL 60.4 57.0 47.6 96.2 46.3 99.0 67.8

JGSA 67.5 62.3 55.6 98.1 52.0 99.8 72.5

ILS 62.9 63.9 50.0 97.2 48.8 99.4 70.4

ATI [4] 70.3 68.7 55.3 95.0 56.9 98.7 74.2

LDADA 65.9 68.1 55.5 94.7 53.4 98.4 72.6

DICE 66.7 71.4 56.5 96.9 58.6 99.8 75.0

MEDA [67] 69.5 69.9 58.0 94.0 56.0 96.8 74.0

MCS(ours) 71.9 75.1 58.8 96.7 57.2 99.4 76.5

RevGrad 72.3 73.0 53.4 96.4 51.2 99.2 74.3

DAN [39] 67.0 68.5 54.0 96.0 53.1 99.0 72.9

DRCN [19] 66.8 68.7 56.0 96.4 54.9 99.0 73.6

RTN-res [43] 71.0 73.3 50.5 96.8 51.0 99.6 73.7

ADDA 71.6 73.5 54.6 96.2 53.5 98.8 74.0

JAN-A [44] 72.8 75.2 57.5 96.6 56.3 99.6 76.3

I2I-Adapt [49]∗ 71.1 75.3 50.1 96.5 52.1 99.6 74.1

data in the source domain and unlabeled data in the target

domain. We further exploit the AlexNet-FC7 features [59]

fine-tuned on the source domain, making it fair to be com-

pared with deep UDA methods via AlexNet.

As shown in Table 1, our method outperforms all deep

methods and other shallow counterparts in terms of the

average accuracy. Firstly, for the small and easy tasks

D↔W, all the UDA methods achieve promising results,

and our method performs worse than several shallow meth-

ods (e.g., JGSA [74]). Secondly, our method significantly

outperforms all the shallow methods and is competitive to

state-of-the-art deep method JAN-A [44] for some relatively

challenging adaptation tasks, including A→D and A→W.

Thirdly, when a small source domain (i.e., D and W) is

adapted to a large target domain A, our method obviously

ranks the first and second among all the methods.

Generally speaking, our method outperforms several

state-of-the-art shallow methods (i.e., DICE [36] and

MEDA [67]) by a large margin and achieves quite compet-

itive results to the state-of-the-art deep UDA method. Note

that, even I2I-Adapt [49] explores a more powerful ResNet-

34 model, our method still performs much better than it.

4.1.3 Results on the Office-Caltech dataset

We explore two kinds of deep features [27] produced by

different full convolution layers in VGG-net and follow the

sampling protocol [21, 27, 20] by using few labeled data

in the source domain. Concretely, we randomly select 8

instances per class for domain D and 20 instances per class

for other domains (i.e., A, C and W) as final sources.

As can be seen from Table 2, JGSA [74], PUnDA [20]

and DICE [36] are three best performing methods among
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(a) Dimensionality k (b) Parmeter λ (c) Parmeter α (d) # Iterations

Figure 2. Domain adaptation performance accuracy (%) on the Office31 (A→D and A→W) and Office-Home (Ar→Cl and Ar→Pr)

datasets w.r.t. dimensionality k, parameters λ, α and the number of iterations.

Table 2. Accuracy (%) on Office-Caltech using the VGG-FC6

(above) and VGG-FC7 (below) features with the evaluation setup

of [21, 20]. The best (bold red), the second best (red).
Source A C D W

Avg.
Target C D W A D W A C W A C D

1NN 70.1 52.3 60.9 81.9 55.6 65.9 57.0 48.0 86.7 66.4 60.2 91.3 66.4

SA 77.1 64.9 76.0 83.9 66.2 76.0 69.0 62.3 90.5 80.2 71.9 94.2 76.0

JDA 80.2 71.9 80.6 88.7 72.0 82.2 81.8 73.4 94.0 89.0 79.9 96.2 82.5

CORAL 79.0 67.1 74.8 89.4 67.6 77.6 75.8 64.7 94.6 82.3 75.9 96.0 78.7

JGSA 79.9 71.7 82.6 90.2 76.4 84.5 82.7 73.5 95.4 91.6 79.0 96.3 83.6

ILS 78.9 72.5 82.4 87.6 73.0 84.4 79.2 66.5 94.2 87.2 79.9 89.3 81.3

PUnDA 82.3 76.2 82.7 90.3 76.2 88.3 83.1 69.2 93.4 86.9 82.6 89.8 83.4

LDADA 82.3 64.0 80.3 89.7 67.7 82.2 70.9 60.6 86.9 90.2 82.5 87.8 78.8

DICE 83.0 66.4 75.9 91.9 67.4 83.7 84.4 78.6 94.8 90.3 80.7 93.8 82.6

MCS(ours) 87.1 74.8 84.8 92.3 77.3 87.1 84.7 76.0 95.9 88.9 87.4 92.9 85.8

1NN 72.6 50.8 64.0 82.6 54.9 65.3 61.2 52.8 88.2 67.8 64.2 88.8 67.8

SA 76.2 60.7 75.0 82.6 63.2 73.6 66.0 59.4 89.5 76.4 69.0 94.0 73.8

JDA 79.9 69.2 80.1 87.3 71.5 80.1 78.5 70.9 92.4 86.9 78.3 94.1 80.8

CORAL 78.6 61.3 71.8 88.6 63.8 76.0 71.2 63.0 93.5 82.0 73.7 94.6 76.5

JGSA 81.1 72.3 81.4 88.3 72.3 82.5 78.9 72.3 93.6 89.8 79.8 95.8 82.3

ILS 78.4 71.3 80.9 87.1 67.1 80.1 76.5 66.2 91.8 86.7 76.3 88.2 79.2

PUnDA 81.0 75.8 81.4 91.1 70.8 83.8 80.4 69.1 92.0 85.7 80.1 90.1 81.7

LDADA 83.3 72.5 83.7 91.5 71.5 84.5 71.8 58.4 88.3 88.0 80.1 86.8 80.0

DICE 83.7 62.9 79.3 91.7 63.8 84.3 82.3 76.4 94.2 89.4 82.1 91.0 81.7

MCS(ours) 86.3 72.8 86.6 92.8 73.0 89.3 84.6 76.5 95.5 90.4 85.6 88.9 85.2

the shallow UDA approaches for both kinds of features.

Comparing them with our method, we can easily find that

MCS always beats them by a large margin in terms of the

average accuracy. Specifically, MCS ranks the first or sec-

ond in 10 and 11 out of 12 tasks for VGG-FC6 and VGG-

FC7 features, respectively.

Note that, most previous UDA methods except

LDADA [45] favor VGG-FC6 features because they may

be not much more discriminative than VGG-FC7 features,

making them suitable for general feature transformation

based approaches. By contrast, MCS is somewhat robust

to the feature type, since the dropping rate of accuracy from

VGG-FC6 to VGG-FC7 is relatively small.

4.1.4 Results on the Office-Home dataset

For the Office-Home dataset, we explore PyTorch to fine-

tune the ResNet-50 model [26] pre-trained on the ImageNet

dataset with the labeled source images and extract the fea-

tures after the 5-th pooling layer for each task.

LDADA [45] performs quite worse with a 2.6 average

accuracy, thus, we do not report its results in Table 3. Obvi-

ously, MCS again performs the best among all the methods

while CDAN+E [40] and DICE [36] achieves the second

Table 3. Accuracy (%) on Office-Home with ResNet-50 features

and the evaluation setup of [66, 36]. [∗ using VGG-FC features]
Source Ar Cl Pr Re

Avg.
Target Cl Pr Re Ar Pr Re Ar Cl Re Ar Cl Pr

1NN 44.1 61.8 69.2 49.6 60.6 63.3 51.6 43.1 70.6 63.1 48.9 76.2 58.5

SA 44.8 65.5 70.6 48.8 61.5 64.1 50.1 42.8 71.1 62.2 48.1 76.2 58.8

JDA 46.3 66.0 69.1 47.1 63.4 63.3 48.2 44.0 70.8 60.1 49.6 76.8 58.7

CORAL 47.1 67.3 74.8 52.3 63.6 66.9 51.0 41.9 72.6 62.8 46.8 77.7 60.4

JGSA 50.3 70.0 73.8 52.7 68.9 68.2 55.6 47.9 75.1 64.0 52.0 78.7 63.1

ILS 46.7 64.3 69.7 44.3 60.9 62.6 47.9 42.7 70.4 61.4 48.5 75.8 57.9

DICE 53.2 72.4 74.5 56.5 70.1 69.1 58.9 51.5 77.0 66.5 54.8 79.0 65.3

GAKT [13]∗ 34.5 43.6 55.3 36.1 52.7 53.2 31.6 40.6 61.4 45.6 44.6 64.9 47.0

CDAN [40] 49.0 69.3 74.5 54.4 66 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8

CDAN+E [40] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8

MCS(ours) 55.9 73.8 79.0 57.5 69.9 71.3 58.4 50.3 78.2 65.9 53.2 82.2 66.3

and third best performance. Carefully comparing our MCS

with CDAN+E and DICE, we find that MCS consistently

performs better than CDAN+E and DICE in 7 out of 12

tasks. Checking the results of MCS again, we find that the

results are somewhat low when Cl is the source domain.

This may be because our method adopts the nearest cen-

troid classifier which may ignore the diversity of each class

in the source domain like the ‘Clipart’ subset.

Figure 3. Accuracy improvement (%) of RevGrad [17] and

DAN [39] when integrated with MCS(ours) on Office31 and

Office-Home via ResNet-50. (A-D: A is Source, D is Target)

4.1.5 Parameter Sensitivity Analysis

To investigate the sensitivity of dimensionality k, parame-

ters λ and α in our method, we exploit four UDA tasks on

the Office31 and Office-Home datasets, i.e., A→D, A→W,

Ar→Cl, and Ar→Pr. We respectively display all these pa-

rameter sensitivity analysis results in Figures 2(a)∼2(c),

with a wide range of d ∈ [100, 110, · · · , 200] and λ, α ∈
{0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5}.

2980



Table 4. Domain generalization performance accuracy (%) on the VLCS dataset with the evaluation setup of CIDG [35].
Source Target 1NN KPCA DICA Undo-bias SCA CIDG MCSA(ours) MCSB(ours)

L,C,S V 53.27 ± 1.52 58.62 ± 1.44 58.29 ± 1.51 57.73 ± 1.02 57.48 ± 1.78 65.65 ± 0.52 65.74 ± 1.26 65.17 ± 0.44

V,C,S L 50.35 ± 0.94 53.80 ± 1.78 50.35 ± 1.45 58.16 ± 2.13 52.07 ± 0.86 60.43 ± 1.57 57.42 ± 0.48 59.95 ± 0.40

V,L,S C 76.82 ± 1.56 85.84 ± 1.64 73.32 ± 4.13 82.18 ± 1.77 70.39 ± 1.42 91.12 ± 1.62 92.40 ± 0.62 89.30 ± 0.37

V,L,C S 51.78 ± 2.07 53.23 ± 0.62 54.97 ± 0.61 55.02 ± 2.53 54.46 ± 2.71 60.85 ± 1.05 62.07 ± 0.82 65.16 ± 0.68

C,S V,L 52.44 ± 1.87 55.74 ± 1.01 53.76 ± 0.96 56.83 ± 0.67 56.05 ± 0.98 59.25 ± 1.21 58.24 ± 0.44 60.42 ± 0.40

L,S V,C 57.09 ± 1.43 58.50 ± 3.84 44.09 ± 0.58 51.16 ± 3.52 49.98 ± 1.84 55.65 ± 3.57 68.46 ± 2.66 67.19 ± 0.74

L,C V,S 45.04 ± 2.49 45.13 ± 3.01 44.81 ± 1.62 52.16 ± 0.80 48.97 ± 1.04 54.04 ± 0.91 57.77 ± 1.29 59.73 ± 1.23

V,S L,C 58.39 ± 0.78 64.56 ± 0.99 60.68 ± 1.36 68.58 ± 1.62 63.29 ± 1.34 70.44 ± 1.43 70.02 ± 0.32 70.43 ± 0.38

V,C L,S 47.09 ± 2.49 55.79 ± 1.57 49.81 ± 1.40 59.00 ± 2.49 53.47 ± 0.71 61.61 ± 0.67 64.51 ± 0.54 61.46 ± 0.51

V,L C,S 59.21 ± 1.84 63.88 ± 0.36 61.22 ± 0.95 64.26 ± 2.77 66.68 ± 1.09 70.89 ± 1.31 70.88 ± 0.51 72.12 ± 0.53

Table 5. Average accuracy (%) on the Office31 dataset via ResNet-

50 with the evaluation setup of [44, 53, 40].

Methods
before 2018

RevGrad DAN ADDAJAN-ARevGrad [17] DAN [39]

[17] [39] [64] [44] +MCS(ours) +MCS(ours)

81.8 81.7 82.9 85.3 87.8 87.4

Methods
after 2018

GTA SimNet iCAN TEM CDAN CDAN+E

[56] [53] [75] [29] [40] [40]

86.5 86.2 87.2 87.2 86.6 87.7

It can be observed that MCS is robust with regard to

different values of k in Figure 2(a). For high-dimensional

features via AlexNet and ResNet-50, k = 150 is an opti-

mal choice. When λ → 0, the optimization problem is ill-

defined. When λ → ∞, the minimum centroid shift is not

performed, and MCS cannot construct robust representation

for cross-domain classification. Concerning the sensitivity

of regularization parameter λ, we plot the accuracies in Fig-

ure 2(b), which indicates that λ ∈[1,2] is an optimal choice.

Theoretically, smaller values of α can make self-learning

in the target domain (i.e., using the class mean itself) more

important in MCS. Observing the accuracy in Figure 2(c),

we can discover that α ∈[0.1,1.0] is an optimal choice un-

der which both the source centroids and the pseudo target

class means are effectively considered. As expected, larger

values of α can degenerate the adaptation performance due

to the essential heterogeneity.

Finally, we plot the accuracy w.r.t. the number of itera-

tions in Figure 2(d) where we consider the inner loop as well

as the outer loop. Obviously, the accuracy always grows

gradually until convergence within 4 outer iterations.

4.1.6 Combination with Deep UDA Methods

The comparisons with recent state-of-the-art shallow meth-

ods demonstrate the effectiveness of our method. How-

ever, we still doubt that whether deep adaptation methods

can be enhanced with our simple method. Here we inves-

tigate this problem by exploiting two popular deep domain

adaptation methods , i.e., RevGrad [17] and DAN [39] for

cross-domain object recognition and GTA [56] for cross-

domain digit recognition. Regarding these deep UDA meth-

ods [17, 39, 56], we extract the intermediate features for

both domains and take them as input for our method MCS.

As can be seen from Figure 3, once MCS is integrated

with deep UDA methods, i.e., RevGrad and DAN on the

Office31 and Office-Home datasets, the results of most

Table 6. Accuracy (%) cross-domain recognition tasks on three

digit based datasets (each domain using the entire training set [64,

56]). M: MNIST (60,000), U: USPS (7,291), S: SVHN (73,257).

Method M→U U→M S→M Avg.

Source-only [56] 84.6 68.9 60.9 71.5

Source-only [56]+MCS(ours) 91.5 94.5 82.3 88.4

GTA [56] 96.5 98.1 89.7 94.8

GTA [56]+MCS(ours) 97.8 98.2 91.7 95.9

DRCN [19] - 73.7 82.0 -

ADDA [64] - 90.1 76.0 -

PixelDA [2] 95.9 - - -

SBADA-GAN [54] 97.6 95.0 76.1 89.6

S→M: LeNet (56.8), DICEMV-SVM [36] (80.9), MCS (ours, 82.6)

cases are improved in 17 and 15 out of 18 tasks, respec-

tively. Checking the average accuracy (%) in Table 5,

with the help of MCS, both the results of RevGrad and

DAN are significantly improved, from 81.8 to 87.8 and

81.7 to 87.4. For generic cross-domain object recogni-

tion, we explore the pre-trained ResNet-50 model as our

basic network and compare it with recent state-of-the-art

methods [56, 53, 75, 29, 40] in Table 5. Specifically,

RevGrad+MCS obtains the best average accuracy, which

even beats the best result reported in CDAN+E [40]. It

can be expected that MCS can achieve much higher results

when combined with better adaptation methods like TEM.

Regarding the digit recognition task, we explore 3 pop-

ular digit datasets, i.e., MNIST [33], USPS [28] and

SVHN [50]. Specifically, we follow the standard proto-

col that uses the corresponding entire training sets as do-

mains, and the testing sets for validation. All the images

are rescaled to 32×32. In fact, we exploit the Source-only

and GTA [56] models as a baseline network, and com-

pare them with DRCN [19], PixelDA [2], ADDA [64],

and SBADA-GAN[54] in Table 6. We easily observe that

Source-only+MCS and GTA+MCS are much better than

Source-only and GTA, respectively. Compared with recent

state-of-the-art results [19, 2, 64, 54], GTA+MCS obtains

the best results. Besides, MCS beats DICEMV-SVM with the

features provide in [36]. Regarding the per-class classifica-

tion accuracy (%) in M→U and U→M, MCS scores 97.5

and 98.2 that are higher than 96.4 and 95.6 in SimNet [53].

4.2. Domain Generalization
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Table 7. Multi-source domain adaptation performance accuracy

(%) on the PIE dataset with the evaluation setup of StP [37].
Source 1NN StP MCSC MCSD 1NN StP MCSC MCSD 1NN StP MCSC MCSD

C05,C07
Target=C09 Target=C27 Target=C29

45.4 53.1 63.8 72.8 60.7 43.8 90.7 92.9 31.2 60.0 49.6 61.8

C05,C09
Target=C07 Target=C27 Target=C29

45.2 44.9 66.4 70.3 59.1 57.4 90.5 90.7 36.9 67.5 55.7 63.1

C05,C27
Target=C07 Target=C09 Target=C29

69.1 58.3 82.9 81.1 71.3 45.4 73.0 74.6 45.6 58.2 58.8 69.3

C05,C29
Target=C07 Target=C09 Target=C27

38.5 66.8 67.3 63.9 35.8 71.6 71.0 75.9 50.3 71.0 89.1 89.3

C07,C09
Target=C05 Target=27 Target=C29

40.8 51.8 71.0 72.3 62.0 55.7 92.2 92.2 35.3 50.1 70.2 69.2

C07,C27
Target=C05 Target=C09 Target=C29

55.3 46.7 87.4 86.6 74.6 51.0 71.3 80.0 43.0 51.0 68.5 73.5

C07,C29
Target=C05 Target=C09 Target=C27

42.4 40.1 68.4 76.4 51.6 51.0 73.4 77.0 60.0 50.3 89.4 89.5

C09,C27
Target=C05 Target=C07 Target=C29

52.9 51.5 83.8 82.0 70.3 55.3 84.0 86.0 41.6 71.7 71.4 72.3

C09,C29
Target=C05 Target=C07 Target=C27

36.4 43.1 64.0 70.0 47.5 38.5 70.1 65.9 54.2 58.4 89.1 92.8

C27,C29
Target=C05 Target=C07 Target=C09

53.2 47.2 83.3 84.9 70.3 57.1 84.6 81.0 73.4 58.0 74.5 83.6

Average : 1NN (51.8) StP (54.2) MCSC (ours, 75.2) MCSD (ours, 78.0)

Here we conduct experiments on a real world image clas-

sification dataset VLCS like [35], including four domains:

VOC2007 (V), LabelMe (L), Caltech-101 (C) and SUN09

(S). These datasets share 5 object categories: bird, car,

chair, dog, and person. The datasets from source domains

are split into two parts: 70% for training and 30% for vali-

dation, following [35]. The whole target domain is used for

testing. We repeat the random selection 10 times and report

the mean classification accuracy and standard deviation.

For the domain generalization task, we compute all the

total scatter matrices for each source domain and obtain St

by adding them up. Similarly, we compute all the within-

class scatter matrices for each source domain and obtain

Sw via adding them up, where each ∆r is a fixed variable

by measuring the difference between different source class

means. To this end, we obtain the optimal projection ma-

trix W via Eq. (7). Note that there is no need to learn Ŷt

and ∆r, making this problem to be a one-pass algorithm.

For MCSA, each class has multiple centroids instead of one,

then we estimate Ŷt via Eq. (9). MCSB needs to know all

the source instances instead of the estimated distributional

parameters µ̂r, Σ̂r, it follows DICESVM [36] by training a

linear SVM classifier on the projected source instances.

We compare MCSA and MCSB with KPCA [57],

DICA [48], Undo-bias [31], SCA [18] and CIDG [35]. As

can be seen from Table 4, both MCSA and MCSB win 4

out of 10 tasks, while the best performing baseline CIDG

merely win 2 out of 10 tasks. Besides, the standard devia-

tions are much smaller than CIDG, which indicates that our

methods are somewhat robust.

4.3. Multi­source Domain Adaptation

To address the multi-source domain adaptation task, we

develop two different methods MCSC and MCSD. Specif-

ically, MCSC naively combines multiple source domains

into one source domain and becomes a vanilla domain adap-

tation task. Similar to MCSA, MCSD sums up all the

Table 8. Multi-source domain adaptation performance accuracy

(%) on the Office31 and Office-Caltech datasets with the evalu-

ation setups of DLD [47] and StP [37], respectively.
Method Dataset A,D→W A,W→D D,W→A Avg.

DCTN [69]

Office31

96.9 99.6 54.9 83.8

DLD [47] 94.6 93.7 62.6 83.6

MsDA [47] 95.8 94.8 62.9 84.5

MCSC (ours) 96.5 98.2 62.0 85.6

MCSD(ours) 97.2 99.4 61.3 86.0

Method

Office-
Caltech

A,C,D→W A,C,W→D A,D,W→C C,D,W→A Avg.

StP [37] 94.9 96.2 88.7 94.5 93.6

MCSC (ours) 97.6 96.8 89.2 93.5 94.3

MCSD(ours) 98.6 100.0 88.3 92.4 94.8

within-class scatter matrices and total matrices and adopt

them in Eq. (7), and assumes the optimal centroid on the tar-

get to be close to the mean of different source class means.

We utilize the PIE dataset that includes facial images

of 68 people with various pose, illumination, and expres-

sion changes. Following [41, 37], we select 5 out of 13

poses, i.e., C05 (left), C07 (upward), C09 (downward), C27

(frontal) and C29 (right). These images are cropped to the

size 32×32, constituting 1,024-dimensional features. We

compare MCSC and MCSD with StP [37] in Table 7. Gen-

erally, MCSC and MCSD achieve the best results in 7 and

19 out of 27 tasks, respectively. They significantly outper-

form StP for almost all tasks except (C05, C09)→C29, and

MCSD performs slightly better than MCSC . This may be

because that MCSC ignores the size of different source do-

mains, which mainly relies on the larger source.

In addition, we consider the Office31 (AlexNet fea-

tures [59]) and Office-Caltech (DeCAF features [74, 36])

datasets with the protocols in DLD [47] and StP [37], re-

spectively. As can be seen from Table 8, we discover that

MCSD is always superior to MCSC and both of them out-

perform other methods in terms of the average accuracy.

5. Conclusion

In this paper, we have proposed a simple, efficient, yet

effective approach for visual domain adaptation. The key

idea is to seek a subspace where the target centroids are

moderately shifted from those in the source domain. Then a

unified objective is designed to derive several sub-problems

with closed-form solutions to subspace discovery and tar-

get pseudo-labeling, and the alternating minimization al-

gorithm is guaranteed to converge. Note that, our method

only acquires some class-wise distribution estimators from

source data as distant supervisions, hence it also provides a

privacy-preserving way for source domain data. Besides, it

can be easily extended for domain generalization and multi-

source domain adaptation problems. Extensive experiments

on several visual benchmarks demonstrate the superiority

of the proposed method over many existing state-of-the-art

methods. Generally, our method is impressively simple and

efficient, hence, it can be considered as a promising baseline

for domain adaptation and generalization tasks.
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