
Distant Supervision for Relation Extraction beyond the Sentence
Boundary

Chris Quirk and Hoifung Poon

Microsoft Research
One Microsoft Way

Redmond, WA 98052
{chrisq,hoifung}@microsoft.com

Abstract

The growing demand for structured

knowledge has led to great interest in

relation extraction, especially in cases

with limited supervision. However,

existing distance supervision approaches

only extract relations expressed in single

sentences. In general, cross-sentence

relation extraction is under-explored, even

in the supervised-learning setting. In this

paper, we propose the first approach for

applying distant supervision to cross-

sentence relation extraction. At the core

of our approach is a graph representa-

tion that can incorporate both standard

dependencies and discourse relations,

thus providing a unifying way to model

relations within and across sentences. We

extract features from multiple paths in this

graph, increasing accuracy and robustness

when confronted with linguistic variation

and analysis error. Experiments on an

important extraction task for precision

medicine show that our approach can learn

an accurate cross-sentence extractor, using

only a small existing knowledge base and

unlabeled text from biomedical research

articles. Compared to the existing distant

supervision paradigm, our approach

extracted twice as many relations at

similar precision, thus demonstrating the

prevalence of cross-sentence relations and

the promise of our approach.

1 Introduction

The accelerating pace in technological advance

and scientific discovery has led to an explosive

growth in knowledge. The ensuing information

overload creates new urgency in assimilating frag-

mented knowledge for integration and reasoning.

A salient case in point is precision medicine (Bah-

call, 2015). The cost of sequencing a person’s

genome has fallen below $10001, enabling indi-

vidualized diagnosis and treatment of complex ge-

netic diseases such as cancer. The availability of

measurement for 20,000 human genes makes it

imperative to integrate all knowledge about them,

which grows rapidly and is scattered in millions

of articles in PubMed2. Traditional extraction

approaches require annotated examples, which

makes it difficult to scale to the explosion of ex-

traction demands. Consequently, there has been

increasing interest in indirect supervision (Banko

et al., 2007; Poon and Domingos, 2009; Toutanova

et al., 2015), with distant supervision (Craven et

al., 1998; Mintz et al., 2009) emerging as a partic-

ularly promising paradigm for augmenting exist-

ing knowledge bases from unlabeled text (Poon et

al., 2015; Parikh et al., 2015).

This progress is exciting, but distant-

supervision approaches have so far been limited

to single sentences, thus missing out on relations

crossing the sentence boundary. Consider the fol-

lowing example:“The p56Lck inhibitor Dasatinib was

shown to enhance apoptosis induction by dexamethasone

in otherwise GC-resistant CLL cells. This finding concurs

with the observation by Sade showing that Notch-mediated

resistance of a mouse lymphoma cell line could be overcome

by inhibiting p56Lck.” Together, the two sentences

convey the fact that the drug Dasatinib could

overcome resistance conferred by mutations to

the Notch gene, which can not be inferred from

either sentence alone. The impact of missed

opportunities is especially pronounced in the long

tail of knowledge. Such information is crucial

for integrative reasoning as it includes the newest

1http://www.illumina.com/systems/

hiseq-x-sequencing-system.html
2http://www.ncbi.nlm.nih.gov/pubmed



findings in specialized domains.

In this paper, we present DISCREX, the first ap-

proach for distant supervision to relation extrac-

tion beyond the sentence boundary. The key idea

is to adopt a document-level graph representation

that augments conventional intra-sentential depen-

dencies with new dependencies introduced for ad-

jacent sentences and discourse relations. It pro-

vides a unifying way to derive features for classi-

fying relations between entity pairs. As we aug-

ment this graph with new arcs, the number of pos-

sible paths between entities grow. We demonstrate

that feature extraction along multiple paths leads

to more robust extraction, allowing the learner to

find structural patterns even when the language

varies or the parser makes an error.

The cross-sentence scenario presents a new

challenge in candidate selection. This motivates

our concept of minimal-span candidates in Sec-

tion 3.2. Excluding non-minimal candidates sub-

stantially improves classification accuracy.

There is a long line of research on discourse

phenomena, including coreference (Haghighi and

Klein, 2007; Poon and Domingos, 2008; Rahman

and Ng, 2009; Raghunathan et al., 2010), narrative

structures (Chambers and Jurafsky, 2009; Che-

ung et al., 2013), and rhetorical relations (Marcu,

2000). For the most part, this work has not been

connected to relation extraction. Our proposed ex-

traction framework makes it easy to integrate such

discourse relations. Our experiments evaluated

the impact of coreference and discourse parsing, a

preliminary step toward in-depth integration with

discourse research.

We conducted experiments on extracting drug-

gene interactions from biomedical literature, an

important task for precision medicine. By boot-

strapping from a recently curated knowledge base

(KB) with about 162 known interactions, our DIS-

CREX system learned to extract inter-sentence

drug-gene interactions at high precision. Cross-

sentence extraction doubled the yield compared to

single-sentence extraction. Overall, by applying

distant supervision, we extracted about 64,000 dis-

tinct interactions from about one million PubMed

Central full-text articles, attaining two orders of

magnitude increase compared to the original KB.

2 Related Work

To the best of our knowledge, distant supervision

has not been applied to cross-sentence relation ex-

traction in the past. For example, Mintz et al.

(2009), who coined the term “distant supervision”,

aggregated features from multiple instances for the

same relation triple (relation, entity1, entity2), but

each instance is a sentence where the two entities

co-occur. Thus their approach cannot extract rela-

tions where the two entities reside in different sen-

tences. Similarly, Zheng et al. (2016) aggregated

information from multiple sentential instances, but

could not extract cross-sentence relations.

Distant supervision has also been applied to

completing Wikipedia Infoboxes (Wu and Weld,

2007) or TAC KBP Slot Filling3, where the goal is

to extract attributes for a given entity, which could

be considered a special kind of relation triples (at-

tribute, entity, value). These scenarios are very

different from general cross-sentence relation ex-

traction. For example, the entity in considera-

tion is often the protagonist in the document (ti-

tle entity of the article). Moreover, state-of-the-art

methods typically consider extracting from single

sentences only (Surdeanu et al., 2012; Surdeanu

and Ji, 2014; Koch et al., 2014).

In general, cross-sentence relation extrac-

tion has received little attention, even in the

supervised-learning setting. Among the limited

amount of prior work, Swampillai & Stevenson

(2011) is the most relevant to our approach, as it

also considered syntactic features and introduced

a dependency link between the root nodes of parse

trees containing the given pair of entities. How-

ever, the differences are substantial. First and

foremost, their approach used standard supervised

learning rather than distant supervision. More-

over, we introduced the document-level graph rep-

resentation, which is much more general, capable

of incorporating a diverse set of discourse rela-

tions and enabling the use of rich syntactic and

surface features (Section 3). Finally, Swampillai

& Stevenson (2011) evaluated on MUC64, which

contains only 318 Wall Street Journal articles.

In contrast, we evaluated on large-scale extrac-

tion from about one million full-text articles and

demonstrated the large impact of cross-sentence

extraction for an important real-world application.

The lack of prior work in cross-sentence rela-

tion extraction may be partially explained by the

domains of focus. Prior extraction work focuses

3http://www.nist.gov/tac/2016/KBP/

ColdStart/index.html
4https://catalog.ldc.upenn.edu/

LDC2003T13



on newswire text5 and the Web (Craven et al.,

2000). In these domains, the extracted relations

often involve popular entities, for which there of-

ten exist single sentences expressing the relation

(Banko et al., 2007). However, there is much

less redundancy in specialized domains such as the

frontiers of science and technology, where cross-

sentence extraction is more likely to have a sig-

nificant impact. The long-tailed characteristics of

such domains also make distant supervision a nat-

ural choice for scaling up learning. This paper rep-

resents a first step toward exploring the confluence

of these two directions.

Distant supervision has been extended to cap-

ture implicit reasoning, via matrix factorization or

knowledge base embedding (Riedel et al., 2013;

Toutanova et al., 2015; Toutanova et al., 2016).

Additionally, various models have been proposed

to address the noise in distant supervision labels

(Hoffmann et al., 2011; Surdeanu et al., 2012).

These directions are orthogonal to cross-sentence

extraction, and incorporating them will be inter-

esting future work.

Recently, there has been increasing interest

in relation extraction for biomedical applications

(Kim et al., 2009; Nédellec et al., 2013). However,

past methods are generally limited to single sen-

tences, whether using supervised learning (Bjorne

et al., 2009; Poon and Vanderwende, 2010; Riedel

and McCallum, 2011) or distant supervision (Poon

et al., 2015; Parikh et al., 2015).

The idea of leveraging graph representations

has been explored in many other settings, such

as knowledge base completion (Lao et al., 2011;

Gardner and Mitchell, 2015), frame-semantic

parsing (Das and Smith, 2011), and other NLP

tasks (Radev and Mihalcea, 2008; Subramanya

et al., 2010). Linear and dependency paths are

popular features for relation extraction (Snow et

al., 2006; Mintz et al., 2009). However, past ex-

traction focuses on single sentences, and typically

considers the shortest path only. In contrast, we al-

low interleaving edges from dependency and word

adjacency, and consider top K paths rather than

just the shortest one. This resulted in substantial

accuracy gain (Section 4.5).

There has been prior work on leveraging coref-

erence in relation extraction, often in the standard

supervised setting (Hajishirzi et al., 2013; Durrett

5E.g., MUC6, ACE https://www.ldc.upenn.

edu/collaborations/past-projects/ace

and Klein, 2014), but also in distant supervision

(Koch et al., 2014; Augenstein et al., 2016). No-

tably, while Koch et al. (2014) and Augenstein et

al. (2016) still learned to extract from single sen-

tences, they augmented mentions with coreferent

expressions to include linked entities that might

be in a different sentence. We explored the po-

tential of this approach in our experiments, but

found that it had little impact in our domain, as

it produced few additional candidates beyond sin-

gle sentences. Recently, discourse parsing has re-

ceived renewed interest (Ji and Eisenstein, 2014;

Feng and Hirst, 2014; Surdeanu et al., 2015), and

discourse information has been shown to improve

performance in applications such as question an-

swering (Sharp et al., 2015). In this paper, we

generated coreference relations using the state-of-

the-art Stanford coreference systems (Lee et al.,

2011; Recasens et al., 2013; Clark and Manning,

2015), and generated rhetorical relations using the

winning approach (Wang and Lan, 2015) in the

CoNLL-2015 Shared Task on Discourse Parsing.

3 Distant Supervision for Cross-Sentence

Relation Extraction

In this section, we present DISCREX, short for

DIstant Supervision for Cross-sentence Relation

EXraction. Similar to conventional approaches,

DISCREX learns a classifier to predict the relation

between two entities, given text spans where the

entities co-occur. Unlike most existing methods,

however, DISCREX allows text spans comprising

multiple sentences and explores potentially many

paths between these entities.

3.1 Distant Supervision

Like prior approaches, DISCREX learns from an

existing knowledge base (KB) and unlabeled text.

The KB contains known instances for the given re-

lation. In a preprocessing step, relevant entities are

annotated within this text using available entity ex-

traction tools. Co-occurring entity pairs known to

have the relation in the KB are chosen as positive

examples. Under the assumption that related en-

tities are relatively rare, we randomly sample co-

occurring entity pairs not known to have the rela-

tion as negative examples. To ensure a balanced

training set, we always sampled roughly the same

number of negative examples as positive ones.
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ROOT

DET

NN

NSUBJPASS

ABBREV
AUXPASS

XCOMP NN

DOBJ

ADVMOD
AMOD

NN

PREP IN

NEXTSENT

This shows that Notch -mediated resistance of a mouse lymphoma cell line could be overcome by inhibiting p56Lck .

ROOT

DET

COMPLM

HYPHEN AMOD

NSUBJPASS

DET
NN

NN

NN

PREP OF

AUX
AUXPASS

CCOMP

AGENT
DOBJ

Figure 1: An example document graph for two sentences. Edges represent conventional intra-sentential

dependencies, as well as connections between the roots of adjacent sentences (NEXTSENT). For sim-

plicity, we omit edges between adjacent words or representing discourse relations.

3.2 Minimal-Span Candidates

In standard distant supervision, co-occurring en-

tity pairs with known relations are enlisted as can-

didates of positive training examples. This is rea-

sonable when the entity pairs are within single

sentences. In the cross-sentence scenario, how-

ever, this would risk introducing too many wrong

examples. Consider the following two sentences:

Since amuvatinib inhibits KIT, we validated MET

kinase inhibition as the primary cause of cell

death. Additionally, imatinib is known to inhibit

KIT. The mention of drug-gene pair imatinib and

KIT (in bold) span two sentences, but the same pair

also co-occur in the second sentence alone. In gen-

eral, one might find co-occurring entity pairs in a

large text span, where the same pairs also co-occur

in a smaller text span that overlaps with the larger

one. In such cases, if there is a relation between

the pair, mostly likely it is expressed in the smaller

text span when the entities are closer to each other.

This motivates us to define that an co-occurring

entity pair has the minimal span if there does

not exist another overlapping co-occurrence of the

same pair where the distance between the entity

mentions is smaller. Here, the distance is mea-

sured in the number of consecutive sentences be-

tween the two entities. Experimentally, we com-

pared extraction with or without the restriction to

minimal-span candidates, and show that the for-

mer led to much higher extraction accuracy.

3.3 Document Graph

To derive features for entity pairs both within and

across sentences, DISCREX introduces a docu-

ment graph with nodes representing words and

edges representing intra- and inter-sentential re-

lations such as dependency, adjacency, and dis-

course relations. Figure 1 shows an example doc-

ument graph spanning two sentences. Each node

is labeled with its lexical item, lemma, and part-

of-speech. We used a conventional set of intra-

sentential edges: typed, collapsed Stanford depen-

dencies derived from syntactic parses (de Marn-

effe et al., 2006). To mitigate parser errors, we

also add edges between adjacent words.

As for inter-sentential edges, a simple but intu-

itive approach is to add an edge between the de-

pendency roots of adjacent sentences: if we imag-

ined that each sentence participated as a node in a

type of discourse dependency tree, this represents

a simple right-branching baseline. To gather a

finer grained representation of rhetorical structure,

we ran a state-of-the-art discourse parser (Wang

and Lan, 2015) to identify discourse relations,

which returned a set of labeled binary relations

between spans of words. We found the short-

est path between any word in the first span and

any word in the second span using only depen-

dency and adjacent sentence edges, and added an

edge labeled with the discourse relation between

these two words. Another source of potentially

cross-sentence links comes from coreference. We

generated coreference relations using the Stanford

Coreference systems (both statistical and deter-

ministic) (Lee et al., 2011; Recasens et al., 2013;

Clark and Manning, 2015), and added edges from

anaphora to their antecedents.

We also considered a special case of cross-



sentence relation extraction by augmenting single-

sentence candidates with coreference (Koch et al.,

2014; Augenstein et al., 2016). Namely, extrac-

tion is still conducted within single sentences, yet

entity linking is extended to consider all corefer-

ence mentions for a relation argument. However,

this did not produce significantly more candidates

(2% more for positive examples), most of which

were not cross-sentence ones (only 1%).

3.4 Features

Dependency paths have been established as a par-

ticularly effective source for relation extraction

features (Mintz et al., 2009). DISCREX gener-

alizes this idea by defining feature templates over

paths in the document graph, which may contain

interleaving edges of various types (dependency,

word and sentence adjacency, discourse relation).

Dependency paths provide interpretable and gen-

eralizable features but are subject to parser error.

One error mitigation strategy is to add edges be-

tween adjacent words, allowing multiple paths be-

tween entities.

Feature extraction begins with a pair of entities

in the document graph that potentially are con-

nected by a relation. We begin by finding a path

between the entities of interest, and extract fea-

tures from that path.

Over each such path, we explore a number

of different features. Below, we assume that

each path is a sequence of nodes and edges

(n1, e1, n2, . . . , eL−1, nL), with n1 and nL re-

placed by special entity marker nodes.6

Whole path features We extract four binary in-

dicator features for each whole path, with nodes ni

represented by their lexical item, lemma, part-of-

speech tag, or nothing. These act as high precision

but low recall indicators of useful paths.

Path n-gram features A more robust and gener-

alizable approach is to consider a sliding window

along each path. For each position i, we extract n-

gram (n = 1−5) features starting at each node (ni,

then ni ·ei and so on until ni ·ei ·ni+1 ·ei+1 ·ni+2)

and each edge (ei up to ei ·ni+1 ·ei+1 ·ni+2 ·ei+2).

Again, each node could be represented by its lex-

ical item, lemma, or part of speech, leading to 27

feature templates. We add three more feature tem-

plates using only edge labels (ei; ei · ei+1; and

ei · ei+1 · ei+2) for a total of 30 feature templates.

6 This prevents our method from memorizing the entities
in the original knowledge base.

3.5 Multiple paths

Most prior work has only looked at the single

shortest path between two entities. When authors

use consistent lexical and syntactic constructions,

and when the parser finds the correct parse, this

approach works well. Real data, however, is quite

noisy.

One way to mitigate errors and be robust against

noise is to consider multiple possible paths. Given

a document graph with arcs of multiple types,

there are often multiple paths between nodes. For

instance, we might navigate from the gene to the

drug using only syntactic arcs, or only adjacency

arcs, or some combination of the two. Consid-

ering such variations gives more opportunities to

find commonalities between seemingly disparate

language.

We explore varying the number of shortest

paths, N , between the nodes in the document

graph corresponding to the relevant entities. By

default, all edge types have an equal weight of

1, except edges between adjacent words. Empir-

ically, penalizing adjacency edges led to substan-

tial benefits, though including adjacency arcs was

important for benefits from multiple paths. This

suggests that the parser produces valuable infor-

mation, but that we should have a back-off strategy

for accommodating parser errors.

3.6 Evaluation

There is no gold annotated dataset in distant super-

vision, so evaluation typically resorts to two strate-

gies. One strategy uses held-out samples from the

training dataset, essentially treating the noisy an-

notation as gold standard. This has the advantage

of being automatic, but could produce biased re-

sults due to false negatives (i.e., entity pairs not

known to have the relation might actually have the

relation). Another strategy reports absolute recall

(number of extractions from all unlabeled text), as

well as estimated precision by manually annotat-

ing extraction samples from general text. We con-

ducted both types of evaluation in the experiments.

4 Experiments

We consider the task of extracting drug-gene inter-

actions from biomedical literature. A drug-gene

interaction is broadly construed as an association

between the drug efficacy and the gene status. The

status includes mutations and activity measure-

ments (e.g., overexpression). For simplicity, we



Figure 2: Sample rows from the Gene Drug Knowledge Database. Our current work focuses on two

important columns: gene, and therapeutic context (drug).

Number of Candidates K = 1 K = 3

Unique Pairs 169,168 332,969

Instances 1,724,119 3,913,338

Matching GDKD 58,523 87,773

Table 1: Statistics for drug-gene interaction can-

didates in PubMed Central articles: unique pairs,

instances, instances with known relations in Gene

Drug Knowledge Database (GDKD).

only consider the relation at the drug-gene level,

without distinguishing among details such as drug

dosage or distinct gene status.

4.1 Knowledge Base

We used the Gene Drug Knowledge Database

(GDKD) (Dienstmann et al., 2015) for distant

supervision. Figure 2 shows a snapshot of the

dataset. Each row specifies a gene, some drugs,

the fine-grained relations (e.g., sensitive), the gene

status (e.g., mutation), and some supporting arti-

cle IDs. In this paper, we only consider the coarse

drug-gene association and ignore the other fields.

4.2 Unlabeled Text

We obtained biomedical literature from PubMed

Central7, which as of early 2015 contained about

960,000 full-text articles. We preprocessed the

text using SPLAT (Quirk et al., 2012) to conduct

tokenization, part-of-speech tagging, and syntactic

parsing, and obtained Stanford dependencies (de

Marneffe et al., 2006) using Stanford CoreNLP

(Manning et al., 2014). We used the entity tag-

gers from Literome (Poon et al., 2014) to identify

drug and gene mentions.

4.3 Candidate Selection

To avoid unlikely candidates such as entity pairs

far apart in the document, we consider entity pairs

7http://www.ncbi.nlm.nih.gov/pmc/

within K consecutive sentences. K = 1 corre-

sponds to extraction within single sentences. For

cross-sentence extraction, we chose K = 3 as it

doubled the number of overall candidates, while

being reasonably small so as not to introduce too

many unlikely ones. Table 1 shows the statis-

tics of drug-gene interaction candidates identified

in PubMed Central articles. For K = 3, there

are 87,773 instances for which the drug-gene pair

has known associations in Gene Drug Knowledge

Database (GDKD), which are used as positive

training examples. Note that these only include

minimal-span candidates (Section 3.2). Without

the restriction, there are 225,520 instances match-

ing GDKD, though many are likely false positives.

4.4 Classifier

Our classifiers were binary logistic regression

models, trained to optimize log-likelihood with an

ℓ2 regularizer. We used a weight of 1 for the reg-

ularizer; the results were not very sensitive to the

specific value. Parameters were optimized using

L-BFGS (Nocedal and Wright, 2006). Rather than

explicitly mapping each feature to its own dimen-

sion, we hashed the feature names and retained 22

bits (Weinberger et al., 2009). Approximately 4

million possible features seemed to suffice for our

problem: fewer bits produced degradations, but

more bits did not lead to improvements.

4.5 Automatic Evaluation

To evaluate the impact of features, we conducted

five-fold cross validation, by treating the positive

and negative examples from distant supervision as

gold annotation. To avoid train-test contamina-

tion, all instances from a document are assigned

to the same fold. We then evaluated the average

test performance across folds. Since our datasets

were balanced by design (Section 3.1), we simply

reported accuracy. As discussed before, the results

could be biased by the noise in annotation, but this



Features Single-Sent. Cross-Sent.

Base 81.3 81.7

3 paths 85.4 85.5

+coref 85.0 84.7

+disc — 84.6

+coref+disc — 84.5

10 paths 87.0 86.6

+coref 86.5 85.9

+disc — 86.5

+coref+disc — 85.9

Table 2: Average test accuracy in five-fold cross-

validation. Cross-sentence extraction was con-

ducted within a sliding window of 3 sentences us-

ing minimal-span candidates. Base only used the

shortest path to construct features. 3 paths and

10 paths gathered features from the top three or

ten shortest paths, assigning uniform weights to

all edges except adjacency, which had a weight of

16. +coref adds edges for the relations predicted

by Stanford Coreference. +disc adds edges for the

predicted rhetorical relations by a state-of-the-art

discourse parser (Wang and Lan, 2015).

automatic evaluation enables an efficient compar-

ison of various design choices.

First, we set out to investigate the impact of

edge types and path number. We set the weight for

adjacent-word edges to 16, to give higher priority

to other edge types (weight 1) that are arguably

more semantics-related. Table 2 shows the aver-

age test accuracy for single-sentence and cross-

sentence extraction with various edge types and

path numbers. Compared to extraction within sin-

gle sentences, cross-sentence extraction attains a

similar accuracy, even though the recall for the lat-

ter is much higher (Table 1).

Adding more paths other than the shortest one

led to a substantial improvement in accuracy. The

gain is consistent for both single-sentence and

cross-sentence extraction. This is surprising, as

prior methods often derive features from the short-

est dependency path alone.

Adding discourse relations, on the other hand,

consistently led to a small drop in performance,

especially when the path number is small. Upon

manual inspection, we found that Stanford Coref-

erence made many errors in biomedical text, such

as resolving a dummy pronoun with a nearby en-

tity. In hindsight, this is probably not surprising:

Paths Adj. Wt. Single-Sent. Cross-Sent.

3

1 82.2 82.1

4 85.0 84.9

16 85.4 85.5

64 85.1 85.0

10

1 85.7 83.6

4 87.2 86.7

16 87.0 86.6

64 87.0 86.6

30

1 87.6 85.4

4 88.0 87.5

16 87.5 87.2

64 87.5 87.2

Table 3: Average test accuracy in five-fold cross-

validation. Uniform weights are used, except for

adjacent-word edges.

state-of-the-art coreference systems are optimized

for newswire domain and could be ill-suited for

scientific literature (Bell et al., 2016). We are less

certain about why discourse parsing didn’t seem to

help. There are clearly examples where extraction

errors could have been avoided given rhetorical re-

lations (e.g., when the sentence containing the sec-

ond entity starts a new topic). We leave more in-

depth investigation to future work.

Next, we further evaluated the impact of path

number and adjacency edge weight. Only de-

pendency and adjacency edges were included in

these experiments. Table 3 shows the results. Pe-

nalizing adjacency produces large gains; a harsh

penalty is particularly helpful with fewer paths.

These results support the hypothesis that depen-

dency edges are usually more meaningful for rela-

tion extraction than word adjacency. Therefore, if

adjacency edges get the same weights, they might

cause some dependency sub-paths drop out of the

top K paths, thus degrading performance. When

the path number increases, there is a consistent and

substantial increase in accuracy, which demon-

strates the advantage of allowing adjacency edges

to interleave with dependency ones. This presum-

ably helps address syntactic parsing errors, among

other things. The importance of adjacency weights

decreases with more paths, but it is still signifi-

cantly better to penalize adjacency edges.

In the experiments mentioned above, cross-

sentence extraction was conducted using minimal-

span candidates only. We expected that this would



Relations Single-Sent. Cross-Sent.

Candidates 169,168 332,969

p ≥ 0.5 32,028 64,828

p ≥ 0.9 17,349 32,775

GDKD 162

Table 4: Unique drug-gene interactions ex-

tracted from PubMed Central articles, compared

to the manually curated Gene Drug Knowledge

Database (GDKD) used for distant supervision. p

signifies the output probability. GDKD contains

341 relations, but only 162 have specific drug ref-

erences usable as distant supervision.

Gene Drug

GDKD 140 80

Single-Sent. (p ≥ 0.9) 4036 311

Single-Sent. (p ≥ 0.5) 6189 347

Cross-Sent. (p ≥ 0.9) 5580 338

Cross-Sent. (p ≥ 0.5) 9470 373

Table 5: Numbers of unique genes and drugs in

the Gene Drug Knowledge Database (GDKD) vs.

DISCREX extractions.

provide a reasonable safeguard to filter out many

unlikely candidates. As empirical validation, we

also conducted experiments on cross-sentence ex-

traction without the minimal-span restriction, us-

ing the base model. Test accuracy dropped sharply

from 81.7% to 79.1% (not shown in the table).

4.6 PubMed-Scale Extraction

Our ultimate goal is to extract knowledge from all

available text. First, we retrained DISCREX on all

available distant-supervision data, not restricting

to a subset of the folds as in the automatic eval-

uation. We used the systems performing best on

automatic evaluation, with features derived from

30 shortest paths between each entity pair, and

minimal-span candidates within three sentences

for cross-sentence extraction. We then applied the

learned extractors to all PubMed Central articles. t

si We grouped the extracted instances into unique

drug-gene pairs. The classifier output a probabil-

ity for each instance. The maximum probability

of instances in a group was assigned to the rela-

tion as a whole. Table 4 shows the statistics of ex-

tracted relations by varying the probability thresh-

old. Cross-sentence extraction obtained far more

unique relations compared to single-sentence ex-

traction, improving absolute recall by 89-102%.

Table 5 compares the number of unique genes and

drugs. DISCREX extractions cover far more genes

and drugs compared to GDKD, which bode well

for applications in precision medicine.

4.7 Manual Evaluation

Automatic evaluation accuracies can be overly op-

timistic. To assess the true precision of DISCREX,

we also conducted manual evaluation on extracted

relations. Based on the automatic evaluation, the

accuracy is similar for single-sentence and cross-

sentence extraction. So we focused on the lat-

ter. We randomly sampled extracted relation in-

stances and asked two researchers knowledgeable

in precision medicine to evaluate their correctness.

For each instance, the annotators were provided

with the provenance sentences where the drug-

gene pair were highlighted. The annotators as-

sessed in each case whether some relation was

mentioned for the given pair.

A total of 450 instances were judged: 150 were

sampled randomly from all candidates (random

baseline), 150 from the set of instances with prob-

ability no less than 0.5, and 150 with probability

no less than 0.9. From each set, we randomly se-

lected 50 relations for review by both annotators.

The two annotators agreed on 133 of 150. After

review, all disagreements were resolved, and each

annotator judged an additional set of 50 relation

instances, this time without overlap.

Table 6 showed the sample precision and per-

centage of errors due to entity linking vs. relation

extraction. With either classification threshold,

cross-sentence extraction clearly outperformed the

random baseline by a wide margin. Not surpris-

ingly, the higher threshold of 0.9 led to higher pre-

cision. Interestingly, a significant portion of errors

stems from mistakes in entity linking, as has been

observed in prior work (Poon et al., 2015). Im-

proved entity linking, either alone or joint with re-

lation extraction, is an important future direction.

Based on these estimates, DISCREX extracted

about 37,000 correct unique interactions at the

threshold of 0.5, and about 20,000 at the threshold

of 0.9. In both cases, it expanded the Gene Drug

Knowledge Base by two orders of magnitude.

We also performed manual evaluation in the

single-sentence setting. As in the automatic



Prec. Entity Err. Relation Err.

Single-sentence extractions

Random 31 52 17

p ≥ 0.5 61 25 15

p ≥ 0.9 71 13 15

Cross-sentence extractions

Random 23 50 27

p ≥ 0.5 57 20 23

p ≥ 0.9 61 13 26

Table 6: Sample precision and error percent-

age: comparison between the single sentence

and cross-sentence extraction models at various

thresholds. Single sentence extraction is slightly

better at all thresholds, at the expense of substan-

tially lower recall: a reduction of 40% or more in

terms of unique interactions.

evaluation, single-sentence precisions are similar

though slightly higher at all thresholds. This sug-

gests that the candidate set is cleaner and the re-

sulting predictions are more accurate. However,

the resulting recall is substantially lower, dropping

by 46% at a threshold of 0.5, and by 40% at a

threshold of 0.9.

5 Conclusion

We present the first approach for applying distant

supervision to cross-sentence relation extraction,

by adopting a document-level graph representa-

tion that incorporates both intra-sentential depen-

dencies and inter-sentential relations such as ad-

jacency and discourse relations. We conducted

both automatic and manual evaluation on extract-

ing drug-gene interactions from biomedical liter-

ature. With cross-sentence extraction, our DIS-

CREX system doubled the yield of unique inter-

actions, while maintaining the same accuracy. Us-

ing distant supervision, DISCREX improved the

coverage of the Gene Drug Knowledge Database

(GDKD) by two orders of magnitude, without re-

quiring annotated examples.

Future work includes: further exploration of

features; improved integration with coreference

and discourse parsing; combining distant super-

vision with active learning and crowd sourcing;

evaluate the impact of extractions to precision

medicine; applications to other domains.
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