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Abstract—Graph neural networks (GNN) have shown great
success in learning from graph-structured data. They are widely
used in various applications, such as recommendation, fraud
detection, and search. In these domains, the graphs are typically
large, containing hundreds of millions of nodes and several
billions of edges. To tackle this challenge, we develop DistDGL, a
system for training GNNs in a mini-batch fashion on a cluster of
machines. DistDGL is based on the Deep Graph Library (DGL),
a popular GNN development framework. DistDGL distributes the
graph and its associated data (initial features and embeddings)
across the machines and uses this distribution to derive a
computational decomposition by following an owner-compute
rule. DistDGL follows a synchronous training approach and al-
lows ego-networks forming the mini-batches to include non-local
nodes. To minimize the overheads associated with distributed
computations, DistDGL uses a high-quality and light-weight min-
cut graph partitioning algorithm along with multiple balancing
constraints. This allows it to reduce communication overheads
and statically balance the computations. It further reduces the
communication by replicating halo nodes and by using sparse
embedding updates. The combination of these design choices
allows DistDGL to train high-quality models while achieving high
parallel efficiency and memory scalability. We demonstrate our
optimizations on both inductive and transductive GNN models.
Our results show that DistDGL achieves linear speedup without
compromising model accuracy and requires only 13 seconds to
complete a training epoch for a graph with 100 million nodes
and 3 billion edges on a cluster with 16 machines.

Index Terms—

I. INTRODUCTION

Graph Neural Networks (GNNs) have shown success in

learning from graph-structured data and have been applied to

many graph applications in social networks, recommendation,

knowledge graphs, etc. In these applications, graphs are usu-

ally huge, in the order of many millions of nodes or even

billions of nodes. For instance, Facebook social network graph

contains billions of nodes. Amazon is selling billions of items

and has billions of users, which forms a giant bipartite graph

for its recommendation task. Natural language processing tasks

take advantage of knowledge graphs, such as Freebase [1] with

1.9 billion triples.

It is challenging to train a GNN model on a large graph.

Unlike domains such as computer vision and natural language

processing, where training samples are mutually independent,

graph inherently represents the dependencies among training

samples (i.e., vertices). Hence, mini-batch training on GNNs

is different from the traditional deep neural networks; each

mini-batch must incorporate those depending samples. The

number of depending samples usually grows exponentially

when exploring more hops of neighbors. This leads to many

efforts in designing various sampling algorithms to scale

GNNs to large graphs [2]–[6]. The goal of these methods is to

prune the vertex dependency to reduce the computation while

still estimating the vertex representation computed by GNN

models accurately.

It gets even more challenging to train GNNs on giant

graphs when scaling beyond a single machine. For instance, a

graph with billions of nodes requires memory in the order

of terabytes attributing to large vertex features and edge

features. Due to the vertex dependency, distributed GNN

training requires to read hundreds of neighbor vertex data to

compute a single vertex representation, which accounts for

majority of network traffic in distributed GNN training. This

is different from traditional distributed neural network training,

in which majority of network traffic comes from exchanging

the gradients of model parameters. In addition, neural network

models are typically trained with synchronized stochastic

gradient descent (SGD) to achieve good model accuracy. This

requires the distributed GNN framework to generate balanced

mini-batches that contain roughly the same number of nodes

and edges as well as reading the same account of data from

the network. Due to the complex subgraph structures in natural

graphs, it is difficult to generate such balanced mini-batches.

Unfortunately, current systems cannot effectively address

the challenges of distributed GNN training. Previous dis-

tributed graph analytical systems [7]–[9] are designed for full

graph computation expressed in the vertex-centric program

paradigm, which is not suitable for GNN mini-batch training.

Existing domain-specific frameworks for training GNNs, such

as DGL [10] and PyTorch-Geometric [11], cannot scale to

giant graphs. They were mainly developed for training on a

single machine. Although there have been some efforts in

building systems for distributed GNN training, they either



focus on full batch training by partitioning graphs to fit the

aggregated memory of multiple devices [12]–[14] or suffer

from the huge network traffic caused by fetching neighbor

node data [15]–[17]. System architectures [18]–[20] proposed

for training neural networks for computer vision and natural

language processing are not directly applicable because one

critical bottleneck in GNN training is the network traffic of

fetching neighbor node data due to the vertex dependencies,

while previous systems majorly focuses on network traffic

from exchanging the gradients of model parameters.

In this work, we develop DistDGL on top of DGL to

perform efficient and scalable mini-batch GNN training on

a cluster of machines. It provides distributed components

with APIs compatible to DGL’s existing ones. As such, it

requires trivial effort to port DGL’s training code to Dist-

DGL. Internally, it deploys multiple optimizations to speed

up computation. It distributes graph data (both graph structure

and the associated data, such as node and edge features)

across all machines and run trainers, sampling servers (for

sampling subgraphs to generate mini-batches) and in-memory

KVStore servers (for serving node data and edge data) all on

the same set of machines. To achieve good model accuracy,

DistDGL follows a synchronous training approach and allows

ego-networks forming the mini-batches to include non-local

nodes. To reduce network communication, DistDGL adopts

METIS [21] to partition a graph with minimum edge cut and

co-locate data with training computation. In addition, DistDGL

deploys multiple load balancing optimizations to tackle the

imbalance issue, including multi-constraint partitioning and

two-level workload splitting. DistDGL further reduces network

communication in sampling by replicating halo nodes in

the partitioned graph structure but does not replicate data

in halo nodes to have a small memory footprint. DistDGL

provides distributed embeddings with efficient sparse updates

for transductive graph models.

We conduct comprehensive experiments to evaluate the

efficiency of DistDGL and effectiveness of the optimizations.

Overall, DistDGL achieves 2.2× speedup over Euler on a

cluster of four CPU machines. The main performance advan-

tage comes from the efficient feature copy with 5× data copy

throughput. DistDGL speeds up the training linearly without

compromising model accuracy as the number of machines

increases in a cluster of 16 machines and easily scales the

GraphSage model to a graph with 100 million nodes and 3

billion edges. It takes 13 seconds per epoch to train on such

a graph in a cluster of 16 machines.

II. BACKGROUND

A. Graph Neural Networks

GNNs emerge as a family of neural networks capable of

learning a joint representation from both the graph structure

and vertex/edge features. Recent studies [22], [23] formu-

late GNN models with message passing, in which vertices

broadcast messages to their neighbors and compute their own

representation by aggregating received messages.

More formally, given a graph G(V, E), we denote the input

feature of vertex v as h
(0)
v , and the feature of the edge between

vertex u and v as euv . To get the representation of a vertex

at layer l, a GNN model performs the computations below:

h
(l+1)
v

= g(h(l)
v
,

⊕

u∈N (v)

f(h(l)
u
,h(l)

v
, euv)) (1)

Here f ,
⊕

and g are customizable or parameterized func-

tions (e.g., neural network modules) for calculating messages,

aggregating messages, and updating vertex representations,

respectively. Similar to convolutional neural networks (CNNs),

a GNN model iteratively applies Equations (1) to generate

vertex representations for multiple layers.

There are potentially two types of model parameters in

graph neural networks. f ,
⊕

and g can contain model

parameters, which are shared among all vertices. These model

parameters are updated in every mini-batch and we refer to

these parameters as dense parameters. Some GNN models may

additionally learn an embedding for each vertex. Embeddings

are part of the model parameters and only a subset of vertex

embeddings are updated in a mini-batch. We refer to these

model parameters as sparse parameters.

B. Mini-batch training

GNN models on a large dataset can be trained in a mini-

batch fashion just like deep neural networks in other do-

mains like computer vision and natural language processing.

However, GNN mini-batch training is different from other

neural networks due to the data dependency between vertices.

Therefore, we need to carefully sample subgraphs that capture

the data dependencies in the original graph to train GNN

models.

A typical strategy of training a GNN model [2] follows three

steps: (i) sample a set of N vertices, called target vertices,

uniformly at random from the training set; (ii) randomly

pick at most K (called fan-out) neighbor vertices for each

target vertex; (iii) compute the target vertex representations

by gathering messages from the sampled neighbors. When the

GNN has multiple layers, the sampling is repeated recursively.

That is, from a sampled neighbor vertex, it continues sampling

its neighbors. The number of recursions is determined by the

number of layers in a GNN model. This sampling strategy

forms a computation graph for passing messages on. Figure 1b

depicts such a graph for computing representation of one target

vertex when the GNN has two layers. The sampled graph and

together with the extracted features are called a mini-batch in

GNN training.

There have been many works regarding to the different

strategies to sample graphs for mini-batch training [3], [4],

[24]–[26]. Therefore, a GNN framework needs to be flexible

as well as scalable to giant graphs.

III. DISTDGL SYSTEM DESIGN

A. Distributed Training Architecture

DistDGL distributes the mini-batch training process of GNN

models to a cluster of machines. It follows the synchronous



(a) An input graph.

(b) A sampled graph for computing one target vertex representation
with a two-layer GNN model. Messages flow from leaves to root.

Fig. 1: One sampled mini-batch in GNN training.

stochastic gradient descent (SGD) training; each machine

computes model gradients with respect to its own mini-batch,

synchronizes gradients with others and updates the local model

replica. At a high level, DistDGL consists of the following

logical components (Figure 2):

• A number of samplers in charge of sampling the mini-

batch graph structures from the input graph. Users invoke

DistDGL samplers in the trainer process via the same

interface in DGL for neighbor sampling, which internally

becomes a remote process call (RPC). After mini-batch

graphs are generated, they are sent back to the trainers.

• A KVStore that stores all vertex data and edge data

distributedly. It provides two convenient interfaces for

pulling the data from or pushing the data to the distributed

store. It also manages the vertex embeddings if specified

by the user-defined GNN model.

• A number of trainers that compute the gradients of the

model parameters over a mini-batch. At each iteration,

they first fetch the mini-batch graphs from the sam-

plers and the corresponding vertex/edge features from

the KVStore. They then run the forward and backward

computation on their own mini-batches in parallel to

compute the gradients. The gradients of dense parameters

are dispatched to the dense model update component for

synchronization, while the gradients of sparse embed-

dings are sent back to the KVStore for update.

• A dense model update component for aggregating dense

GNN parameters to perform synchronous SGD. Dist-

DGL reuses the existing components depending on

DGL’s backend deep learning frameworks (e.g., PyTorch,

MXNet and TensorFlow). For example, DistDGL calls

the all-reduce primitive when the backend framework is

Fig. 2: DistDGL’s logical components.

Fig. 3: The deployment of DistDGL’s logical components on

a cluster of two machines.

PyTorch [27], or resorts to parameter servers [18] for

MXNet and TensorFlow backends.

When deploying these logical components to actual hard-

ware, the first consideration is to reduce the network traffic

among machines because graph computation is data inten-

sive [28]. DistDGL adopts the owner-compute rule (Figure 3).

The general principle is to dispatch computation to the data

owner to reduce network communication. DistDGL first par-

titions the input graph with a light-weight min-cut graph par-

titioning algorithm. It then partitions the vertex/edge features

and co-locates them with graph partitions. DistDGL launches

the sampler and KVStore servers on each machine to serve

the local partition data. Trainers also run on the same cluster

of machines and each trainer is responsible for the training

samples from the local partition. This design leverages data

locality to its maximum. Each trainer works on samples from

the local partition so the mini-batch graphs will contain mostly

local vertices and edges. Most of the mini-batch features are

locally available too via shared memory, reducing the network

traffic significantly. In the following sections, we will elaborate

more on the design of each components.

B. Graph Partitioning

The goal of graph partitioning is to split the input graph

to multiple partitions with a minimal number of edges across



(a) Assign vertices to graph partitions

(b) Generate graph partitions with HALO vertices (the vertices with
different colors from majority of the vertices in the partition).

Fig. 4: Graph partitioning with METIS in DistDGL.

partitions. Graph partitioning is a preprocessing step before

distributed training. A graph is partitioned once and used for

many distributed training runs, so its overhead is amortized.

DistDGL adopts METIS [21] to partition a graph. This

algorithm assigns densely connected vertices to the same

partition to reduce the number of edge cuts between partitions

(Figure 4a). After assigning some vertices to a partition,

DistDGL assigns all incident edges of these vertices to the

same partition. This ensures that all the neighbors of the local

vertices are accessible on the partition so that samplers can

compute locally without communicating to each other. With

this partitioning strategy, each edge has a unique assignment

while some vertices may be duplicated (Figure 4b). We refer to

the vertices assigned by METIS to a partition as core vertices

and the vertices duplicated by our edge assignment strategy as

HALO vertices. All the core vertices also have unique partition

assignments.

While minimizing edge cut, DistDGL deploys multiple

strategies to balance the partitions so that mini-batches of

different trainers are roughly balanced. By default, METIS

only balances the number of vertices in a graph. This is insuf-

ficient to generate balanced partitions for synchronous mini-

batch training, which requires the same number of batches

from each partition per epoch and all batches to have roughly

the same size. We formulate this load balancing problem as a

multi-constraint partitioning problem, which balances the par-

titions based on user-defined constraints [29]. DistDGL takes

advantage of the multi-constraint mechanism in METIS to

balance training/validation/test vertices/edges in each partition

as well as balancing the vertices of different types and the

edges incident to the vertices of different types.

METIS’ partitioning algorithms are based on the multilevel

paradigm, which has been shown to produce high-quality

partitions. However, for many types of graphs involved in

learning on graphs tasks (e.g., graphs with power-law degree

distribution), the successively coarser graphs become progres-

sively denser, which considerably increases the memory and

computational complexity of multilevel algorithms. To address

this problem, we extended METIS to only retain a subset of

the edges in each successive graph so that the degree of each

coarse vertex is the average degree of its constituent vertices.

This ensures that as the number of vertices in the graph reduces

by approximately a factor of two, so do the edges. To ensure

that the partitioning solutions obtained in the coarser graphs

represent high-quality solutions in the finer graphs, we only

retain the edges with the highest weights in the coarser graph.

In addition, to further reduce the memory requirements, we

use an out-of-core strategy for the coarser/finer graphs that

are not being processed currently. Finally, we run METIS by

performing a single initial partitioning (default is 5) and a

single refinement iteration (default is 10) during each level.

For power-law degree graphs, this optimization leads to a small

increase in the edge-cut (2%-10%) but considerably reduces

its runtime. Overall, the set of optimizations above compute

high-quality partitionings requiring 5× less memory and 8×

less time than METIS’ default algorithms.

After partitioning the graph structure, we also partition

vertex features and edge features based on the graph partitions.

We only assign the features of the core vertices and edges of

a partition to the partition. Therefore, the vertex features and

edge features are not duplicated.

After graph partitioning, DistDGL manages two sets of

vertex IDs and edge IDs. DistDGL exposes global vertex IDs

and edge IDs for model developers to identify vertices and

edges. Internally, DistDGL uses local vertex IDs and edge IDs

to locate vertices and edges in a partition efficiently, which is

essential to achieve high system speed as demonstrated by

previous works [30]. To save memory for maintaining the

mapping between global IDs and local IDs, DistDGL relabels

vertex IDs and edge IDs of the input graph during graph

partitioning to ensure that all IDs of core vertices and edges

in a partition fall into a contiguous ID range. In this way,

mapping a global ID to a partition is binary lookup in a very

small array and mapping a global ID to a local ID is a simple

subtraction operation.

C. Distributed Key-Value Store

The features of vertices and edges are partitioned and stored

in multiple machines. Even though DistDGL partitions a graph

to assign densely connected vertices to a partition, we still

need to read data from remote partitions. To simplify the data

access on other machines, DistDGL develops a distributed in-

memory key-value store (KVStore) to manage the vertex and

edge features as well as vertex embeddings, instead of using

an existing distributed in-memory KVStore, such as Reddis,

for (i) better co-location of node/edge features in KVStore

and graph partitions, (ii) faster network access for high-speed

network, (iii) efficient updates on sparse embeddings.

DistDGL’s KVStore supports flexible partition policies to

map data to different machines. For example, vertex data and



edge data are usually partitioned and mapped to machines dif-

ferently as shown in Section III-B. DistDGL defines separate

partition policies for vertex data and edge data, which aligns

with the graph partitions in each machine.

Because accessing vertex and edge features usually accounts

for the majority of communication in GNN distributed train-

ing, it is essential to support efficient data access in KVStore.

A key optimization for fast data access is to use shared

memory. Due to the co-location of data and computation,

most of data access to KVStore results in the KVStore server

on the local machine. Instead of going through Inter-Process

Communication (IPC), the KVStore server shares all data with

the trainer process via shared memory. Thus, trainers can

access most of the data directly without paying any overhead

of communication and process/thread scheduling. We also

optimize network transmission of DistDGL’s KVStore for fast

networks (e.g., 100Gbps network). We develop an optimized

RPC framework for fast networking communication, which

adopts zero-copy mechanism for data serialization and multi-

thread send/receive interface.

In addition to storing the feature data, we design DistDGL’s

KVStore to support sparse embedding for training transduc-

tive models with learnable vertex embeddings. Examples are

knowledge graph embedding models [31]. In GNN mini-batch

training, only a small subset of vertex embeddings are involved

in the computation and updated during each iteration. Al-

though almost all deep learning frameworks have off-the-shelf

sparse embedding modules, most of them lack efficient support

of distributed sparse update. DistDGL’s KVStore shards the

vertex embeddings in the same way as vertex features. Upon

receiving the embedding gradients (via the PUSH interface),

KVStore updates the embedding based on the optimizer the

user registered.

D. Distributed Sampler

DGL has provided a set of flexible Python APIs to support

a variety of sampling algorithms proposed in the literature.

DistDGL keeps this API design but with a different internal

implementation. At the beginning of each iteration, the trainer

issues sampling requests using the target vertices in the current

mini-batch. The requests are dispatched to the machines ac-

cording to the core vertex assignment produced by the graph

partitioning algorithm. Upon receiving the request, sampler

servers call DGL’s sampling operators on the local partition

and transmit the result back to the trainer process. Finally,

the trainer collects the results and stitches them together to

generate a mini-batch.

DistDGL deploys multiple optimizations to effectively ac-

celerate mini-batch generation. DistDGL can create multiple

sampling worker processes for each trainer to sample mini-

batches in parallel. By issuing sampling requests to the sam-

pling workers, trainers overlap the sampling cost with mini-

batch training. When a sampling request goes to the local

sampler server, the sampling workers to access the graph

structure stored on the local sampler server directly via shared

memory to avoid the cost of the RPC stack. The sampling

workers also overlaps the remote RPCs with local sampling

computation by first issuing remote requests asynchronously.

This effectively hides the network latency because the local

sampling usually accounts for most of the sampling time.

When a sampler server receives sampling requests, it only

needs to sample vertices and edges from the local partition

because our graph partitioning strategy (Section III-B) guar-

antees that the core vertices in a partition have the access to

the entire neighborhood.

E. Mini-batch Trainer

Mini-batch trainers run on each machine to jointly estimate

gradients and update parameters of users’ models. DistDGL

provides utility functions to split the training set distributedly

and generate balanced workloads between trainers.

Each trainer samples data points uniformly at random

to generate mini-batches independently. Because DistDGL

generates balanced partitions (each partition has roughly the

same number of nodes and edges) and uses synchronous SGD

to train the model, the data points sampled collectively by

all trainers in each iteration are still sampled uniformly at

random across the entire dataset. As such, distributed training

in DistDGL in theory does not affect the convergence rate or

the model accuracy.

To balance the computation in each trainer, DistDGL uses

a two-level strategy to split the training set evenly across

all trainers at the beginning of distributed training. We first

ensure that each trainer has the same number of training

samples. The multi-constraint algorithm in METIS (Section

III-B) can only assign roughly the same number of training

samples (vertices or edges) to each partition (as shown by the

rectangular boxes on the top in Figure 5). We thus evenly

split the training samples based on their IDs and assign the

ID range to a machine whose graph partition has the largest

overlap with the ID range. This is possible because we relabel

vertex and edge IDs during graph partitioning and the vertices

and edges in a partition have a contiguous ID range. There is a

small misalignment between the training samples assigned to

a trainer and the ones that reside in a partition. Essentially, we

make a tradeoff between load balancing and data locality. In

practice, as long as the graph partition algorithm balances the

number of training samples between partitions, the tradeoff is

negligible. If there are multiple trainers on one partition, we

further split the local training vertices evenly and assign them

to the trainers in the local machine. We find that random split

in practice gives a fairly balanced workload assignment.

In terms of parameter synchronization, we use synchronous

SGD to update dense model parameters. Synchronous SGD

is commonly used to train deep neural network models and

usually leads to better model accuracy. We use asynchronous

SGD to update the sparse vertex embeddings in the Hogwild

fashion [32] to overlap communication and computation. In

a large graph, there are many vertex embeddings. Asyn-

chronous SGD updates some of the embeddings in a mini-

batch. Concurrent updates from multiple trainers rarely result

in conflicts because mini-batches from different trainers run



Fig. 5: Split the workloads evenly to balance the computation

among trainer processes.

TABLE I: Dataset statistics from the Open Graph Bench-

mark [33].

Dataset # Nodes # Edges Node Features

OGBN-PRODUCT 2,449,029 61,859,140 100
OGBN-PAPERS100M 111,059,956 3,231,371,744 128

on different embeddings. Previous study [31] has verified that

asynchronous update of sparse embeddings can significantly

speed up the training with nearly no accuracy loss.

For distributed CPU training, DistDGL parallelizes the com-

putation with both multiprocessing and multithreading. Inside

a trainer process, we use OpenMP to parallelize the framework

operator computation (e.g., sparse matrix multiplication and

dense matrix multiplication). We run multiple trainer processes

on each machine to parallelize the computation for non-

uniform memory architecture (NUMA), which is a typical

architecture for large CPU machines. This hybrid approach

is potentially more advantageous than the multiprocessing

approach for synchronous SGD because we need to aggregate

gradients of model parameters from all trainer processes and

broadcast new model parameters to all trainers. More trainer

processes result in more communication overhead for model

parameter updates.

IV. EVALUATION

In this section, we evaluate DistDGL to answer the follow-

ing questions:

• Can DistDGL train GNNs on large-scale graphs and

accelerate the training with more machines?

• Can DistDGL’s techniques effectively increase the data

locality for GNN training?

• Can our load balancing strategies effectively balance the

workloads in the cluster of machines?

We focused on the node classification task using GNNs

throughout the evaluation. The GNNs for other tasks such as

link prediction mostly differ in the objective function while

sharing most of the GNN architectures so we omit them in

the experiments.

We benchmark the state-of-the-art GraphSAGE [2] model

on two Open Graph Benchmark (OGB) datasets [33] shown in

Table I. The GraphSAGE model has three layers of hidden size

256; the sampling fan-outs of each layer are 15, 10 and 5. We

use a cluster of eight AWS EC2 m5n.24xlarge instances (96

VCPU, 384GB RAM each) connected by a 100Gbps network.

In all experiments, we use DGL v0.5 and Pytorch 1.5. For

Euler experiments, we use Euler v2.0 and TensorFlow 1.12.

(a) The overall runtime per epoch with different global batch sizes.

(b) The breakdown of epoch runtime for the batch size of 32K.

Fig. 6: DistDGL vs Euler on OGBN-PRODUCT graph on four

m5n.24xlarge instances.

A. DistDGL vs. other distributed GNN frameworks

We compare the training speed of DistDGL with Euler

[17], one of the state-of-the-art distributed GNN training

frameworks, on four m5n.24xlarge instances. Euler is designed

for distributed mini-batch training, but it adopts different

parallelization strategy from DistDGL. It parallelizes compu-

tation completely with multiprocessing and uses one thread for

both forward and backward computation as well as sampling

inside a trainer. To have a fair comparison between the two

frameworks, we run mini-batch training with the same global

batch size (the total size of the batches of all trainers in an

iteration) on both frameworks because we use synchronized

SGD to train models.

DistDGL gets 2.2× speedup over Euler in all different batch

sizes (Figure 6a). To have a better understanding of DistDGL’s

performance advantage, we break down the runtime of each

component within an iteration shown in Figure 6b. The main

advantage of DistDGL is data copy, in which DistDGL has

more than 5× speedup. This is expected because DistDGL

uses METIS to generate partitions with minimal edge cuts

and trainers are co-located with the partition data to reduce

network communication. The speed of data copy in DistDGL

gets close to local memory copy while Euler has to copy

data through TCP/IP from the network. DistDGL also has

2× speedup in sampling over Euler for the same reason:

DistDGL samples majority of vertices and edges from the local

partition to generate mini-batches. DistDGL relies on DGL and

Pytorch to perform sparse and dense tensor computation in a

mini-batch and uses Pytorch to synchronize gradients among

trainers while Euler relies on TensorFlow for both mini-batch

computation and gradient synchronization. DistDGL is slightly



Fig. 7: The GraphSage model with DistDGL’s and Pyotch’s

sparse Embedding on the OGBN-PRODUCT graph.

faster in mini-batch computation and gradient synchronization.

Unfortunately, we cannot separate the batch computation and

gradient synchronization in Pytorch.

B. DistDGL’s sparse embedding vs. Pytorch’s sparse embed-

ding

Many graph datasets do not have vertex features. We

typically use transductive GNN models with learnable vertex

embeddings for these graphs. DistDGL provides distributed

embeddings for such use case, with optimizations for sparse

updates. Deep learning frameworks, such as Pytorch, also

provide the sparse embedding layer for similar use cases and

the embedding layer can be trained in a distributed fashion. To

evaluate the efficiency of DistDGL’s distributed embeddings,

we adapt the GraphSage model by replacing vertex data of the

input graph with DistDGL’s or Pytorch’s sparse embeddings.

The GraphSage model with DistDGL’s sparse embeddings

on OGBN-PRODUCT graph gets almsot 70× speedup over the

version with Pytorch sparse embeddings (Figure 7). The main

difference is that DistDGL’s sparse embeddings are updated

with DistDGL’s efficient KVStore, which is natural for imple-

menting sparse embedding updates. As such, it gets all benefits

of DistDGL’s optimizations, such as co-location of data and

computation. In contrast, Pytorch’s sparse embeddings are

updated with its DistributedDataParallel module. Essentially, it

is implemented with the AllReduce primitive, which requires

the gradient tensor exchanged between trainers to have exactly

the same shape. As such, Pytorch has to pad the gradient tensor

of sparse embeddings to the same size.

C. Scalability

We further evaluate the scalability of DistDGL in the EC2

cluster. In this experiment, we fix the mini-batch size in each

trainer and increase the number of trainers when the number of

machines increases. We use the batch size of 2000 per trainer.

DistDGL achieves a linear speedup as the number of

machines increases in the cluster (Figure 8) for both OGB

datasets. When running on a larger cluster, DistDGL needs to

perform more sampling on remote machines and fetch more

data from remote machines. This linear speedup indicates

that our optimizations prevent network communication from

being the bottleneck. It also suggests that the system is well

Fig. 8: DistDGL achieves linear speedup w.r.t. the number of

machines.

Fig. 9: DistDGL convergence of distributed training.

balanced when the number of machines increases. With all of

our optimizations, DistDGL can easily scale to large graphs

with hundreds of millions of nodes. It takes only 13 seconds to

train the GraphSage model on the OGBN-PAPERS100M graph

in a cluster of 16 m5.24xlarge machines.

We also compare DistDGL with DGL’s multiprocessing

training (two trainer processes). DistDGL running on a sin-

gle machine with two trainers outperforms DGL. This may

attribute to the different multiprocessing sampling used by

the two frameworks. DGL relies on Pytroch dataloader’s

multiprocessing to sample mini-batches while DistDGL uses

dedicated sampler processes to generate mini-batches.

In addition to the training speed, we also verify the train-

ing accuracy of DistDGL on different numbers of machines

(Figure 9). We can see that DistDGL quickly converges to

almost the same peak accuracy achieved by the single-machine

training, which takes a much longer time to converge.

D. Ablation Study

We further study the effectiveness of the main optimizations

in DistDGL: 1) reducing network traffic by METIS graph par-

titioning and co-locating data and computation, 2) balance the

graph partitions with multi-constraint partitioning. To evaluate



Fig. 10: METIS vs Random Partition on four machines

their effectiveness, we compare DistDGL’s graph partitioning

algorithm with two alternatives: random graph partitioning and

default METIS partitioning without multi-constraints. We use

a cluster of four machines to run the experiments.

METIS partitioning with multi-constraints to balance the

partitions achieves good performance on both datasets (Figure

10). Default METIS partitioning performs well compared

with random partitioning (2.14× speedup) on the OGBN-

PRODUCT graph due to its superior reduction of network com-

munication; adding multiple constraints to balance partitions

gives additional 4% improvement over default METIS parti-

tioning. However, default METIS partitioning achieves much

worse performance than random partitioning on the OGBN-

PAPERS100M graph due to high imbalance between partitions

created by METIS, even though METIS can effectively reduce

the number of edge cuts between partitions. Adding multi-

constraint optimizations to balance the partitions, we see the

benefit of reducing network communication. This suggests that

achieving load balancing is as important as reducing network

communication for improving performance.

V. RELATED WORK

A. Distributed DNN Training

There are many system-related works to optimize dis-

tributed deep neural network (DNN) training. The parameter

server [34] is designed to maintain and update the sparse

model parameters. Horovod [35] and Pytorch distributed [27]

uses allreduce to aggregate dense model parameters but

does not work for sparse model parameters. BytePs [20]

adopts more sophisticated techniques of overlapping model

computation and gradient communication to accelerate dense

model parameter updates. Many works reduces the amount of

communication by using quantization [36] or sketching [37].

Several recent work focuses on relaxing the synchronization

of weights [38], [39] in case some workers run slower than

others temporally due to some hardware issues. GNN models

are composed of multiple operators organized into multiple

graph convolution network layers shared among all nodes and

edges. Thus, GNN training also has dense parameter updates.

However, the network traffic generated by dense parameter

updates is relatively small compared with node/edge features.

Thus, reducing the network traffic of dense parameter updates

is not our main focus for distributed GNN training.

B. Distributed GNN Training

A few works have been developed to scale GNN training

on large graph data in the multi-GPU setting or distributed

setting. Some of them [12]–[14] perform full graph training

on multiple GPUs or distributed memory whose aggregated

memory fit the graph data. However, we believe full graph

training is an inefficient way to train a GNN model in a

large graph data because one model update requires significant

amount of computation. The mini-batch training has been

widely adopted in training a neural network.

Multiple GNN frameworks [15]–[17] built by industry

adopt distributed mini-batch training. However, none of these

frameworks adopt locality-aware graph partitioning and co-

locate data and communication. As shown in our experiment,

reducing communication is a key to achieve good performance.

C. Distributed graph processing

There are many works on distributed graph processing

frameworks. Pregel [7] is one of the first frameworks that

adopt message passing and vertex-centric interface to perform

basic graph analytics algorithms such as breadth-first search

and triangle counting. PowerGraph [8] adopts vertex cut for

graph partitioning and gather-and-scatter interface for compu-

tation. PowerGraph had significant performance improvement

overhead Pregel. Gemini [30] shows that previous distributed

graph processing framework has significant overhead in a

single machine. It adopts the approach to improve graph

computation in a single machine first before optimizing for

distributed computation. Even though the computation pattern

of distributed mini-batch training of GNN is very different

from traditional graph analytics algorithms, the evolution of

graph processing frameworks provide valuable lessons for

us and many of the general ideas, such as locality-aware

graph partitioning and co-locating data and computation, are

borrowed to optimize distributed GNN training.

VI. CONCLUSION

We develop DistDGL for distributed GNN training. We

adopt Metis partitioning to generate graph partitions with

minimum edge cuts and co-locate data and computation

to reduce the network communication. We deploy multiple

strategies to balance the graph partitions and mini-batches

generated from each partition. We demonstrate that achieving

high training speed requires both network communication

reduction and load balancing. Our experiments show DistDGL

has linear speedup of training GNN models on a cluster of

CPU machines without compromising model accuracy.
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