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Abstract

We introduce the CDRP (Concatenated Diagnostic-Relapse Prognostic) architecture for

multi-task deep learning that incorporates a clinical algorithm, e.g., a risk stratification

schema to improve prognostic profiling. We present the first application to survival prediction

in High-Risk (HR) Neuroblastoma from transcriptomics data, a task that studies from the

MAQC consortium have shown to remain the hardest among multiple diagnostic and prog-

nostic endpoints predictable from the same dataset. To obtain a more accurate risk stratifi-

cation needed for appropriate treatment strategies, CDRP combines a first component

(CDRP-A) synthesizing a diagnostic task and a second component (CDRP-N) dedicated to

one or more prognostic tasks. The approach leverages the advent of semi-supervised deep

learning structures that can flexibly integrate multimodal data or internally create multiple

processing paths. CDRP-A is an autoencoder trained on gene expression on the HR/non-

HR risk stratification by the Children’s Oncology Group, obtaining a 64-node representation

in the bottleneck layer. CDRP-N is a multi-task classifier for two prognostic endpoints, i.e.,

Event-Free Survival (EFS) and Overall Survival (OS). CDRP-A provides the HR embedding

input to the CDRP-N shared layer, from which two branches depart to model EFS and OS,

respectively. To control for selection bias, CDRP is trained and evaluated using a Data Anal-

ysis Protocol (DAP) developed within the MAQC initiative. CDRP was applied on Illumina

RNA-Seq of 498 Neuroblastoma patients (HR: 176) from the SEQC study (12,464 Entrez

genes) and on Affymetrix Human Exon Array expression profiles (17,450 genes) of 247 pri-

mary diagnostic Neuroblastoma of the TARGET NBL cohort. On the SEQC HR patients,

CDRP achieves Matthews Correlation Coefficient (MCC) 0.38 for EFS and MCC = 0.19 for

OS in external validation, improving over published SEQCmodels. We show that a CDRP-

N embedding is indeed parametrically associated to increasing severity and the embedding

can be used to better stratify patients’ survival.
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Introduction

The challenge of dealing with multiple endpoints of clinical interest is a key challenge of pre-

dictive models from high-throughput omics data, as found in the MAQC-II (Microarray Anal-

ysis and Quality Control) study [1]. Neuroblastoma is a paradigmatic example of disease

where the medical community has adopted a clinical algorithm to assign risk status. Severity of

cancer and therapeutic options are computed as a combination of clinical information and

specific biomarkers. However, the precision medicine approach aims at identifying more accu-

rately the subtypes of patients in terms of expected response to therapy. In Neuroblastoma,

high throughput molecular profiling still fails to identify molecular profiles clearly associated

to high risk (HR) subtypes, for which successful therapy cannot be warranted yet. Arising pre-

dominantly in the first two years of life, Neuroblastoma is the most frequent extracranial solid

tumor in infancy, accounting for about 500 new cases in Europe per year (130 in Germany),

corresponding to roughly 8% of pediatric cancers and 15% of pediatric oncology deaths [2].

Neuroblastoma develops from the immature cells of the ganglionic sympathetic nervous

system lineage stemming from the neural crest cells, and tumors can arise at any site where

sympathetic neuroblasts are present during normal development [3], e.g., in chest. The broad

variety of clinical behavior represents Neuroblastoma’s major hallmark, ranging from sponta-

neous regression (stage 4S) to gradual maturation (stages 1 − 2) to aggressive and often fatal

ganglioneuroma [4, 5] (stages 3 − 4), despite intensive multimodal treatment. Official staging

is defined by the International Neuroblastoma Staging System (INSS) [6]. The current strate-

gies for designing tumor treatment therapies use different combinations of clinical and genetic

markers to discriminate patients with low or high risk of death from the disease. The features

used for this decision include age [7], tumor stage [8, 9] and MYCN proto-oncogene genomic

amplification [10, 11]. However, this standard protocol is still imperfect, often resulting in

over- or under-treatment of patients with Neuroblastoma [12]. Cancer genetic instability is

most often studied at the genomic and gene expression levels, focusing on the effects of geno-

mic alterations on transcription and splicing. In fact, several studies demonstrated that using

messenger RNA (mRNA) expression information for molecular classification improves the

diagnostic accuracy over traditional clinical markers for individual tumor behavior, enhancing

the risk stratification reliability and therefore the therapy selection [1, 13–19]. Only a limited

number of the published classifiers based on gene expression have been so far incorporated

into clinical operative systems for a controlled validation trial: as examples, [20, 21] and the

U.S. National Institutes of Health clinical trials [22, 23]. The reasons are diverse and include

logistic or bureaucratic hindrances for the implementation of classifiers into clinical practice,

difficulties in the setup of controlled validation trials for relatively small patient numbers, and

the challenge of appropriately designing the therapy according to genomic classifiers. More-

over, as in many other profiling tasks, there is a lack of concordance between prognostic gene

expression signatures for Neuroblastoma derived from different methods and different data-

sets [24, 25]. In summary, different methods or different datasets genomic classification-

induced treatment and personalization on the outcome of high risk Neuroblastoma patients is

still an open issue. We present here a novel multi-objective deep learning [26] solution named

CDRP (Concatenated Diagnostic Relapse Prognostic) that combines both prognostic and

diagnostic information from high-throughput gene expression data. We apply the CDRP

architecture to improve classification of high risk patients in two major Neuroblastoma

cohorts, showing that as a useful byproduct the training defines an embedding transformation

that characterizes better survival analysis.

This is not the first attempt to employ neural networks in Neuroblastoma: a multilayer per-

ceptron has been used to predict Neuroblastoma from expression data in a shallow learning

Distillation of clinical algorithm by multi-task deep learning in high-risk Neuroblastoma

PLOSONE | https://doi.org/10.1371/journal.pone.0208924 December 7, 2018 2 / 19

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0208924


setting [27]. Deep learning has also been proposed for Neuroblastoma, but using bioimages as

inputs [28].

The CDRP architecture is built in multiple steps. We train on half of the patients a multitask

net (CDRP-N) for classification over two distinct prognostic tasks censoring at 5-years, namely

Event-Free Survival (EFS: events are relapse, disease progression or death), and Overall Sur-

vival (OS: partitioning patients as either dead or alive). Furthermore, the shared layer of the

multitask net uses additional inputs from an autoencoder network (CDRP-A) that models the

High-Risk (HR) endpoint, defined as high risk versus non high risk status. The key point is

that we train on different tasks the two components over the same data, linking CDRP-A to

CDRP-N through an embedding. In order to control for selection bias, both the net CDRP-N

and the autoencoder CDRP-A are trained and evaluated using a Data Analysis Protocol

(DAP), based on a 10 × 5-fold cross validation developed within the MAQC-II and SEQC

studies led by the US FDA [1, 29].

We validate CDRP on the SEQC-NB collection of the RNA sequencing (RNA-Seq) samples

from the SEQC study [29, 30]; further, we replicate the analysis on TARGET-NB, a dataset

that includes array expression profiles from the TARGET project [31, 32]. To maintain compa-

rability with published results, for the SEQC-NB we adopted the same dataset split employed

in the Neuroblastoma SEQC satellite study [30]. On both SEQC-NB and TARGET-NB, we

compared CDRP with machine learning algorithms known to perform well on omics data

such as Random Forest (RF) and (linear) Support Vector Machines (LSVMs), using the Mat-

thews Correlation Coefficient (MCC) as evaluation metric. Overall, the CDRP architecture

consistently achieves same or higher MCC than RF and LSVM on all tasks, with a relevant

improvement on published results on the harder task of predicting survival on high risk

patients: for instance, CDRP has MCC = 0.38 on SEQC-NB EFS restricted to HR patients ver-

sus MCC = 0.21 reached by LSVM. In the paper, we also analyze the model for interpretability:

we show that one layer of the CDRP-N can be used to define a new feature space where the

SEQC-NB data are naturally ranked for disease severity on a manifold. Further, the embedding

can be used to derive an improved survival analysis, detecting a group of Neuroblastoma

patients of intermediate risk. We expect that this approach can be tailored for similar prognos-

tic tasks and other malignancies, where patients are screened by clinical-pathological algo-

rithms [33], such as breast cancer [34]. Our approach makes it possible to include in a model,

as a part of the neural architecture, an established clinical algorithm already adopted by the sci-

entific community, and put into practice after relevant consensus and approval processes have

been achieved.

Materials andmethods

Data description

The first dataset used in this study (“SEQC-NB”) collects RNA-Seq gene expression profiles of

498 Neuroblastoma patients, published as part of the SEQC initiative [29, 30]. The following

endpoints are considered for classification tasks:

• the occurrence of an event (progression, relapse or death) (Event-Free survival, “EFS”);

• the occurrence of death from disease (Overall Survival, “OS”);

• the occurrence of an event (“EFSHR”) in High-Risk (HR) patients only;

• the occurrence of death from disease (“OSHR”) in HR patients only.

HR status was defined according to the NB2004 risk stratification criteria [35]. The samples

were split into training (NBt) and validation (NBv) sets following a published partitioning
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[30]. Stratification statistics for NBt and NBv are reported in Table 1. RNA-Seq data were pre-

processed as log2 normalized expressions for 60, 778 genes (“MAV-G”) [30]. Expression tables

were filtered before downstream analyses by removing features without EntrezID and with

interquartile range (IQR) larger than 0.5 using the nsFilter function in the genefilter R package,

leaving 12, 464 (20.5%) genes for downstream analysis. Feature filtering was performed on

NBt data set and applied on both NBt and NBv sets to avoid information leakage.

The second dataset (“TARGET-NB”), originally described in [31], includes Affymetrix

Human Exon Array expression profiles of 17, 450 genes for 247 primary diagnostic Neuroblas-

toma specimens from the TARGET NBL cohort. Classification endpoints are the same used

for SEQC-NB, i.e., EFS, OS, EFSHR and OSHR. The dataset was split into training (TGt,

n = 123) and validation subsets (TGv, n = 124) using the train_test_split function of

the Python module scikit-learn [36], setting the seed of the pseudorandom number generator

to 70. This particular split TGt/TGv was chosen out of 100 random train/test splits as the one

where a (linear) Support Vector Machine (LSVM) model reached the best compromise

between performance and smaller overfitting effect, measured as the difference between per-

formance on validation and performance on training. The collection of Jupyter notebooks

reporting gathered statistics on the TARGET-NB dataset, along with plots and the code used

to generate the 100 train/test splits are available on GitLab at the address https://gitlab.fbk.eu/

MPBA/CDRP/tree/master/notebooks/target-dataset. As a performance metric, we use the

Matthews Correlation Coefficient (MCC) [37–39], which in the binary case reads as

MCC ¼ TP�TN�FP�FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþFPÞðTPþFNÞðTNþFPÞðTNþFNÞ
p , for TN, TP, FN, FP the entries of the binary confusion

matrix.

The sample distribution for the different endpoints is summarized in Table 2. The cohort is

highly imbalanced: 83.2% samples in this dataset belong to the HR class.

Table 1. Sample stratification (left) and summary statistics (right) for the NBt and NBv subset for the covariates
High-Risk (HR), Overall Survival (OS) and Event-Free Survival (EFS).HR 0:non high risk, 1:high risk, EFS 0:no
event, 1:event, OS 0:alive, 1:dead.

HR EFS OS NBt NBv

0 0 0 129 130

1 0 26 24

1 8 5

1 0 0 31 25

1 0 12 16

1 43 49

https://doi.org/10.1371/journal.pone.0208924.t001

Table 2. Sample stratification (left) and summary statistics (right) for the TARGET-NB TGt and TGv subset for
the covariates High-Risk (HR; 0: Non high risk; 1: High risk), Overall Survival (OS; 0: Alive; 1: Dead) and Event-
Free Survival (EFS; 0: No event / censored; 1: Event).

HR EFS OS TGt TGv

0 0 0 15 15

1 0 0 0

1 0 0

1 0 0 28 33

1 0 7 9

1 73 67

https://doi.org/10.1371/journal.pone.0208924.t002
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For both SEQC-NB and TARGET-NB datasets, all the available clinical features for each

patient (EFS, OS, HR, INSS for TARGET-NB and the additional Age, Gender, Country and

Clinical Outcome for SEQC-NB) are detailed in S1 Table.

Structure of CDRP

The CDRP architecture, composed of two deep learning network models, referred to as

CDRP-A and CDRP-N, is shown in Fig 1. The CDRP-A autoencoder is composed by two

specular models, namely encoder and decoder, designed to learn a representation of the HR/

non-HR signal by minimizing the mean squared reconstruction errormse). The encoder net-

work is composed of an initial input layer of 250 nodes, corresponding to the 2% of the total

number of features, as resulting from the DAP ANOVA F-score selection algorithm, with

mse = 0.042 (CI: (0.041;0.043)). Two fully-connected (dense) layers (128 nodes and tanh acti-

vations) and an encoding layer (64 nodes and linear activation) complete the structure of the

network. The output of the encoding layer is later used as theHR embedding input for the

shared merge layer in CDRP-N, while the specular decoding network structure (dotted boxes

and arrows in Fig 1) is not used. CDRP-N is a multi-task deep network composed by a shared

Fig 1. Deep learning architecture. The layer/node structure of the CDRP deep learning architecture. On the left side: the CDRP-A autoencoder; on the
right side: the CDRP-N component, with two branches. Blocks indicate net layers, with the input dimensions for the SEQC-NB dataset.

https://doi.org/10.1371/journal.pone.0208924.g001
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top structure, and two specialized branches for the two classification tasks considered, namely

EFS and OS. The top structure is composed by an initial input layer of dimension 12,464 as the

whole set of features, followed by three fully connected layers with 256, 128, and 64 nodes,

respectively. The parameters of these layers are shared between the two classification tasks, so

that a joint representation can be learned during the training process. The output of the last

dense layer is then concatenated with theHR embedding layer as computed by CDRP-A. Up to

this layer, all activations are ReLU functions [40, 41], with neither dropout [42] nor batch nor-

malization [43]. The network branch for the EFS task consists of a single dense layer with 8

nodes with ReLu activation, followed by a classification SoftMax layer. The branch for the OS

task has two dense layers, with 32 and 16 nodes, respectively, and a final decision layer with

SoftMax activation. The categorical cross-entropy loss function is used for both tasks, in com-

bination with the Adadelta optimization algorithm [44], with δ = 0 and η = 1. Two different

loss weights coefficients have been empirically assigned to the EFS and the OS tasks, namely

1.0, and 2.0, respectively: the loss value minimized by the network corresponds to the weighted

sum of all the individual losses. All hyper-parameters, as well as the final network architecture,

have been empirically chosen after a grid search over multiple DAP experiments. The training

process of the CDRP-N has batch size 64, in combination with a class weight strategy to cope

with unbalanced samples in batches. The number of epochs is bounded to 500, with an early

stopping rule on the validation loss, with patience = 4 and minΔ = 10−6. The CDRP-A has been

trained using the RMSProp [45] optimizer combined with the mean squared error loss func-

tion, 2,000 epochs with no stopping criterion, and batch size 64. CDRP is implemented in the

Keras [46] framework with TensorFlow [47] backend. All the experiments have been con-

ducted on nVidia Pascal-GPU blades equipped with two GTX 1080, 8GB dedicated RAM,

2,560 CUDA cores, up to 9TFlops throughput and 8 CPU Intel Core i7-6700 with 32 GB

RAM. The source code is publicly available in the Git repository https://gitlab.fbk.eu/MPBA/

CDRP/.

The analysis pipeline

The experimental methodology is outlined in Fig 2 and follows the Data Analysis Protocol

(DAP) developed in the context of the MAQC-II challenge [1], the U.S. Food and Drug

Administration (US-FDA) initiative aimed to establish reproducibility in microarray gene

expression experiments. Given a dataset divided in a training and a test set, the former under-

goes a 10 × 5−fold Stratified Cross Validation [48] resulting in a ranked list of features and a

classification performance, measured by MCC. Data are standardized to mean zero and vari-

ance one and log2 transformed before undergoing classification, and in order to avoid infor-

mation leakage standardization parameters from the training set are used for both training

and test subsets. The k-best algorithm [48] is chosen as the feature ranker, CDRP is the classi-

fier and the best model is later retrained on the whole training set and selected for validation

on the test set. Furthermore, as a sanity check to avoid unwanted selection bias effects, the

pipeline is repeated 20 times with two randomized strategies: a Random Label scheme where

the true training labels are stochastically scrambled, and a Random Feature scheme, where a

random set of features is selected instead of the optimal list.

Hidden layer embedding and survival analysis

To investigate the association with the prognosis of the deep features extracted by the activa-

tions of different CDRP-N inner layers (including the shared layer), we clustered their deep

features by an agglomerative hierarchical algorithm, with Ward linkage and correlation func-

tion 1 − (Spearman correlation) as the dissimilarity measure to attribute patients’ labels. The
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dendrogram was cut so to obtain k = 3 clusters. The Kaplan-Meier method was used for esti-

mating overall survival curves, where the cluster labels were used to stratify patients. The log-

rank test as implemented in the survival R package was used to compare OS between different

patients strata. Survival analysis was repeated reweighting samples by inverse probability

weighting [49], to take into account the effect of potential clinical confounders. For both

SEQC-NB and TARGET-NB, the analysis was adjusted for patient gender; for SEQC-NB, the

analysis was also adjusted for country and age of patients, as they were provided among the

clinical variables. The distribution of the deep features was further studied with a recent

dimensionality reduction algorithm, the UniformManifold Approximation and Projection

(UMAP) [50]. UMAP searches for local manifold approximations and constructs a topological

representation of the high dimensional data into a low dimensional space, minimizing the

cross-entropy between the two representations. We used the UMAP implementation in the

homonymous R library umap (https://github.com/tkonopka/umap), with L2 as the distance

metric.

Results

Results obtained with CDRP solution on the SEQC-NB, and the TARGET-NB datasets are

reported in details in Table 3, and in Table 4, respectively. Results obtained by other machine

learning models are also reported for comparison, namely (linear) Support Vector Machine

(LSVM), Random Forest (RF), CDRP-N network (no autoencoder contribution).

Although no clear advantage is provided on the training portion of SEQC-NB, CDRP

improves MCC in validation for the OS endpoint, and to our knowledge it is the first model to

improve on the High-Risk cohort (EFSHR, OSHR). Furthermore, considering results obtained

on the TARGET-NB dataset, the two architectures CDRP-N and CDRP-A+CDRP-N are con-

firmed as the best performing in cross-validation on TGt for the HR tasks, with CDRP-A

Fig 2. Machine learning analysis pipeline. The Data Analysis Protocol (DAP) used in the experiments, originally defined in the US-FDAMAQC-II
initiative.

https://doi.org/10.1371/journal.pone.0208924.g002
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+CDRP-N outperforming LSVM, RF and CDRP-N on TGv. Notably, the very same architec-

ture used for the SEQC-NB dataset has been applied on the TARGET-NB with no hyper-

parameter tuning nor further customizations. This demonstrates the validity of the proposed

CDRP solution on being able to distill the diagnostic algorithm, which represents a crucial

boosting on the learning process of the prognostic predictions. Obtained results are encourag-

ing to look for further improvements, especially related to the interpretability of features syn-

thesized by the network. A theoretical basis justifying the achieved improvement relies on the

fact that the information distilled from the diagnostic task adds clinical information, used by

the multi-task predictor, which combines the OS and EFS tasks.

CDRP models with random labels yield MCC� 0, indicating honest estimates, while con-

sistent results are obtained also with swapped training and validation sets. A plot comparing

the performance of the CDRP solution and other machine learning models is reported in Fig 3

Table 4. Comparison of the median MCC from the TARGET-NB dataset in cross-validation (“TGt”) and external validation (“TGv”) with the MCC obtained by
CDRP. 95% studentized bootstrap confidence intervals for TGt are also reported.

Task LSVM RF CDRP-N CDRP-A+CDRP-N

TGt TGv TGt TGv TGt TGv TGt TGv

EFS 0.40 (0.34;0.45) 0.40 0.35 (0.29;0.41) 0.22 0.36 (0.30;0.42) 0.25 0.38 (0.33;0.44) 0.43

OS 0.41 (0.36;0.46) 0.42 0.28 (0.23;0.33) 0.35 0.31 (0.25;0.37) 0.24 0.34 (0.30;0.40) 0.39

EFSHR 0.12 (0.05;0.19) -0.01 0.07 (0.02;0.13) 0.12 0.16 (0.08;0.24) 0.08 0.17 (0.09;0.24) 0.18

OSHR 0.14 (0.08;0.20) 0.12 -0.02 (-0.04;-0.01) 0.01 0.19 (0.13;0.26) 0.07 0.21 (0.11;0.27) 0.27

https://doi.org/10.1371/journal.pone.0208924.t004

Fig 3. Comparison of cross-validation vs validation performance on the SEQC-NB dataset. (a) Event-free survival
classification task; (b) Overall survival classification task.

https://doi.org/10.1371/journal.pone.0208924.g003

Table 3. Comparison of the median MCC from the SEQC-NB study in cross-validation (“NBt”) and external validation (“NBv”) with the MCC obtained by CDRP.
For LSVM, RF, CDRP-N and CDRP-A+CDRP-N, 95% studentized bootstrap confidence intervals for NBt are also reported.

Task SEQC LSVM RF CDRP-N CDRP-A+CDRP-N

NBt NBv NBt NBv NBt NBv NBt NBv NBt NBv

EFS 0.45 0.50 0.46 (0.43;0.49) 0.48 0.45 (0.41;0.48) 0.52 0.40 (0.36;0.45) 0.41 0.42 (0.38;0.45) 0.45

OS 0.48 0.47 0.46 (0.42;0.50) 0.47 0.43 (0.39;0.47) 0.37 0.48 (0.46;0.53) 0.48 0.50 (0.45;0.54) 0.57

EFSHR 0.34 0.16 0.13 (0.08;0.18) 0.21 0.17 (0.10;0.23) 0.13 0.15 (0.09;0.22) 0.19 0.18 (0.11;0.25) 0.38

OSHR 0.36 0.07 0.22 (0.16;0.28) 0.12 0.33 (0.26;0.39) 0.10 0.23 (0.21;0.35) 0.14 0.25 (0.19;0.31) 0.19

https://doi.org/10.1371/journal.pone.0208924.t003
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for the SEQC-NB dataset, and in Fig 4 for the TARGET-NB dataset. In particular, these plots

show results obtained on internal validation (x-axis) and external validation sets (y-axis) for

the EFS and OS tasks on the entire patients cohort (in green), and the EFSHR and OSHR tasks

on the HR cohort (in red). For SEQC-NB, a consistent correlation emerges between classifiers’

performance and INSS stage, as shown in Fig 5, reporting the percentage of correct classifica-

tion during the DAP training: samples with INSS stage 1 are better classified than samples in

different stages, with a decreasing trend for increasing disease severity; samples with INSS 4

result the hardest to classify. Notably, this does not hold in the TARGET-NB dataset, where

samples with INSS 4 are consistently better classified than samples with INSS 1, as displayed in

Fig 6. In S1–S12 Figs the classification results are detailed for each samples across the 10 repli-

cates of the 5-fold Cross Validation schema. Using the 64 TARGET-NB deep features extracted

after the activation of the shared layer of CDRP-N (“shared_64”) to cluster TGt patients, we

observe no significantly different OS curves among patient strata (Fig 7, panel a). Remarkably,

using the 128 TARGET-NB deep features from the shared merged layer of CDRP-A+CDRP-N

(“merge_128”), the TGt patients stratify into groups with significantly different OS (log-rank

p< 10−4, Fig 7, panel b). The survival analysis was also adjusted for patient gender by inverse

probability weighting, with unchanged results (see S13 Fig). A full description of the clusters’

stratification for INSS stage, risk and binary survival endpoint is provided in Table 5. We also

tested the CDRP embeddings for patient subtypes by considering the structure of the dendro-

gram resulting from the unsupervised hierarchical clustering of SEQC-NBt. We divided

patients into three groups using the SEQC-NB deep features extracted in correspondence of

the 32-node Dense layer of CDRP (see Fig 1) and identified a novel patient stratification in

three subtypes with significantly different overall survival curves (log-rank p< 10−4, Fig 8).

Adjusting for clinical confounders did not highlight any impact on survival (see S13 Fig). The

same three clusters (1:gray, 2: yellow, 3:blue) are mapped in the UMAP planar projection of

the same data displayed in Fig 9, where the point label indicates cluster membership, while

color denotes patient INSS grading.

Notably, severity progression of the three clusters is modeled by the UMAP dimensionality

reduction algorithm. The resulting manifold can be effectively approximated by the parabola

x = −1.896671 + 0.403570y + 0.075521y2, which results the best curve among all conics in term

of min square error (Fig 10, panel a). If the manifold is traversed from top left (point A in the

Fig 4. Comparison of cross-validation vs validation performance on the TARGET-NB dataset. (a) Event-free
survival classification task; (b) Overall survival classification task.

https://doi.org/10.1371/journal.pone.0208924.g004
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Fig 5. Percentage of correct classification in DAP training by different models stratified for INSS stage for (a)
SEQC-NB EFS (b) SEQC-NB OS.

https://doi.org/10.1371/journal.pone.0208924.g005
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Fig 6. Percentage of correct classification in DAP training by different models stratified for INSS stage for (a)
TARGET-NB EFS (b) TARGET-NB OS.

https://doi.org/10.1371/journal.pone.0208924.g006
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figure) to bottom right (point B), and the samples projected of the fitting parabola, there is a

growing trend of samples with bad prognosis. This is also highlighted by the different INSS

grading of the samples, with patients of grade 4 accumulating towards the lower portion of the

manifold (Fig 10, panel b). It is also worth noting that the network embedding correctly locate

two interesting outliers (highlighted in Fig 9):

1. Sample NB249, a patient that, despite being INSS stage 4, is a non-High-Risk case; the cor-

responding point is indeed projected on the top left portion of the manifold together with

Fig 7. Kaplan-Meier overall survival analysis on TARGET-NBt. (a) Patient stratification defined by hierarchical
clustering based on the deep features extracted from the 64-node shared layer of CDRP, without the contribution of
CDRP-A; (b) Patient stratification defined by hierarchical clustering based on the deep features extracted from the
128-node merged layer of CDRP, with the information distilled from the CDRP-A diagnostic task. p: log-rank p-value.

https://doi.org/10.1371/journal.pone.0208924.g007

Table 5. Distribution of patients in the 3 hierarchical clusters stratified by INSS stage, risk and binary survival endpoint.

Dataset Split Cluster EFS (0/1) OS (0/1) HR (Y/N) INSS (1/2/3/4/4S)

SEQC-NB NBt 1 1/14 7/8 11/4 0/0/1/14/0

2 21/42 27/36 58/5 3/2/6/50/2

3 138/33 164/7 17/154 57/38/23/27/26

NBv 1 36/28 53/11 22/42 10/9/6/31/8

2 21/52 31/42 67/6 0/6/11/55/1

3 98/14 111/1 1/111 51/23/16/6/16

All 1 33/38 55/16 31/40 8/10/4/39/10

2 36/97 52/75 119/8 1/5/17/102/2

3 246/54 286/14 26/274 112/63/42/42/41

TARGET-NB TGt 1 3/35 6/32 0/38 0/0/0/38/0

2 21/37 22/36 1/57 1/0/0/57/0

3 19/8 22/5 14/13 14/0/0/13/0

TGv 1 23/56 27/52 0/79 1/0/0/78/0

2 23/10 26/7 14/19 14/0/0/19/0

3 2/10 4/8 1/11 1/0/0/11/0

ALL 1 26/52 30/48 0/78 1/0/0/77/0

2 34/10 36/8 28/16 28/0/0/16/0

3 31/94 41/84 2/123 2/0/0/123/0

https://doi.org/10.1371/journal.pone.0208924.t005
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all the less severe cases; this sample is always correctly classifies by CDRP, as shown by

S1–S12 Figs.

2. Sample NB169, a grade 1 patient who nonetheless had an unfavorable prognosis; on the

projected manifold, its blue “2” mark can be correctly found in the bottom right zone

populated by the most severe grade 4 patients; this sample is always misclassified in training

by CDRP for the EFS task, and correctly classified only in 4 replicates out of 10 for the OS

task.

Fig 8. Kaplan-Meier overall survival analysis on SEQC-NBt. Patient stratification was defined by hierarchical clustering based on the deep features
extracted from the 32-node OS branch of CDRP (see Fig 1). p: log-rank p-value.

https://doi.org/10.1371/journal.pone.0208924.g008
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Conclusion

CDRP is a novel multitask deep learning architecture that improves prediction of hard prog-

nostic endpoints by injecting latent variables derived by autoencoding a standard clinical

model. The approach leverages the advent of deep learning structures that can flexibly inte-

grate multimodal data or create internally multiple processing paths. In this study, the autoen-

coder component clearly improves prediction of survival for high risk patients. Further, the

network can be used to generate embeddings associated with disease severity, improving on

initial tumor grading.

Fig 9. UMAP projection of the 1000 deep features of SEQC-NBt samples on the hidden Overall Survival layer with 32 nodes. Colors indicate
tumor grade, while numbers correspond to the hierarchical clusters of Fig 8. Two outlier samples are highlighted.

https://doi.org/10.1371/journal.pone.0208924.g009
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The DAP adapted from the MAQC experience has been instrumental in avoiding risk of

selection bias. Remarkably, more than 11 billion parameters have been trained in total, con-

firming the need for a rigorous control of the model selection process.

The architecture can be naturally extended with multi-modal inputs by adding appropriate

embeddings: in particular embeddings for clinical variables and image data, as well as multi-

omics integration are being investigated.

Supporting information

S1 Table. Clinical descriptors of all patients in the SEQC-NB and the TARGET-NB data-

set, split in training and test portions. Sample the ID of the sample in the original dataset;

HR the binarized High Risk, 0: low risk, 1: high risk, EFS the binarized Event Free Survival, 0:

no event / censored, 1: event,OS the binarized Overall Survival, 0: alive, 1: dead, EFS (days)

Event Free Survival in days,OS (days)Overall Survival in days, INSSNeuroblastoma INSS

stage, Clinical outcome, favorable / unfavorable, Age (days) Age in days, GenderM: male, F:

female, Country patient country.

(XLSX)

S1 Fig. Pictogram of the number of times each SEQC-NB sample has been correctly classi-

fied during the 10x5-CV DAP training phase by the CDRP-A+CDRP-N model for the EFS

task.

(PDF)

S2 Fig. Pictogram of the number of times each SEQC-NB sample has been correctly classi-

fied during the 10x5-CV DAP training phase by the CDRP-A+CDRP-N model for the OS

task.

(PDF)

Fig 10. Manifold approximation of UMAP projection. (a) Colors indicate tumor grade and the black line is the
approximating parabola; (b) Cumulative sum of severe (red line) and less severe (green) cases while traversing the
linearly projected manifold from point A to point B. Samples with low grading and favorable prognosis concentrate
close to point A, while patients with more severe condition or unfavorable prognosis are grouping towards point B.

https://doi.org/10.1371/journal.pone.0208924.g010
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S3 Fig. Pictogram of the number of times each SEQC-NB sample has been correctly classi-

fied during the 10x5-CV DAP training phase by the RF model for the EFS task.

(PDF)

S4 Fig. Pictogram of the number of times each SEQC-NB sample has been correctly classi-

fied during the 10x5-CV DAP training phase by the RF model for the OS task.

(PDF)

S5 Fig. Pictogram of the number of times each SEQC-NB sample has been correctly classi-

fied during the 10x5-CV DAP training phase by the LSVMmodel for the EFS task.

(PDF)

S6 Fig. Pictogram of the number of times each SEQC-NB sample has been correctly classi-

fied during the 10x5-CV DAP training phase by the LSVMmodel for the OS task.

(PDF)

S7 Fig. Pictogram of the number of times each TARGET-NB sample has been correctly

classified during the 10x5-CV DAP training phase by the CDRP-A+CDRP-N model for

the EFS task.

(PDF)

S8 Fig. Pictogram of the number of times each TARGET-NB sample has been correctly

classified during the 10x5-CV DAP training phase by the CDRP-A+CDRP-N model for

the OS task.

(PDF)

S9 Fig. Pictogram of the number of times each TARGET-NB sample has been correctly

classified during the 10x5-CV DAP training phase by the RF model for the EFS task.

(PDF)

S10 Fig. Pictogram of the number of times each TARGET-NB sample has been correctly

classified during the 10x5-CV DAP training phase by the RF model for the OS task.

(PDF)

S11 Fig. Pictogram of the number of times each TARGET-NB sample has been correctly

classified during the 10x5-CV DAP training phase by the LSVMmodel for the EFS task.

(PDF)

S12 Fig. Pictogram of the number of times each TARGET-NB sample has been correctly

classified during the 10x5-CV DAP training phase by the LSVMmodel for the OS task.

(PDF)

S13 Fig. Kaplan-Meier survival analyses with adjustment for clinical confounders.

(PDF)

Acknowledgments

The Microsoft Azure platform used for all computations was funded by the Azure Research

grant “Deep Learning for Precision Medicine”, assigned to CF. The authors thank Sagar Mal-

hotra for the linguistic revision of the manuscript.

Author Contributions

Conceptualization: Valerio Maggio, Marco Chierici, Cesare Furlanello.

Distillation of clinical algorithm by multi-task deep learning in high-risk Neuroblastoma

PLOSONE | https://doi.org/10.1371/journal.pone.0208924 December 7, 2018 16 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0208924.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0208924.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0208924.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0208924.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0208924.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0208924.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0208924.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0208924.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0208924.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0208924.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0208924.s014
https://doi.org/10.1371/journal.pone.0208924


Data curation:Marco Chierici.

Funding acquisition: Cesare Furlanello.

Methodology: Valerio Maggio, Marco Chierici, Giuseppe Jurman, Cesare Furlanello.

Resources: Valerio Maggio, Marco Chierici.

Software: Valerio Maggio, Marco Chierici, Giuseppe Jurman.

Visualization: Valerio Maggio, Marco Chierici, Giuseppe Jurman, Cesare Furlanello.

Writing – original draft: Valerio Maggio, Marco Chierici, Giuseppe Jurman, Cesare

Furlanello.

Writing – review & editing: Cesare Furlanello.

References
1. The MicroArray Quality Control (MAQC) Consortium. The MAQC-II Project: A comprehensive study of

common practices for the development and validation of microarray-based predictive models. Nature
Biotechnology. 2010; 28(8):827–838. https://doi.org/10.1038/nbt.1665 PMID: 20676074

2. Maris JM, Hogarty MD, Bagatell R, Cohn SL. Neuroblastoma. Lancet. 2007; 369:2106–2120. https://
doi.org/10.1016/S0140-6736(07)60983-0 PMID: 17586306

3. Mohlin S, Hamidian A, Påhlman S. HIF2A and IGF2 Expression Correlates in Human Neuroblastoma
Cells and Normal Immature Sympathetic Neuroblasts. Neoplasia. 2013; 15(3):328–334. https://doi.org/
10.1593/neo.121706 PMID: 23479510

4. Ambros PF, Ambros IM, Brodeur GM, Haber M, Khan J, Nakagawara A, et al. International consensus
for neuroblastomamolecular diagnostics: report from the International Neuroblastoma Risk Group
(INRG) Biology Committee. British Journal of Cancer. 2009; 100(9):1471–1482. https://doi.org/10.
1038/sj.bjc.6605014 PMID: 19401703

5. Rozmus J, Langer M, Murphy JJ, Dix D. Multiple Persistent Ganglioneuromas Likely Arising From the
SpontaneousMaturation of Metastatic Neuroblastoma. Journal of Pediatric Hematology/Oncology.
2012; 34(2):151–153. https://doi.org/10.1097/MPH.0b013e318221ca82 PMID: 22052163

6. Brodeur GM, Pritchard J, Berthold F, Carlsen NL, Castel V, Castelberry RP, et al. Revisions of the inter-
national criteria for neuroblastoma diagnosis, staging, and response to treatment. Journal of Clinical
Oncology. 1993; 11(8):1466–1477. https://doi.org/10.1200/JCO.1993.11.8.1466 PMID: 8336186

7. LondonWB, Castleberry RP, Matthay KK, Look AT, Seeger RC, Shimada H, et al. Evidence for an Age
Cutoff Greater Than 365 Days for Neuroblastoma Risk Group Stratification in the Children’s Oncology
Group. Journal of Clinical Oncology. 2005; 23(27):6459–6465. https://doi.org/10.1200/JCO.2005.05.
571 PMID: 16116153

8. Evans AE, D’Angio GJ, Randolph J. A proposed staging for children with neuroblastoma. Children’s
cancer study group A. Cancer. 1971; 27(2):374–378. https://doi.org/10.1002/1097-0142(197102)
27:2%3C374::AID-CNCR2820270221%3E3.0.CO;2-G PMID: 5100400

9. Brodeur GM, Pritchard J, Berthold F, Carlsen NL, Castel V, Castelberry RP, et al. Revisions of the inter-
national criteria for neuroblastoma diagnosis, staging, and response to treatment. Journal of Clinical
Oncology. 1993; 11(8):1466–1477. https://doi.org/10.1200/JCO.1993.11.8.1466 PMID: 8336186

10. Brodeur GM, Seeger RC, SchwabM, Varmus HE, Bishop JM. Amplification of N-myc in untreated
human neuroblastomas correlates with advanced disease stage. Science. 1984; 224(4653):
1121–1124. https://doi.org/10.1126/science.6719137 PMID: 6719137

11. Seeger RC, Brodeur GM, Sather H, Dalton A, Siegel SE, Wong KY, et al. Association of Multiple Copies
of the N-myc Oncogene with Rapid Progression of Neuroblastomas. New England Journal of Medicine.
1985; 313(18):1111–1116. https://doi.org/10.1056/NEJM198510313131802 PMID: 4047115

12. Oberthuer A, Juraeva D, Hero B, Volland R, Sterz C, Schmidt R, et al. Revised Risk Estimation and
Treatment Stratification of Low- and Intermediate-Risk Neuroblastoma Patients by Integrating Clinical
and Molecular Prognostic Markers. Clinical Cancer Research. 2015; 21(8):1904–1915. https://doi.org/
10.1158/1078-0432.CCR-14-0817 PMID: 25231397

13. Ohira M, Oba S, Nakamura Y, Isogai E, Kaneko S, Nakagawa A, et al. Expression profiling using a
tumor-specific cDNAmicroarray predicts the prognosis of intermediate risk neuroblastomas. Cancer
Cell. 2005; 7:337–350. https://doi.org/10.1016/j.ccr.2005.03.019 PMID: 15837623

Distillation of clinical algorithm by multi-task deep learning in high-risk Neuroblastoma

PLOSONE | https://doi.org/10.1371/journal.pone.0208924 December 7, 2018 17 / 19

https://doi.org/10.1038/nbt.1665
http://www.ncbi.nlm.nih.gov/pubmed/20676074
https://doi.org/10.1016/S0140-6736(07)60983-0
https://doi.org/10.1016/S0140-6736(07)60983-0
http://www.ncbi.nlm.nih.gov/pubmed/17586306
https://doi.org/10.1593/neo.121706
https://doi.org/10.1593/neo.121706
http://www.ncbi.nlm.nih.gov/pubmed/23479510
https://doi.org/10.1038/sj.bjc.6605014
https://doi.org/10.1038/sj.bjc.6605014
http://www.ncbi.nlm.nih.gov/pubmed/19401703
https://doi.org/10.1097/MPH.0b013e318221ca82
http://www.ncbi.nlm.nih.gov/pubmed/22052163
https://doi.org/10.1200/JCO.1993.11.8.1466
http://www.ncbi.nlm.nih.gov/pubmed/8336186
https://doi.org/10.1200/JCO.2005.05.571
https://doi.org/10.1200/JCO.2005.05.571
http://www.ncbi.nlm.nih.gov/pubmed/16116153
https://doi.org/10.1002/1097-0142(197102)27:2%3C374::AID-CNCR2820270221%3E3.0.CO;2-G
https://doi.org/10.1002/1097-0142(197102)27:2%3C374::AID-CNCR2820270221%3E3.0.CO;2-G
http://www.ncbi.nlm.nih.gov/pubmed/5100400
https://doi.org/10.1200/JCO.1993.11.8.1466
http://www.ncbi.nlm.nih.gov/pubmed/8336186
https://doi.org/10.1126/science.6719137
http://www.ncbi.nlm.nih.gov/pubmed/6719137
https://doi.org/10.1056/NEJM198510313131802
http://www.ncbi.nlm.nih.gov/pubmed/4047115
https://doi.org/10.1158/1078-0432.CCR-14-0817
https://doi.org/10.1158/1078-0432.CCR-14-0817
http://www.ncbi.nlm.nih.gov/pubmed/25231397
https://doi.org/10.1016/j.ccr.2005.03.019
http://www.ncbi.nlm.nih.gov/pubmed/15837623
https://doi.org/10.1371/journal.pone.0208924


14. Asgharzadeh S, Pique-Regi R, Sposto R, Wang H, Yang Y, Shimada H, et al. Prognostic Significance
of Gene Expression Profiles of Metastatic Neuroblastomas Lacking MYCNGene Amplification. JNCI:
Journal of the National Cancer Institute. 2006; 98(17):1193. https://doi.org/10.1093/jnci/djj330 PMID:
16954472

15. Oberthuer A, Berthold F, Warnat P, Hero B, Kahlert Y, Spitz R, et al. Customized Oligonucleotide Micro-
array Gene Expression–Based Classification of Neuroblastoma Patients Outperforms Current Clinical
Risk Stratification. Journal of Clinical Oncology. 2006; 24(31):5070–5078. https://doi.org/10.1200/JCO.
2006.06.1879 PMID: 17075126

16. Vermeulen J, De Preter K, Naranjo A, Vercruysse L, Van Roy N, Hellemans J, et al. Predicting out-
comes for children with neuroblastoma using a multigene-expression signature: a retrospective SIO-
PEN/COG/GPOH study. Lancet Oncology. 2009; 10(7):663–671. https://doi.org/10.1016/S1470-2045
(09)70154-8 PMID: 19515614

17. De Preter K, Vermeulen J, Brors B, Delattre O, Eggert A, Fischer M, et al. Accurate Outcome Prediction
in Neuroblastoma across Independent Data Sets Using a Multigene Signature. Clinical Cancer
Research. 2010; 16(5):1532–1541. https://doi.org/10.1158/1078-0432.CCR-09-2607 PMID: 20179214

18. Oberthuer A, Hero B, Berthold F, Juraeva D, Faldum A, Kahlert Y, et al. Prognostic impact of gene
expression-based classification for neuroblastoma. Journal of Clinical Oncology. 2010; 28(21):
3506–3515. https://doi.org/10.1200/JCO.2009.27.3367 PMID: 20567016

19. Formicola D, Petrosino G, Lasorsa VA, Pignataro P, Cimmino F, Vetrella S, et al. An 18 gene expres-
sion-based score classifier predicts the clinical outcome in stage 4 neuroblastoma. Journal of Transla-
tional Medicine. 2016; 14:142. https://doi.org/10.1186/s12967-016-0896-7 PMID: 27188717

20. Saulnier Sholler GL, FergusonW, Bergendahl G, Currier E, Lenox SR, Bond J, et al. A Pilot Trial Test-
ing the Feasibility of Using Molecular-Guided Therapy in Patients with Recurrent Neuroblastoma. Jour-
nal of Cancer Therapy. 2012; 3(5):602–612. https://doi.org/10.4236/jct.2012.35077

21. Stricker TP, Morales La Madrid A, Chlenski A, Guerrero L, Salwen HR, Gosiengfiao Y, et al. Validation
of a prognostic multi-gene signature in high-risk neuroblastoma using the high throughput digital Nano-
String nCounter™ system. Molecular Oncology. 2014; 8(3):669–678. https://doi.org/10.1016/j.molonc.
2014.01.010 PMID: 24560446

22. Children’s Oncology Group. Studying Gene Expression in Samples From Younger Patients With Neuro-
blastoma; First received: March 13, 2012, Last updated: May 17, 2016. https://clinicaltrials.gov/ct2/
show/NCT01553448.

23. Children’s Oncology Group. Gene Expression in Predicting Outcome in Samples From Patients With
High-Risk Neuroblastoma; First received: January 26, 2012, Last updated: May 13, 2016. https://
clinicaltrials.gov/ct2/show/NCT01520233.

24. Shohet JM. Redefining functional MYCN gene signatures in neuroblastoma. Proceedings of the
National Academy of Sciences. 2012; 109(47):19041–19042. https://doi.org/10.1073/pnas.
1217598109

25. Valentijn LJ, Koster J, Haneveld F, Aissa RA, van Sluis P, BroekmansMEC, et al. Functional MYCN sig-
nature predicts outcome of neuroblastoma irrespective of MYCN amplification. Proceedings of the
National Academy of Sciences. 2012; 109(47):19190–19195. https://doi.org/10.1073/pnas.
1208215109

26. LeCun YA, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521:436–444. https://doi.org/10.1038/
nature14539 PMID: 26017442

27. Cangelosi D, Pelassa S, Morini M, Conte M, Bosco MC, Eva A, et al. Artificial neural network classifier
predicts neuroblastoma patients’ outcome. BMC Bioinformatics. 2016; 17(Suppl 12):347. https://doi.
org/10.1186/s12859-016-1194-3 PMID: 28185577

28. Salazar BM, Balczewski EA, Ung CY, Zhu S. Neuroblastoma, a Paradigm for Big Data Science in Pedi-
atric Oncology. International Journal of Molecular Sciences. 2017; 18(1):37. https://doi.org/10.3390/
ijms18010037

29. The SEQC/MAQC-III Consortium. A comprehensive assessment of RNA-seq accuracy, reproducibility
and information content by the Sequence Quality Control consortium. Nature Biotechnology. 2014;
32:903–914. https://doi.org/10.1038/nbt.2957 PMID: 25150838

30. ZhangW, Yu Y, Hertwig F, Thierry-Mieg J, ZhangW, Thierry-Mieg D, et al. Comparison of RNA-seq
and microarray-based models for clinical endpoint prediction. Genome Biology. 2015; 16(1):133.
https://doi.org/10.1186/s13059-015-0694-1 PMID: 26109056

31. Pugh TJ, Morozova O, Attiyeh EF, Asgharzadeh S, Wei JS, Auclair D, et al. The genetic landscape of
high-risk neuroblastoma. Nature Genetics. 2013; 45:279–284. https://doi.org/10.1038/ng.2529 PMID:
23334666

Distillation of clinical algorithm by multi-task deep learning in high-risk Neuroblastoma

PLOSONE | https://doi.org/10.1371/journal.pone.0208924 December 7, 2018 18 / 19

https://doi.org/10.1093/jnci/djj330
http://www.ncbi.nlm.nih.gov/pubmed/16954472
https://doi.org/10.1200/JCO.2006.06.1879
https://doi.org/10.1200/JCO.2006.06.1879
http://www.ncbi.nlm.nih.gov/pubmed/17075126
https://doi.org/10.1016/S1470-2045(09)70154-8
https://doi.org/10.1016/S1470-2045(09)70154-8
http://www.ncbi.nlm.nih.gov/pubmed/19515614
https://doi.org/10.1158/1078-0432.CCR-09-2607
http://www.ncbi.nlm.nih.gov/pubmed/20179214
https://doi.org/10.1200/JCO.2009.27.3367
http://www.ncbi.nlm.nih.gov/pubmed/20567016
https://doi.org/10.1186/s12967-016-0896-7
http://www.ncbi.nlm.nih.gov/pubmed/27188717
https://doi.org/10.4236/jct.2012.35077
https://doi.org/10.1016/j.molonc.2014.01.010
https://doi.org/10.1016/j.molonc.2014.01.010
http://www.ncbi.nlm.nih.gov/pubmed/24560446
https://clinicaltrials.gov/ct2/show/NCT01553448
https://clinicaltrials.gov/ct2/show/NCT01553448
https://clinicaltrials.gov/ct2/show/NCT01520233
https://clinicaltrials.gov/ct2/show/NCT01520233
https://doi.org/10.1073/pnas.1217598109
https://doi.org/10.1073/pnas.1217598109
https://doi.org/10.1073/pnas.1208215109
https://doi.org/10.1073/pnas.1208215109
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1186/s12859-016-1194-3
https://doi.org/10.1186/s12859-016-1194-3
http://www.ncbi.nlm.nih.gov/pubmed/28185577
https://doi.org/10.3390/ijms18010037
https://doi.org/10.3390/ijms18010037
https://doi.org/10.1038/nbt.2957
http://www.ncbi.nlm.nih.gov/pubmed/25150838
https://doi.org/10.1186/s13059-015-0694-1
http://www.ncbi.nlm.nih.gov/pubmed/26109056
https://doi.org/10.1038/ng.2529
http://www.ncbi.nlm.nih.gov/pubmed/23334666
https://doi.org/10.1371/journal.pone.0208924


32. Petrov I, SuntsovaM, Ilnitskaya E, Roumiantsev S, Sorokin M, Garazha A, et al. Gene expression and
molecular pathway activation signatures of MYCN-amplified neuroblastomas. Oncotarget. 2017; 8(48):
83768–83780. https://doi.org/10.18632/oncotarget.19662 PMID: 29137381

33. MDAnderson Cancer Center. Cancer Screening Algorithms; 2018. https://www.mdanderson.org/for-
physicians/clinical-tools-resources/clinical-practice-algorithms/cancer-screening-algorithms.html
(Accessed on Nov. 13, 2018).

34. Kantelhardt EJ, Vetter M, Schmidt M, Veyret C, Augustin D, Hanf V, et al. Prospective evaluation of
prognostic factors uPA/PAI-1 in node-negative breast cancer: Phase III NNBC3-Europe trial (AGO,
GBG, EORTC-PBG) comparing 6 x FEC versus 3 x FEC/3 x Docetaxel. BMCCancer. 2011; 11(1):140.
https://doi.org/10.1186/1471-2407-11-140 PMID: 21496284

35. Berthold F. NB2004 High Risk Trial Protocol for the Treatment of Children with High Risk Neuroblas-
toma; 2007. https://www.kinderkrebsinfo.de/sites/kinderkrebsinfo/content/e1676/e9032/e1758/e7671/
download38297/NB_2004_HR_3-Versandversion_ger.pdf.

36. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research. 2011; 12:2825–2830.

37. Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme.
Biochimica et Biophysica Acta. 1975; 405(2):442–451. https://doi.org/10.1016/0005-2795(75)90109-9
PMID: 1180967

38. Baldi P, Brunak S, Chauvin Y, Andersen CAF, Nielsen H. Assessing the accuracy of prediction algo-
rithms for classification: an overview. Bioinformatics. 2000; 16(5):412–424. https://doi.org/10.1093/
bioinformatics/16.5.412 PMID: 10871264

39. Jurman G, Riccadonna S, Furlanello C. A comparison of MCC and CEN error measures in multi-class
prediction. PLOSONE. 2012; 7(8):e41882. https://doi.org/10.1371/journal.pone.0041882

40. Nair V, Hinton GE. Rectified Linear Units Improve Restricted BoltzmannMachines. In: Fuernkranz J,
Joachims T, editors. Proceedings of the 27th International Conference on Machine Learning, ICML
2010. Omnipress; 2010. p. 807–814.

41. Maas AL, Hannun AY, Ng AY. Rectifier Nonlinearities Improve Neural Network Acoustic Models. In:
Dasgupta S, McAllester D, editors. Proceedings of ICMLWorkshop on Deep Learning for Audio,
Speech, and Language Processing (WDLASL 2013); 2014. p. 1–6.

42. Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: A SimpleWay to Pre-
vent Neural Networks fromOverfitting. Journal of Machine Learning Research. 2014; 15:1929–1958.

43. Ioffe S, Szegedy C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift. In: Bach FR, Blei DM, editors. Proceedings of the 32nd International Conference on
Machine Learning, ICML 2015. vol. 37 of JMLRWorkshop and Conference Proceedings. JMLR.org;
2015. p. 448–456.

44. Zeiler MD. ADADELTA: An Adaptive Learning Rate Method. CoRR. 2012;abs/1212.5701.

45. Ruder S. An overview of gradient descent optimization algorithms. CoRR. 2016;abs/1609.04747.

46. Chollet F. Keras; 2015. https://github.com/fchollet/keras.

47. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems; 2015. http://tensorflow.org/.

48. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and
Prediction. Springer; 2009.

49. Cole S, Hernan M. Adjusted survival curves with inverse probability weights. Computer Methods and
Programs in Biomedicine. 2004; 75(1):45–49. https://doi.org/10.1016/j.cmpb.2003.10.004 PMID:
15158046

50. McInnes L, Healy J, Saul N, Großberger L. UMAP: UniformManifold Approximation and Projection.
Journal of Open Source Software. 2018; 3(29):861. https://doi.org/10.21105/joss.00861

Distillation of clinical algorithm by multi-task deep learning in high-risk Neuroblastoma

PLOSONE | https://doi.org/10.1371/journal.pone.0208924 December 7, 2018 19 / 19

https://doi.org/10.18632/oncotarget.19662
http://www.ncbi.nlm.nih.gov/pubmed/29137381
https://www.mdanderson.org/for-physicians/clinical-tools-resources/clinical-practice-algorithms/cancer-screening-algorithms.html
https://www.mdanderson.org/for-physicians/clinical-tools-resources/clinical-practice-algorithms/cancer-screening-algorithms.html
https://doi.org/10.1186/1471-2407-11-140
http://www.ncbi.nlm.nih.gov/pubmed/21496284
https://www.kinderkrebsinfo.de/sites/kinderkrebsinfo/content/e1676/e9032/e1758/e7671/download38297/NB_2004_HR_3-Versandversion_ger.pdf
https://www.kinderkrebsinfo.de/sites/kinderkrebsinfo/content/e1676/e9032/e1758/e7671/download38297/NB_2004_HR_3-Versandversion_ger.pdf
https://doi.org/10.1016/0005-2795(75)90109-9
http://www.ncbi.nlm.nih.gov/pubmed/1180967
https://doi.org/10.1093/bioinformatics/16.5.412
https://doi.org/10.1093/bioinformatics/16.5.412
http://www.ncbi.nlm.nih.gov/pubmed/10871264
https://doi.org/10.1371/journal.pone.0041882
https://github.com/fchollet/keras
http://tensorflow.org/
https://doi.org/10.1016/j.cmpb.2003.10.004
http://www.ncbi.nlm.nih.gov/pubmed/15158046
https://doi.org/10.21105/joss.00861
https://doi.org/10.1371/journal.pone.0208924

