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DISTILLED SENSING: ADAPTIVE SAMPLING FOR
SPARSE DETECTION AND ESTIMATION

By Jarvis Haupt∗, Rui Castro†, and Robert Nowak‡

Rice University∗, Columbia University†, and
University of Wisconsin—Madison‡

Adaptive sampling results in dramatic improvements in the re-
covery of sparse signals in white Gaussian noise. A sequential adap-
tive sampling-and-refinement procedure called distilled sensing (DS)
is proposed and analyzed. DS is a form of multi-stage experimen-
tal design and testing. Because of the adaptive nature of the data
collection, DS can detect and localize far weaker signals than possi-
ble from non-adaptive measurements. In particular, reliable detection
and localization (support estimation) using non-adaptive samples is
possible only if the signal amplitudes grow logarithmically with the
problem dimension. Here it is shown that using adaptive sampling,
reliable detection is possible provided the amplitude exceeds a con-
stant, and localization is possible when the amplitude exceeds any
arbitrarily slowly growing function of the dimension.

1. Introduction. In high dimensional multiple hypothesis testing prob-
lems the aim is to identify the subset of the hypotheses that differ from the
null distribution, or simply to decide if one or more of the hypotheses do
not follow the null. There is now a well developed theory and methodology
for this problem, and the fundamental limitations in the high dimensional
setting are quite clear. However, most existing treatments of the problem
assume a non-adaptive measurement process. The question of how the limi-
tations might differ under a more flexible, sequential adaptive measurement
process has not been addressed. This paper shows that this additional flex-
ibility can yield surprising and dramatic performance gains.

For concreteness let x = (x1, . . . , xp) ∈ R
p be an unknown sparse vector,

such that most (or all) of its components xi are equal to zero. The locations
of the non-zero components are arbitrary. This vector is observed in additive

§This work was supported in part by NSF Grant CCF-0353079 and AFOSR Grant
FA9550-09-1-0140, and is dedicated to the memory of Dr. Dennis Healy, who inspired and
supported this direction of research in the context of the DARPA Analog-to-Information
Program. Dennis’ guidance, vision, and inspiration will be missed.

AMS 2000 subject classifications: Primary 62L05, 62G20; secondary 62H15, 62P10
Keywords and phrases: Adaptive sampling, model selection, multiple testing, sequential

design, sparse recovery

1

http://arxiv.org/abs/1001.5311v1


2 J. HAUPT, R. CASTRO, AND R. NOWAK

white Gaussian noise and we consider two problems:

Localization: Infer the locations of the few non-zero components.
Detection: Decide whether x is the zero vector.

Given a single, non-adaptive noisy measurement of x, a common approach
entails coordinate-wise thresholding of the observed data at a given level,
identifying the number and locations of entries for which the corresponding
observation exceeds the threshold. In such settings there are sharp asymp-
totic thresholds that the magnitude of the non-zero components must exceed
in order for the signal to be localizable and/or detectable. Such characteriza-
tions have been given in [1, 7] for the localization problem and [11, 6] for the
detection problem. A more thorough review of these sort of characterizations
is given in Section 2.1.

In this paper we investigate these problems under a more flexible mea-
surement process. Suppose we are able to sequentially collect multiple noisy
measurements of each component of x, and that the data so obtained can
be modeled as

(1.1) yi,j = xi + γ
−1/2
i,j wi,j, i = 1, . . . , p, j = 1, . . . , k .

In the above a total of k measurement steps is taken, j indexes the mea-

surement step, wi,j
i.i.d.∼ N (0, 1) are zero-mean Gaussian random variables

with unit variance, and γi,j ≥ 0 quantifies the precision of each measure-
ment. When γi,j = 0 we adopt the convention that component xi was not
observed at step j. The crucial feature of this model is that it does not
preclude sequentially adaptive measurements, where the γi,j can depend on
past observations {yi,ℓ}i∈{1,...,p},ℓ<j.

In practice, the precision for a measurement at location i at step j may
be controlled, for example, by collecting multiple independent samples and
averaging to reduce the effective observation noise, the result of which would
be an observation described by the model (1.1). In this case, the parameters
{γi,j} can be thought of as proportional to the number of samples collected
at location i at step j. The precision parameters might also, in some settings,
be interpreted as time parameters, where {γi,j} would be proportional to the
length of time for which the component at location i is observed at step j.

In order to make fair comparisons to non-adaptive measurement processes,
the total precision budget is limited in the following way. Let R(p) be an
increasing function of p, the dimension of the problem (that is, the number
of hypotheses under scrutiny). The precision parameters {γi,j} are required
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to satisfy

(1.2)

k∑

j=1

p∑

i=1

γi,j ≤ R(p) .

For example, the usual non-adaptive, single measurement model corresponds
to taking R(p) = p, k = 1, and γi,1 = 1 for i = 1, . . . , p. This baseline can
be compared with adaptive procedures by keeping R(p) = p, but allowing
k > 1 and variables {γi,j} satisfying (1.2).

The multiple measurement process (1.1) is applicable in many interest-
ing and relevant scenarios. For example in gene association and expression
studies, two-stage approaches are gaining popularity (see [13, 17, 14] and
references therein): in the first stage a large number of genes is initially
tested to identify a promising subset of them, and in the second-stage these
promising genes are subject to further testing. Such ideas have been ex-
tended to multiple-stage approaches; see, for example [18]. More broadly,
sequential experimental design has been popular in other fields as well, such
as in computer vision where it is known as active vision [16], or in machine
learning, where it is known as active learning [4, 5]. These types of proce-
dures can potentially impact other areas such as microarray-based studies
and astronomical surveying.

There are two main contributions of this paper. First, we propose a se-
quential, adaptive measurement algorithm called distilled sensing (DS). The
idea behind DS is simple: use a portion of the precision budget to crudely
measure all components; eliminate a fraction of the components that ap-
pear least promising from further consideration after this measurement; and
iterate this procedure several times, at each step measuring only compo-
nents retained after the previous step. While similar procedures have been
proposed in experimental science [17, 18, 14], to the best of our knowledge
the quantification of performance gains has not been addressed. Our second
main contribution is a theoretical analysis that reveals the dramatic gains
that can be attained by the use of such sequential procedures. The prelimi-
nary version of this work appeared at the 12th International Conference on
Artificial Intelligence and Statistics (AISTATS) [10]; here we significantly
extend the results for the localization problem and provide a novel charac-
terization of the detection problem.

This paper is organized as follows. Following a brief discussion of the
fundamental limits of non-adaptive sampling for detection and localization
in Sect. 2.1, our main result—that DS can reliably solve the localization
and detection problems for dramatically weaker signals than what is possible
using non-adaptive measurements—is stated in Sect. 2.2. A proof of the main
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result is given in Sect. 3. Simulation results demonstrating the theory are
provided in Sect. 4, and conclusions and extensions are discussed in Sect. 5.
A proof of the threshold for localization from non-adaptive measurements
and several auxiliary lemmata are provided in the appendices.

2. Main Results. The main results of our theoretical analysis of dis-
tilled sensing (DS) are stated in this section, but first we begin by reviewing
the asymptotic thresholds for localization and detection from non-adaptive
measurements. As mentioned above, these thresholds are now well known
[1, 7, 11, 6], but here we provide a concise summary of the main ideas, in
terms that will facilitate our comparison with DS. We then highlight some
of the surprising gains achievable through adaptive measurement using DS.

2.1. Non-adaptive Localization and Detection of Sparse Signals. The non-
adaptive measurement model we will consider as the baseline for comparison
is as follows. We have a single observation of x in noise:

(2.1) yi = xi + wi, i = 1, . . . , p ,

where wi
i.i.d.∼ N (0, 1). As noted above, this is a special case of our general

setup (1.1) in which k = 1 and γi,1 = 1 for i = 1, . . . , p. This implies a
precision budget R(p) =

∑p
i=1 γi,1 = p.

To describe the asymptotic (large p) thresholds for localization we need to
introduce some notation. Define the false-discovery proportion (FDP) and
non-discovery proportion (NDP) as follows.

Definition 2.1. Let S := {i : xi 6= 0} denote the signal support set
and let Ŝ = Ŝ(y) denote an estimator of S. The false-discovery proportion
is

FDP(Ŝ) :=
|Ŝ\S|
|Ŝ|

.

In words, the FDP of Ŝ is the ratio of the number of components falsely
declared as non-zero to the total number of components declared non-zero.
The non-discovery proportion is

NDP(Ŝ) :=
|S\Ŝ|
|S| .

In words, the NDP of Ŝ is the ratio of the number of non-zero components
missed to the number of actual non-zero components.



DISTILLED SENSING 5

In this paper we focus in particular on the scenario where xi ≥ 0 for all
i ∈ {1, . . . , p}. We elaborate on possible extensions in Section 2.2. Under
this assumption it is quite natural to focus on a specific class of estimators
of S.

Definition 2.2. A coordinate-wise thresholding procedure is an esti-
mator of the following form:

Ŝτ (y) := {i ∈ {1, . . . , p} : yi ≥ τ > 0} ,

where the threshold τ may depend implicitly on x, or on y itself.

The following result establishes the limits of localization using non-adaptive
sampling. A proof is provided in Appendix A; see also [8], where related re-
sults were obtained under a random signal model.

Theorem 2.3. Assume x has p1−β, β ∈ (0, 1), non-zero components of
amplitude

√
2r log p, r > 0, and measurement model (2.1). There exists a

coordinate-wise thresholding procedure that yields an estimator Ŝ = Ŝ(y)
such that if r > β, then as p → ∞,

FDP(Ŝ) P→ 0 , NDP(Ŝ) P→ 0 ,

where
P→ denotes convergence in probability. Moreover, if r < β, then there

does not exist a coordinate-wise thresholding procedure that can guarantee
that both quantities above tend to 0 as p → ∞.

The detection problem, which amounts to a hypothesis test between the
null distribution x = 0 and a sparse alternative, has also been addressed in
the literature under a random signal model [11, 6]. Consider the hypothesis
testing problem:

H0 : yi
iid∼ N (0, 1), i = 1, . . . , p

H1 : yi
iid∼ (1− θ(p))N (0, 1) + θ(p)N (µ(p), 1), i = 1, . . . , p(2.2)

These hypotheses model measurements of either the zero vector, or of a ran-
domly generated signal x, with each entry having amplitude µ(p) =

√
2r log p

independently with probability θ(p) = p−β, and amplitude zero with proba-
bility 1− p−β, according to the measurement model (2.1). Note that under
the alternative, the signal has p1−β non-zero components in expectation. We
recall the following result.
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Theorem 2.4. Consider the hypotheses in (2.2) where µ(p) =
√
2r log p.

Define

ρ(β) :=





0, 0 < β ≤ 1/2

β − 1/2, 1/2 < β ≤ 3/4

(1−√
1− β)2, 3/4 < β < 1

If r > ρ(β), then there exists a test for which the sum of the Type 1 and
Type 2 errors tends to 0 as p → ∞. Conversely, if r < ρ(β), then for any
test the sum of Type I and Type II errors tends to 1 as p → ∞.

Theorem 2.4 was proved in [6] relying heavily on the ideas presented in
[11]. Although it is stated for a random sparsity model, it is possible to
relate the results to the deterministic sparsity model that we consider in the
paper, namely using the ideas presented in Chapter 8 of [12].

2.2. Distilled Sensing: Adaptive Localization and Detection of Sparse Sig-
nals. Algorithm 1 describes the DS measurement process. At each step of
the process, we retain only the components with non-negative observations.
This means that when the number of non-zero components is very small,
roughly half of the components are eliminated from further consideration
at each step. Consequently, if the precision budget allocated at each step is
slightly larger than 1/2 of that used in the preceding step, then the effective
precision of the measurements made at each step is increasing. In particular,
if the budget for each step is 1/2 + c of the budget at the previous step, for
some small constant c > 0, then the precision of the measured components
is increasing exponentially. Therefore, the key is to show that the very crude
thresholding at 0 at each step does not remove a significant number of the
non-zero components. One final observation is that because the number of
components measured decreases by a factor of roughly 1/2 at each step, the
total number of measurements made by DS is roughly 2p, a modest increase
relative to the p measurements made in the non-adaptive setting.

Recall from above that for non-adaptive sampling, reliable detection and
localization is only possible provided the signal amplitude is Ω(

√
log(p)). In

other words, the signal amplitude must exceed a constant (that depends on
the sparsity level) times

√
log(p). The following theorem establishes that DS

is capable of detecting and localizing much weaker sparse signals. For the
purposes of our investigation we assume that the non-zero components are
positive. It is trivial to extend the algorithm and its analysis to handle both
positive and negative components by simply repeating the entire process
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Algorithm 1: Distilled Sensing.

Input:
Number of observation steps: k;

Resource allocation sequence satisfying
∑k

j=1
Rj ≤ R(p);

Initialize:

Initial index set: I1 ←− {1, 2, . . . , p};
Distillation:

for j = 1 to k do

Allocate resources: γi,j =

{

Rj/|Ij | i ∈ Ij
0 i /∈ Ij

}

;

Observe: yi,j = xi + γ
−1/2
i,j wi,j , i ∈ Ij ;

Refine: Ij+1 ←− {i ∈ Ij : yi,j > 0};
end

Output:
Final index set: Ik;
Distilled observations: yk = {yi,k : i ∈ Ik};

twice; once as described, and again with yi,j replaced with −yi,j in the
refinement step of Algorithm 1.

Theorem 2.5. Assume x ≥ 0 with p1−β, β ∈ (0, 1), non-zero compo-
nents of amplitude µ(p), and sequential measurement model using Distilled
Sensing with k = kp = max{⌈log2 log p⌉, 0} + 2, and precision budget dis-

tributed over the measurement steps so that
∑k

j=1Rj ≤ p, Rj+1/Rj ≥ δ >
1/2, and R1 = c1p and Rk = ck p for some c1, ck ∈ (0, 1). Then the support
set estimator constructed using the output of the DS algorithm

ŜDS := {i ∈ Ik : yi,k >
√

2/ck}
has the following properties:

(i) if µ(p) is any positive diverging sequence in p, then as p → ∞

FDP(ŜDS)
P→ 0 , NDP(ŜDS)

P→ 0 .

(ii) if µ(p) > max
{√

4/c1, 2
√

2/ck

}
(a constant) then

lim
p→∞

Pr(ŜDS = ∅) =

{
1 , if x = 0
0 , if x 6= 0

,

where ∅ is the empty set.
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In words, this result states that DS successfully identifies the sparse signal
support provided only that the signal amplitude grows (arbitrarily slowly) as
a function of the problem dimension p, while reliable signal detection requires
only that the signal amplitude exceed a constant. Comparison with the
Ω(

√
log p) amplitude required for both tasks using non-adaptive sampling

illustrates the dramatic gains that are achieved through adaptivity.

3. Analysis of Distilled Sensing. In this section we prove the main
result characterizing the performance of distilled sensing (DS), Theorem 2.5.
We begin with three lemmas that quantify the finite sample behavior of DS.

3.1. Distillation: Reject the Nulls, Retain the Signal.

Lemma 3.1. If {yi}mi=1
iid∼ N (0, σ2), σ > 0, then for any 0 < ε < 1/2,

(
1

2
− ε

)
m ≤

∣∣∣{i ∈ {1, . . . ,m} : yi > 0}
∣∣∣ ≤

(
1

2
+ ε

)
m,

with probability at least 1− 2 exp (−2mε2).

Proof. For any event A, let 1A be the indicator taking the value 1 if A
is true and 0 otherwise. By Hoeffding’s inequality, for any ε > 0

Pr

(∣∣∣∣∣

m∑

i=1

1{yi>0} −
m

2

∣∣∣∣∣ > mε

)
≤ 2 exp

(
−2mε2

)
.

Imposing the restriction ε < 1/2 guarantees that the corresponding fractions
are bounded away from zero and one.

Lemma 3.2. Let {yi}mi=1
iid∼ N (µ, σ2), with σ > 0 and µ ≥ 2σ. Define

ǫ = σ
µ
√
2π

< 1. Then

(1− ǫ)m ≤
∣∣∣{i ∈ {1, 2, . . . ,m} : yi > 0}

∣∣∣ ≤ m,

with probability at least 1− exp
(
− µm

4σ
√
2π

)
.

Proof. We will utilize the following standard bound on the Gaussian
tail: for Z ∼ N (0, 1) and γ > 0,

1√
2πγ2

(
1− 1

γ2

)
exp(−γ2/2) ≤ Pr(Z > γ) ≤ 1√

2πγ2
exp(−γ2/2).
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Let q = Pr(yi > 0), then it follows that

1− q ≤ σ

µ
√
2π

exp

(
− µ2

2σ2

)
.

Next we use the Binomial tail bound from [3]: for any 0 < b < E[
∑m

i=1 1{yi>0}] =
mp,

Pr

(
m∑

i=1

1{yi>0} ≤ b

)
≤
(
m−mp

m− b

)m−b (mp

b

)b
.

Note that ǫ > 1− q (or equivalently, 1− ǫ < q), so we can apply this result
to
∑m

i=1 1{yi>0} with b = (1− ǫ)m to obtain

Pr

(
m∑

i=1

1{yi>0} ≤ (1 − ǫ)m

)
≤

(
1− q

ǫ

)ǫm( q

1− ǫ

)(1−ǫ)m

≤ exp

(
−µ2ǫm

2σ2

)(
1

1− ǫ

)(1−ǫ)m

.

Now, to establish the stated result, it suffices to show

− µ2

2σ2
+

(
1− ǫ

ǫ

)
log

(
1

1− ǫ

)
≤ − µ

4ǫσ
√
2π

= − µ2

4σ2
,

which holds provided µ ≥ 2σ, since 0 < ǫ < 1 and
(
1−ǫ
ǫ

)
log
(

1
1−ǫ

)
≤ 1 for

ǫ ∈ (0, 1).

3.2. The Output of the DS Procedure. Refer to Algorithm 1 and define
sj := |S⋂ Ij| and zj := |Sc

⋂
Ij |, the number of non-zero and zero compo-

nents, respectively, present at the beginning of step j, for j = 1, . . . , k. Let
ε > 0, and for j = 1, . . . , k − 1 define

ǫ2j :=
s1 + (1/2 + ε)j−1z1

2πµ2Rj
,(3.1)

The output of the DS procedure is quantified in the following result.

Lemma 3.3. Let 0 < ε < 1/2 and assume that Rj >
4
µ2

(
s1 + (1/2 + ε)j−1z1

)
,

j = 1, . . . , k − 1. If |S| > 0, then with probability at least

1−
k−1∑

j=1

exp

(
−s1

∏j−1
ℓ=1(1− ǫℓ)

2
√
2π

)
− 2

k−1∑

j=1

exp (−2z1(1/2 − ε)j−1ε2) ,
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∏j−1
ℓ=1(1 − ǫℓ)s1 ≤ sj ≤ s1 and

(
1
2 − ε

)j−1
z1 ≤ zj ≤

(
1
2 + ε

)j−1
z1 for j =

2, . . . , k. If |S| = 0, then with probability at least

1− 2

k−1∑

j=1

exp (−2z1(1/2 − ε)j−1ε2) ,

(
1
2 − ε

)j−1
z1 ≤ zj ≤

(
1
2 + ε

)j−1
z1 for j = 2, . . . , k.

Proof. The results follow from Lemmas 3.1 and 3.2 and the union
bound. First assume that s1 = |S| > 0. Let σ2

j := |Ij |/Rj = (sj + zj)/Rj

and ǫ̃j :=
σj

µ
√
2π
, j = 1, . . . , k.

The argument proceeds by conditioning on the output of all prior re-
finement steps; in particular, suppose that (1 − ǫ̃ℓ−1)sℓ−1 ≤ sℓ ≤ sℓ−1 and(
1
2 − ε

)
zℓ−1 ≤ zℓ ≤

(
1
2 + ε

)
zℓ−1for ℓ = 1, . . . , j. Then apply Lemma 3.1

with m = zj , Lemma 3.2 with m = sj and σ2 = σ2
j , and the union bound

to obtain that with probability at least

(3.2) 1− exp

(
− µsj

4σj
√
2π

)
− 2 exp (−2zjε

2) ,

(1 − ǫ̃j)sj ≤ sj+1 ≤ sj, and
(
1
2 − ε

)
zj ≤ zj+1 ≤

(
1
2 + ε

)
zj . Note that

the condition Rj > 4
µ2

(
s1 + (1/2 + ε)j−1z1

)
and the assumptions on prior

refinement steps ensure that µ > 2σj , which is required for Lemma 3.2. The
condition µ > 2σj also allows us to simplify probability bound (3.2), so that
the event above occurs with probability at least

1− exp

(
− sj

2
√
2π

)
− 2 exp (−2zjε

2).

Next, we can recursively apply the union bound and the bounds on sj
and zj above to obtain for j = 1, . . . , k − 1

ǫj =

√
s1 + (1/2 + ε)j−1z1

2πµ2Rj
≥ ǫ̃j =

σj

µ
√
2π

,

with probability at least

1−
k−1∑

j=1

exp

(
−s1

∏j−1
ℓ=1(1− ǫℓ)

2
√
2π

)
−

k−1∑

j=1

2 exp (−2z1(1/2 − ε)j−1ε2) .

Note that the condition Rj >
4
µ2

(
s1 + (1/2 + ε)j−1z1

)
implies that ǫj < 1.

The first result follows directly. If s1 = |S| = 0, then consider only zj ,
j = 1, . . . , k. The result follows again by the union bound. Note that for this
statement the condition on Rj is not required.
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Now we examine the conditions Rj > 4
µ2

(
s1 + (1/2 + ε)j−1z1

)
, j =

1, . . . , k more closely. Define c := s1/[(1/2 + ε)k−1z1], in effect condens-
ing several problem-specific parameters (s1, z1, and k) into a single scalar
parameter. Then the conditions on Rj are satisfied if

Rj >
4z1(1/2 + ε)j−1

µ2
(c(1/2 + ε)k−j + 1) .

Since z1 ≤ p, the following condition is sufficient

Rj >
4p(1/2 + ε)j−1

µ2
(c(1/2 + ε)k−j + 1) ,

and in particular the more stringent condition Rj >
4(c+1)p(1/2+ε)j−1

µ2 will

suffice. It is now easy to see that if s1 ≪ z1 (e.g., so that c ≤ 1), then the
sufficient conditions become Rj > 8p

µ2 (1/2 + ε)j−1, j = 1, . . . , k. Thus, for
the sparse situations we consider, the precision allocated to each step must
be just slightly greater than 1/2 of the precision allocated in the previous
step. We are now in position to prove the main theorem.

3.3. Proof of Theorem 2.5. Throughout the proof, whenever asymp-
totic notation or limits are used it is always under the assumption that
p → ∞, and we use the standard notation f(p) = o(g(p)) to indicate that
limp→∞ f(p)/g(p) = 0, for f(p) ≥ 0 and g(p) > 0. Also the quantities
k := k(p), ε := ε(p) and µ := µ(p) are functions of p, but we do not denote
this explicitly for ease of notation. We let ε := p−1/3 throughout the proof.

We begin by proving part (ii) of the theorem, which is concerned with
detecting the presence or absence of a sparse signal. Part (i), which pertains
to identifying the locations of the non-zero components, then follows with a
slight modification.

Case 1 – Signal absent (S = ∅): This is the simplest scenario, but
through its analysis we will develop tools that will be useful when analyzing
the case where the signal is present. Here, we have s1 = 0 and z1 = p, and
the number of indices retained at the end of the DS procedure |Ik| is equal
to zk. Define the event

Γ =

{(
1

2
− ε

)k−1

p ≤ |Ik| ≤
(
1

2
+ ε

)k−1

p

}
.

The second part of Lemma 3.3 characterizes the probability of this event; in
particular

Pr(Γ) ≥ 1− 2
k−1∑

j=1

exp

(
−2p

(
1

2
− ε

)j−1

ε2

)
.
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Since k ≤ log2 log p+ 3, for large enough p we get that

Pr(Γ) ≥ 1− 2(k − 1) exp

(
−2p

(
1

2
− ε

)k−2

ε2

)

= 1− 2(k − 1) exp

(
−p

(
1

2

)k−3

(1− 2ε)k−2ε2

)

≥ 1− 2(log2 log p+ 2) exp

(
− p1/3

log p
(1− o(1))

)

where we used Lemma B.1 to conclude that (1 − 2ε)k−2 = 1 − o(1). It is
clear that Pr(Γ) → 1.

In this case we assume that S = ∅, therefore the output of the DS pro-
cedure consists of |Ik| i.i.d. Gaussian random variables with zero mean and
variance |Ik|/Rk = |Ik|/(ckp). Note that given Γ,

|Ik| ≤ p

(
1

2
+ ε

)k−1

= p
1

2

(
1

2

)k−2

(1 + 2ε)k−1

≤ 1

2

p

log p
(1 + o(1)) ,

which follows from the fact that k ≥ log2 log p + 2, and using Lemma B.1.
With this in hand we conclude that (with a slight abuse of notation)

Pr(ŜDS 6= ∅ | Γ) = Pr
(
∃i∈Ik : yi,k >

√
2/ck

)

≤ |Ik|Pr
(
N (0, |Ik|/ckp) >

√
2/ck

)

= |Ik|Pr
(
N (0, 1) >

√
2p/|Ik|

)

≤ pPr
(
N (0, 1) >

√
4 log p(1− o(1))

)

≤ p exp (−2 log p(1− o(1)))

= p−1+o(1) → 0 ,

where the last inequality follows from the standard Gaussian tail bound.
This together with Pr(Γ) → 1 immediately shows that when S = ∅ we have
Pr(ŜDS 6= ∅) → 0.

Case 2 – Signal present (S 6= ∅): The proof follows the same idea as in
the previous case, although the argument is a little more involved. Begin by
applying Lemma 3.3 and constructing an event that occurs with probability
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tending to one. Let Γ be the event

Γ =

{
z1

(
1

2
− ε

)k−1

≤ zk ≤ z1

(
1

2
+ ε

)k−1
}

⋂


s1

k−1∏

j=1

(1− ǫj) ≤ sk ≤ s1



 ,

where ǫj is given by equation (3.1). Lemma 3.3 characterizes the probability
of this event under a condition on Rj that we will now verify. Note that this
condition is equivalent to ǫ2j < 1/(8π) for all j = 1, . . . , k − 1. Instead of
showing exactly this we will show a stronger result that will be quite useful
in a later stage of the proof. Recall that Rj+1/Rj ≥ δ > 1/2, j = 1, . . . , k−2,
and R1 = c1p by the assumptions of the theorem. Thus for j = 1, . . . , k − 1

ǫ2j ≤ s1 +
(
1
2 + ε

)j−1
z1

2πµ2δj−1R1

≤ 1

2πµ2c1


s1

p
δ−(j−1) +

z1
p

(
δ

1
2 + ε

)−(j−1)

 .

Clearly we have that ǫ21 ≤ 1
2πµ2c1

< 1/(8π) since by assumption µ >
√

4/c1.
Now consider the case j > 1. Recall that k ≤ log2 log p + 3. Therefore if
δ ≥ 1, then the term δ−(j−1) can be upper bounded by 1, otherwise

(3.3) δ−(j−1) ≤ δ−(k−2) ≤ δ−(log2 log p+1) = δ−1 (log p)− log2 δ ≤ 2 log p ,

where the last step follows from δ > 1/2.
Now recall that s1 = p1−β, therefore

ǫ2j ≤ 1

2πµ2c1


p−βδ−(j−1) +

(
δ

1
2 + ε

)−(j−1)



≤ 1

2πµ2c1


2p−β log p+

(
δ

1
2 + ε

)−(j−1)

 .(3.4)

Note that, since ε → 0 as p → ∞ we have that, for p large enough, δ/(1/2+
ε) > (δ + 1/2 + ε). Assume p is large enough so that this is true, then

ǫ2j ≤ 1

2πµ2c1

(
2p−β log p+

(
δ +

1

2
+ ε

)−(j−1)
)

.
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Clearly since j ≤ k − 1 ≤ log2 log p + 2 we have that
(
δ + 1

2 + ε
)−(j−1)

=

Ω
(
1/(log p)log2(δ+1/2+ǫ)

)
and so the first of the additive terms in (3.4) is

negligible for large p. Therefore for p sufficiently large, we have, for all j =
1, . . . , k − 1

(3.5) ǫ2j ≤ 1

2πµ2c1

(
δ +

1

2

)−(j−1)

.

Since by assumption µ >
√

4/c1, we conclude that, for all p sufficiently large,
ǫ2j < 1/(8π) for all j = 1, . . . , k − 1, and so Rj > 4

µ2

(
s1 + (1/2 + ε)j−1z1

)

for j = 1, . . . , k − 1. Thus, applying Lemma 3.3 we have

Pr(Γ)

≥ 1−
k−1∑

j=1

exp

(
−s1

∏j−1
ℓ=1(1− ǫℓ)

2
√
2π

)
− 2

k−1∑

j=1

exp (−2z1(1/2 − ε)j−1ε2).

By a similar argument to that used in Case 1, it is straightforward to
show that

2

k−1∑

j=1

exp (−2z1(1/2 − ε)j−1ε2) → 0 .

In addition,

k−1∑

j=1

exp

(
−s1

∏j−1
ℓ=1(1− ǫℓ)√
8π

)

≤ (k − 1) exp

(
−s1

∏k−2
ℓ=1 (1− ǫℓ)√
8π

)

≤ (k − 1) exp



−s1

∏k−2
ℓ=1

(
1− 1

µ
√
2πc1

(
δ + 1

2

)−(ℓ−1)/2
)

√
8π




≤ (k − 1) exp



−s1

∏k−2
ℓ=1

(
1− 1√

8π

(
δ + 1

2

)−(ℓ−1)/2
)

√
8π


 ,

where in the last step we used the fact that µ >
√

4/c1. Finally note that
from Lemma B.2 we know that

k−2∏

ℓ=1

(
1− 1√

8π

(
δ +

1

2

)−(ℓ−1)/2
)

→ L(δ) ,
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where L(δ) > 0 hence

k−1∑

j=1

exp

(
−s1

∏j−1
ℓ=1(1− ǫℓ)√
8π

)

≤ (log2 log p+ 2) exp

(−p1−β(L(δ) + o(1))√
8π

)

→ 0 .(3.6)

Therefore we conclude that the event Γ happens with probability converging
to one.

We now proceed as before, by conditioning on event Γ. The output of
the DS procedure consists of a total of |Ik| = sk + zk independent Gaussian
measurements with variance |Ik|/Rk, where sk of them have mean µ and the
remaining zk have mean zero. We will show that the proposed thresholding
procedure identifies only true non-zero components (i.e., correctly rejects
all the zero-valued components). In other words, with probability tending
to one, ŜDS = S ∩ Ik. For ease of notation, and without loss of generality,
assume the yi,k ∼ N (µ, |Ik|/Rk) for i ∈ {1, . . . , sk} and yi,k ∼ N (0, |Ik|/Rk)
for i ∈ {sk + 1, . . . , |Ik|}. Then

Pr
(
ŜDS 6= S ∩ Ik

∣∣∣ Γ
)

= Pr




sk⋃

i=1

{
yi,k <

√
2/ck

}
or

|Ik|⋃

i=sk+1

{
yi,k >

√
2/ck

}
∣∣∣∣∣∣
Γ




≤ sk Pr
(
N (µ, |Ik|/Rk) <

√
2/ck

)
+ zk Pr

(
N (0, |Ik|/Rk) >

√
2/ck

)
.

Note that conditioned on the event Γ (using arguments similar to those in
Case 1)

|Ik| = sk + zk ≤ s1 + z1

(
1

2
+ ε

)k−1

≤ p1−β +
p

2 log p
(1 + o(1)) ≤ p

2 log p
(1 + o(1)) .(3.7)
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Finally, taking into account that µ > 2
√

2/ck we conclude that

Pr
(
ŜDS 6= S ∩ Ik

∣∣∣Γ
)

≤ sk Pr
(
N (0, |Ik|/Rk) < −

√
2/ck

)
+ zk Pr

(
N (0, |Ik|/Rk) >

√
2/ck

)

≤ sk Pr

(
N (0, 1) >

√
2p

|Ik|

)
+ zk Pr

(
N (0, 1) >

√
2p

|Ik|

)

= |Ik|Pr
(
N (0, 1) >

√
2p

|Ik|

)

≤ pPr
(
N (0, 1) >

√
4 log p(1− o(1))

)

≤ p exp (−2 log p(1− o(1)))

= p−1+o(1) → 0 ,

where the last inequality follows from the standard Gaussian tail bound.
This together with Pr(Γ) → 1, and the fact that |S ∩ Ik| = sk = L(δ)(1 −
o(1))s1 is bounded away from zero for large enough p immediately shows
that Pr(ŜDS = ∅) → 0, concluding the proof of part (ii) of the theorem.

Part (i) of the theorem follows from the result proved above, since if µ is
any positive diverging sequence in p then a stronger version of Lemma B.2
applies. In particular, recall (3.5), and note that Lemma B.2 implies

k−1∏

ℓ=1

(1− ǫℓ) ≥
k−1∏

ℓ=1

(
1− 1

µ
√
2πc1

(
δ +

1

2

)−(ℓ−1)/2
)

→ 1 .

We have already established that the events Γ and {ŜDS 6= S∩Ik} both hold
(simultaneously) with probability tending to one. Conditionally on these
events we have

FDP(ŜDS) =
0

sk
= 0 ,

and

NDP(ŜDS) =
s1 − sk

s1
= 1− sk

s1
→ 0 ,

since from the definition of Γ we have

s1 ≥ sk ≥ s1

k−1∏

ℓ=1

(1− ǫℓ) → s1 .

Therefore we conclude that both FDP(ŜDS) and NDP(ŜDS) converge in
probability to zero as p → ∞, concluding the proof of the theorem.
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4. Numerical Experiments. This section presents numerical experi-
ments with distilled sensing (DS). The results demonstrate that the asymp-
totic analysis predicts the performance in finite dimensional cases quite well.
Furthermore, the experiments suggest useful rules of thumb for implement-
ing DS in practice.

First of all, note that in theory DS reduces the signal-to-noise ratio (SNR)
required for reliable recovery by a factor of roughly log p. Our experiments
confirm this. With the non-adaptive sensing, an SNR of Ω(log p) is required
for the reliable detection and recovery of the sparse support set. The DS
procedure provides useful improvements over the non-adaptive performance
for SNRs close to 1, as the theory predicts.

There are two input parameters to the DS procedure; the number of dis-
tillation steps, k, and the distribution of precision across the steps, {Rj}kj=1.
Throughout our simulations we use the choice k = max{⌈log2 log p⌉, 0}+ 2,
as in Theorem 2.5. For the precision distribution, first recall the discus-
sion following the proof of Lemma 3.3. There it is argued that if the spar-
sity model is valid, a sufficient condition for the precision distribution is
Rj > R1(1/2+ ε)j−1, j = 1, . . . , k, with 0 < ε < 1/2. In words, the precision
allocated to each step must be greater than 1/2 the precision allocated in
the previous step. In practice, we find that choosing Rj+1/Rj = 0.75 for
j = 1, . . . , k−2 provides good performance over the full SNR range of inter-
est. Also, from the proof of the main result (Theorem 2.5) we see that the
threshold for detection is inversely proportional to the square root of the
precision allocation in the first and last steps. Thus, we have found that al-
locating equal precision in the first and last steps is beneficial. The intuition
is that the first step is the most crucial in controlling the NDP and the final
step is most crucial in controlling the FDP. Thus, the precision allocation
used throughout the simulations follows this simple formula:

Rj = (0.75)j−1R1 , j = 2, . . . , k − 1 ,

Rk = R1 ,

and R1 is chosen so that
∑k

j=1Rj = p.
Figure 1 compares the FDP vs. NDP performance of the DS procedure

to non-adaptive (single observation) measurement at several signal-to-noise
ratios (SNR = µ2) with p = 214 and

√
p = 128 non-zero components. The

range of FDP-NDP operating points is surveyed by varying the threshold
applied to the non-adaptive measurements and the output of the DS pro-
cedure. Recall that largest squared magnitude in a realization of p i.i.d.
N (0, 1) variables grows like 2 log p, and in our experiment, 2 log p ≈ 20.
Consequently, when the SNR = 20 we see that both DS and non-adaptive
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measurements are highly successful, as expected. Another SNR level of inter-
est is 8, since in this case this happens to approximately satisfy the condition
µ =

√
2/c1 =

√
2p/R1, which according to the Theorem 2.5 is a critical level

for detection using DS. The simulations show that DS remains highly suc-
cessful at this level while the non-adaptive results are poor. Finally, when
the SNR = 2, we see that DS still yields useful results. For example, at
FDP = 0.05, the DS procedure has an average NDP of roughly 80% (i.e.,
20% of the true components are still detected, on average). This demon-
strates the approximate log p extension of the SNR range provided by DS.
Note the gap in the FDP values of the DS results (roughly from 0.75 to
1). The gap arises because the the output of DS has a higher SNR and is
much less sparse than the original signal, and so arbitrarily large FDP val-
ues cannot be achieved by any choice of threshold. Large FDP values are, of
course, of little interest in practice. We also remark on the structured pat-
terns observed in cases of high NDP and low FDP (in upper left of figures
for SNR = 2 and SNR = 8). The visually structured ‘curves’ of NDP-FDP
pairs arise when the total number of discoveries is small, and hence the FDP
values are restricted to certain rational numbers. For example, if just 3 com-
ponents are discovered, then the number of false-discoveries can only take
the values 0, 1/3, 2/3, and 1.

Figure 2 compares the average performance of non-adaptive sensing and
the DS procedure in terms of the false-discovery rate (FDR) and the
non-discovery rate (NDR), which are the average false-discovery and non-
discovery proportions, respectively. For each case, the data are thresholded
to achieve a FDR level of 0.05. The plot depicts the NDR as a function
of SNR. The ideal NDR is 0, and the plot shows that the DS procedure
achieves a much lower NDR over the entire SNR range. The FDRs for both
methods are also shown (and both are approximately 0.05 over the entire
range). The FDR and NDR were generated by averaging 1000 independent
trials at each SNR level, with p = 214 and

√
p = 128 non-zero components.

5. Concluding Remarks. There has been a tremendous interest in
high-dimensional testing and detection problems in recent years. A well-
developed theory exists for such problems when using a single, non-adaptive
observation model [1, 7, 11, 6]. However, in practice and theory, multistage
adaptive designs have shown promise [13, 17, 14, 18]. This paper quantifies
the improvements such methods can achieve. We proposed and analyzed
a specific multistage design called distilled sensing (DS), and established
that DS is capable of detecting and localizing much weaker sparse signals
than non-adaptive methods. The main result shows that adaptivity allows
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Fig 1. FDP-NDP performance for DS and non-adaptive sensing. At each SNR, 1000
random sparse signals were randomly generated (

√
p non-zero component locations selected

uniformly at random) and both the non-adaptive observation data and the output of the
DS procedure were thresholded at a random positive level. The random threshold level in
each trial allows us to explore the full range of FDP and NDP. The FDP and NDP were
calculated for both results in each trial. Non-adaptive results are indicated with • and DS
results are indicated with ∗.

reliable detection and localization at a signal-to-noise ratio (SNR) that is
roughly log p lower than the minimum required by non-adaptive methods,
where p is the problem dimension. To put this in context, suppose one is
interested in screening p = 20, 000 genes, then log p ≈ 10. Thus, the gains
can be quite significant in problem sizes of practical interest, which is why
experimentalists often do employ similar methods.

There are several possible extensions to DS. One is to consider even
sparser signal models, where the number of nonzero entries is significantly
smaller than p1−β for β ∈ (0, 1), as considered here. In particular, the same
asymptotic results stated here follow also for signals whose sparsity levels
are as small as a constant times log log log p. Indeed, making this choice of
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Fig 2. NDR vs. SNR comparison. The non-discovery rate is the average NDP over 1000
independent trials at each SNR (SNR = µ2) and with threshold set to achieve FDR = 0.05
(FDR is the average FDP). The solid curve depicts the NDR of non-adaptive sensing and
the dashed curve depicts the NDR of the DS procedure. At the bottom of the figure, the
dash-dot and dot-dot curves show the FDR for non-adapative sensing and DS, respectively
(at approximately 5% for both).

s1 in (3.4) leads to the same bound on the ǫ2j given in (3.5), and this choice
is also sufficient to ensure that the probability of the event Γ in (3.6) still
tends to one. In addition, for this choice of s1 the same bound is obtained in
(3.7), and the rest of the proof goes through as stated. Another extension is
to use DS with alternate measurement models. For example, each measure-
ment could be a linear combination of the entries of x, rather than direct
measurements of individual components. If the linear combinations are non-
adaptive, this leads to a regression model commonly studied in the Lasso
and Compressed Sensing literature—see, for example, [15, 2]. However, se-
quentially tuning the linear combinations leads to an adaptive version of the
regression model which can be shown to provide significant improvements,
as well [9].

APPENDIX A: THRESHOLDS FOR NON-ADAPTIVE RECOVERY

In this section we give a proof of Theorem 2.3. We will proceed by con-
sidering two cases separately: (i) r > β and (ii) r < β. The analysis of the
phase transition point r = β is interesting, but it is beyond the scope of this
paper. Begin by noticing that in the setting of the theorem the minimax
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optimal support estimation procedure to control the false and non-discovery
proportions is a simple coordinate-wise thresholding procedure of the form

Ŝ = {i : yi > τ} ,

where τ ≥ 0 can be chosen appropriately. A formal proof of this optimal-
ity can be done by noting that the class of hypothesis is invariant under
permutations (see [11] for details).

Case (i) r > β: In this case the signal support can be accurately identified
from the observations, in the sense that FDP(Ŝ) and NDP(Ŝ) both converge
in probability to zero. For this case we will take τ = τ(p) =

√
2α log p, where

β < α < r.
Begin by defining Dz and Ms to be the number of retained non-signal

components and the number of missed signal components, respectively. For-
mally

Dz =

p∑

i=1

1{yi>τ, xi=0} ,

and

Ms =

p∑

i=1

1{yi≤τ, xi 6=0} .

Note that Dz is binomially distributed, that is Dz ∼ Bin(p(1 − p−β), qz),
where qz = Pr(yi > τ) when i is such that xi = 0. By noticing that τ > 0
and using a standard Gaussian tail bound we have that

qz ≤
1√
2πτ2

exp

(
−τ2

2

)
=

1√
4πα log p

p−α.

In a similar fashion note that Ms ∼ Bin(p1−β, qs), where qs = Pr(yi ≤ τ)
when i is such that xi =

√
2r log p. Let Z ∼ N (0, 1) be an auxiliary random

variable. Then

qs = Pr(Z +
√

2r log p ≤ τ)

= Pr(Z ≤ τ −
√

2r log p)

= Pr(Z >
√

2 log p(
√
r −√

α)) ,

And so, using the Gaussian tail bound we have

qs ≤
1√

4π log p(
√
r −√

α)
p−(

√
r−√

α)2 .
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We are ready to show that both FDP(Ŝ) and NDP(Ŝ) converge in prob-
ability to zero. Begin by noticing that NDP(Ŝ) = Ms/p

1−β . By definition

NDP(Ŝ) P→ 0 means that for all fixed ǫ > 0,

Pr(|NDP(Ŝ)| > ǫ) → 0 ,

as p → ∞. Noting that NDP(Ŝ) is non-negative, this can be easily estab-
lished using Markov’s inequality.

Pr(NDP(Ŝ) > ǫ) = Pr

(
Ms

p1−β
≥ ǫ

)

= Pr(Ms > ǫp1−β)

≤ E[Ms]

ǫp1−β

=
p1−βqs
ǫp1−β

=
qs
ǫ

→ 0 ,

as p → ∞ as clearly qs converges to zero (since r > α). For the false dis-
covery proportion the reasoning is similar. Note that the number of correct
discoveries is p1−β −Ms. Taking this into account we have

FDP(Ŝ) = Dz

p1−β −Ms +Dz
.

Let ǫ > 0. Then

Pr(FDP(Ŝ) > ǫ)

= Pr

(
Dz

p1−β −Ms +Dz
> ǫ

)

= Pr

(
(1− ǫ)

Dz

p1−β
+ ǫ

Ms

p1−β
> ǫ

)

≤
E

[
(1− ǫ) Dz

p1−β + ǫ Ms

p1−β

]

ǫ

=
1− ǫ

ǫ

p(1− p−β)qz
p1−β

+ qs

≤ 1− ǫ

ǫ
pβ(1− p−β)

1√
4πα log p

p−α +
1√

4π log p(
√
r −√

α)
p−(

√
r−√

α)2 ,

where the last line clearly converges to zero as p → ∞, since β < α < r.
Therefore we conclude that FDP(Ŝ) converges to zero in probability.
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Case (ii) r < β: In this case we will show that no thresholding procedure
can simultaneously control the false and non-discovery proportions. Begin
by noting that the smaller τ is, the easier it is to control the non-discovery
proportion. In what follows we will identify an upper-bound on τ necessary
for the control of the non-discovery rate. Note that if τ = τ(p) =

√
2r log p

then qs = 1/2, and therefore

NDP(Ŝ) = Ms

p1−β

a.s.→ 1/2 ,

as p → ∞, by the law of large numbers. Therefore a necessary, albeit insuf-

ficient, condition for NDP(Ŝ) P→ 0 is that for all but finitely many p

(A.1) τ <
√

2r log p .

Similarly, note that the larger τ is, the easier it is to control the false
discovery rate. In the same spirit of the above derivation we will identify a
lower-bound for τ that must necessarily hold in order to control the false-
discovery rate. Recall the previous derivation, where we showed that, for
any ǫ > 0

Pr(FDP(Ŝ) > ǫ) = Pr

(
(1− ǫ)

Dz

p1−β
+ ǫ

Ms

p1−β
≥ ǫ

)

≥ Pr

(
(1− ǫ)

Dz

p1−β
≥ ǫ

)

= Pr

(
Dz

p1−β
≥ ǫ

1− ǫ

)
,

where the last inequality follows trivially given that Ms ≥ 0 and, without
loss of generality, we assume that ǫ < 1. This means that FDP(Ŝ) converges
in probability to zero only if Dz

p1−β also converges in probability to zero.

Namely, for any ǫ > 0 we must have limp→∞Pr(Dz/p
1−β > ǫ) = 0. In what

follows take τ =
√
2r log p. Let ǫ > 0 and note that

Pr

(
Dz

p1−β
> ǫ

)
= Pr(Dz > ǫp1−β)

= Pr(Dz − E[Dz] > ǫp1−β − E[Dz])

= Pr(Dz − E[Dz] > ǫp1−β − p(1− p−β)qz) .

Define a = ǫp1−β − p(1− p−β)qz. Note that by the Gaussian tail bound, we
have

1√
4πr log p

(
1− 1

2r log p

)
p−r ≤ qz ≤

1√
4πr log p

p−r ,
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or equivalently,

qz =
1− o(1)√
4πr log p

p−r.

Given this it is straightforward to see that

a = ǫp1−β − (1− o(1))
p(1 − p−β)√
4πr log p

p−r

= ǫp1−β − (1− o(1))
p1−r

√
4πr log p

= p1−r

(
ǫpr−β − 1− o(1)√

4πr log p

)

= − p1−r

√
4πr log p

(1− o(1)) ,

where in the last step we use the assumption that β > r. Therefore a → −∞
as p goes to infinity. Let p0(ǫ) ∈ N be such that a < 0 for all p ≥ p0(ǫ). Then

Pr(Dz/p
1−β > ǫ) = Pr(Dz − E[Dz] > a)

= 1− Pr(Dz − E[Dz] ≤ a)

≥ 1− Pr(|Dz − E[Dz]| ≥ −a)

≥ 1− Var(Dz)

(−a)2
,

where Var(Dz) = p(1 − p−β)qz(1 − qz) is the variance of Dz and the last
step uses Chebyshev’s inequality. Recalling that p ≥ p0(ǫ) we can examine
the last term in the above expression easily.

1− Var(Dz)

(−a)2
= 1− (1− qz)

p(1− p−β)qz
a2

= 1− (1− o(1))
pqz
a2

= 1− (1− o(1))
p1−r

√
4πr log p

4πr log p

p2−2r

= 1− (1− o(1))

√
4πr log p

p1−r
→ 1 ,

as p → ∞. Therefore we conclude that, for τ =
√
2r log p, Dz/p

1−β does not
converge in probability to zero, and therefore FDP(Ŝ) also does not converge
to zero.
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The above result means that a necessary condition for the convergence of
FDP(Ŝ) to zero is that for all but finitely many p

τ >
√

2r log p .

This, together with (A.1) shows that there is no thresholding procedure
capable of controlling both the false-discovery and non-discovery proportions
when r < β as we wanted to show, concluding the proof.

APPENDIX B: AUXILIARY MATERIAL

Lemma B.1. Let 0 ≤ f(p) ≤ 1/2 and g(p) ≥ 0 be any sequences in p
such that limp→∞ f(p)g(p) = 0. Then

lim
p→∞

(1 + f(p))g(p) = lim
p→∞

(1− f(p))g(p) = 1 .

Proof. To establish that limp→∞(1 + f(p))g(p) = 1 note that

1 ≤ (1 + f(p))g(p) = exp (g(p) log(1 + f(p))) ≤ exp (g(p)f(p)) ,

where the last inequality follows from log(1 + x) ≤ x for all x ≥ 0. As
g(p)f(p) → 0 we conclude that limp→∞(1 + f(p))g(p) = 1.

The second part of the result is established in a similar fashion. Note that

log (1− f(p)) = − log

(
1

1− f(p)

)
= log

(
1 +

f(p)

1− f(p)

)

≥ − f(p)

1− f(p)
≥ −2f(p)

where the last inequality relies on the fact that f(p) ≤ 1/2. Using this fact
we have that

1 ≥ (1− f(p))g(p) = exp (g(p) log(1− f(p))) ≥ exp (−2f(p)g(p)) .

Taking into account that g(p)f(p) → 0 establishes the desired result.

Lemma B.2. Let k = k(p) be a positive diverging sequence in p, and let
g = g(p) be a positive nondecreasing sequence in p. For some fixed a > 1 let
ǫj = ǫj(p) ≤ a−j/g(p). If g(p) ≥ a−1, then

lim
p→∞

k(p)∏

j=1

(1− ǫj(p)) > 0.
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If, in addition, g(p) is any positive diverging sequence in p, then

lim
p→∞

k(p)∏

j=1

(1− ǫj(p)) = 1.

Proof. Note that

log




k(p)∏

j=1

(1− ǫj(p))


 ≥

k(p)∑

j=1

log

(
1− a−j

g(p)

)

= −
k(p)∑

j=1

log

(
1 +

a−j/g(p)

1− a−j/g(p)

)

≥ −
k(p)∑

j=1

a−j/g(p)

1− a−j/g(p)

≥ −1

1− a−1/g(p)

k(p)∑

j=1

a−j/g(p)

=
−1

g(p)− a−1

k(p)∑

j=1

a−j.

Now, using the formula for the sum of a geometric series, we have

log




k(p)∏

j=1

(1− ǫj(p))


 ≥ −1

g(p)− a−1

[
a−1(1− a−k(p))

1− a−1

]
,

from which it follows that

exp

(
−1

g(p)− a−1

[
a−1(1− a−k(p))

1− a−1

])
≤

k(p)∏

j=1

(1− ǫj(p)) ≤ 1.

Now, assuming only that g(p) > a−1, it is easy to see that

lim
p→∞

k(p)∏

j=1

(1− ǫj(p)) > 0,

and if g(p) is any positive diverging sequence in p, we have

lim
p→∞

k(p)∏

j=1

(1− ǫj(p)) = 1,

as claimed.
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