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A system is described which digests large volumes 
of text, filtering out irrelevant articles and distilling 
the remainder into templates that represent infor- 
mation from the articles in simple slot/filler pairs. 
The system is highly modular in that it consists 
of a series of programs, each of which contributes 
information to the text to help in the final analysis 
of determining which strings constitute valid values 
for the slots in the template. This modular design 
has the dual advantage of allowing relatively easy 
debugging and of permitting many of the component 
programs to participate in other projects. The system 
is customized to specific domains, taking advantage 
of simple string matching techniques to improve 
the effectiveness of more complex sentence-level 
semantic processes. The extension to new domains 
has been facilitated by dividing system data files into 
generic vs. specific categories; domain extension re- 
quires the creation of only the domain-specific files. 

Introduction 

Among the most important challenges in information 
science is the efficient management of machine-readable 
text data. This basic problem breaks down into at least 
two major divisions: (1) providing ways to find specific 
information in very large but more or less static reposito- 
ries of texts; and (2) effectively managing the enormous 
volume of new text that becomes available every day. In 
the first case, effective querying for retrieval of whole 
texts is typically the goal, and since repositories of text 
may have been assembled for diverse reasons and un- 

der different conditions, flexibility is one of the most 
important requirements. In the second case, it is often 
possible to assume that machine-readable text is being 
collected for a specific reason. The main goal then is just to 
reduce the volume sufficiently that an information consumer 
can get what he or she requires without having to wade 
through a huge amount of redundant or irrelevant text along 
with it. 
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The problem of the sheer volume of new information is 
especially acute in the computer technology domain, and 
here it is compounded by the additional factor of rapid 
obsolescence. The computer industry is one of the fastest- 
changing industries the world has ever witnessed. Rapid 

advances and innovation in computer technology mean that 
new computer products are constantly being introduced into 

the marketplace. Keeping abreast of new products is critical 
both to customers, who naturally want the most for their 
money, and vendors, who hope to outdistance the com- 

petition. Falling behind in knowledge of the most current 
technology available could mean a tremendous competitive 
disadvantage for any business that relies on computers 
for sales or support. Because of this, literally dozens of 
periodicals chronicle computer product innovations and 
releases, and the amount of new text generated in this area 
each week is significant. It is clear that an automatic method 
of distilling large quantities of this text into small amounts 
of information would be extremely valuable. 

This paper describes the TemplateFiller system devel- 
oped at EDS Research in Albuquerque, New Mexico. This 
system reads raw text input from computer industry journals 
and uses it to automatically produce bulletins on new 
computer products; these bulletins are then distributed to 
interested parties within EDS. 

The remainder of the article is divided into four sections. 
“Why Templates?” examines the concept of text distillation, 
along with the conditions under which template filling is ap- 
propriate as a method. “Other Research in Template Filling: 

MUC,” gives a comparative overview of the most signifi- 
cant research effort which is similar to what we are doing 
here, the Message Understanding (MUC) evaluations spon- 

sored by DARPA. “The EDS TemplateFiller” discusses the 
various components of the TemplateFiller, with examples 
of input and output for each module, and describes the 

process of extending the system into a new domain. The 
final section presents TemplateFiller results, addresses some 
issues which remain difficult under this text distillation 
methodology, and suggests further work in this area. 

Why Templates? 

Here at EDS Research we have developed various ef- 
fective retrieval, categorization, and summarization algo- 
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rithms. However, the EDS TemplateFiller goes beyond text 
retrieval and categorization and simple methods of summa- 
rization to the actual extraction of information from text. It 
uses text-filtering technology just to reduce the workload for 
the more computationally intensive processes of language 
analysis which are necessary for data extraction. It is this 
linguistic analysis which allows automatic text distillation, 
so that the large quantities of text which are available 
in the area of computer technology can be reduced to a 

manageable volume of pure information. 
Given the general goal of automatic text distillation, 

the system could produce a number of different types of 
actual output, ranging from automatically generated sets 
of index terms to natural language abstracts of varying 
degrees of sophistication. In the TemplateFiller system, 
the output of the distillation process is extracted data 
presented in the form of a simple table, or template, with 

each row consisting of a slot name and a slot value. 
Each product description in an article results in the con- 
struction of one template. We have chosen this particular 
form of output because of the nature of the texts we are 
processing and the nature of the information needs we 

are addressing. 
First, we find that product announcement texts, while 

they are unconstrained in format and overall writing style, 
are still somewhat regular in other ways, just by the nature 
of what the articles are talking about: new products with sets 
of standard features, including name, vendor, price, physical 
characteristics, and performance characteristics. Because 
the content of the articles shows some predictability, it is 
possible to represent it in a template with very little loss 
of information. 

Second, because these articles are product announce- 
ments, both what readers want out of the text and how 
they will use what they get out of it are also predictable. 
What they want to retain from a product announcement text 
is a concise description of the product(s) discussed. What 
they want to do with such descriptions is to compare them. 
Representing product descriptions in the form of templates, 
which of course can also be straightforwardly converted to 
database records, provides the best vehicle for comparing 

products. Retrieving whole texts or even fragments of texts 
would be less satisfactory for at least three reasons: (1) new 
incoming texts often repeat information available earlier in 
other articles or elsewhere in other journals; (2) information 
in a single text may be economically conveyed in brief 
bulletin style, or it may be dispersed through a very 
long and otherwise factually uninteresting exposition; and 
(3) since we are already narrowing the subject area consid- 
erably by drawing from computer industry journals only, 
categorization must be very fine-grained and therefore 
sometimes goes wrong. All of these factors would make 
a system which returned texts rather than pure information 
more annoying than useful. 

What we have constructed, therefore, is a system which 
can read the raw text of articles such as that shown 
in (1) and automatically produce from it filled templates 

such as those shown in (2). Both examples are actual 
TemplateFiller input and output.’ 

(1) 
DG Rolls Out Notebook 486DX-Based System 
Data General Corp. last week released the 5.5- 
pound WalkAbouti386SL notebook and the Dasher II- 
486/50TE2 deskside PC. 

The 25MHz 386SL-based notebook starts at $2,445 with 
a 4-hour NiCad battery, 2M bytes of RAM and a 60M- 
byte hard drive; the 5OMHz 486DX-based PC, which 
starts at $8,395, includes 8M bytes of RAM. Both units 
come with DOS 5.0 and Windows 3.1. 

(2) 
File: PC-week.920904.20.clauses2 
Vendor Name: Data General Corp 
Product Name: Dasher-II-486-50TE2 
Weight: 5.5 pound 
CPU Type 80486DX 
Ram (base): 8M 
CPU Clock Speed: SOMHz 
Footprint: deskside 

File: PC-week.920904.20.clauses2 

Vendor Name: Data General Corp 

Product Name: WalkAbout -386SL 

Weight: 5.5 pound 
Price: 2445 

CPU Type: 80386SL 
Ram (base): 2M 

CPU Clock Speed: 25MHz 

Footprint: notebook 

Hard Disk Capacity: 60M 

Other Research in Template Filling: MUC 

Research which most closely resembles the work behind 
the EDS TemplateFiller is that associated with the ongoing 
Message Understanding evaluations sponsored by DARPA 
(Sundheim, 1991, 1992). These yearly efforts by a number 

of research sites have provided a forum for a standardized 
evaluation of the state of the art in information extraction. 
Our work, like the work associated with the MUC tasks, 
involves extracting information from text and using it 
to fill slots in a predetermined template. However, there 
are numerous differences between the MUC and EDS 
projects which make direct comparison inappropriate. The 

tasks MUC participants have been asked to perform differ 
from those undertaken by the EDS project in at least the 
following ways. 

‘There are two things to note about these examples. First, the text we 
have chosen to show here is very short (62 words) for example purposes. 

The actual length of the articles we process is closer to 300 words, with 

some articles longer than 700 words. Second, the templates in (2) are 
obviously not perfect. The one missed slot and one inaccurate slot are 

discussed in the final section. 
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The MUC-3 and MUC-4 tasks involved extracting in- 
formation about terrorist activities from a wide variety of 

text sources, while the EDS system pulls information about 
new computer products from product announcement articles 
taken from a small number of computer industry journals. 
The nature of the domains, as well as the heterogeneity 
of the input, could have significant effects on the ease of 
information extraction. 

The input text for MUC3 and MUC-4 has been all upper 
case, while input text to the EDS system more naturally 
contains both upper and lower case. While this may seem an 
insignificant difference, our system depends heavily on case 
variation in recognizing novel strings as instances of such 
categories as product name or company, and this capability 

lessens the load on the preconstructed lexicon. 
The MUC-3 and MUC-4 systems were required to find 

information about terrorist events, with each separate event 
producing a new template. A finite number of event types 
was assumed for each stage of the MUC project. For the 
EDS project, there is only one type of event-a product 
announcement-but there are several types of products that 
the system identifies, with each new product producing a 
separate template. 

A single master template was used in each stage of the 
MUC research projects, varying in size and complexity 

from one year to the next; the MUC-4 template contained 
24-slots. The EDS system in its present state uses two 

template types: one with 31 slots for personal computer 
systems, and another with 45 slots for printers. The single 
MUC template was mandated before the test, whereas we 
have had the freedom to design a template in accordance 
with the kinds of information that we find in the training 
texts as we create a domain. 

Text for the MUC-3 and MUC-4 evaluations consisted 
of several hundred messages, some of which were used for 
training, and a random sample of which were reserved for 
a test set. Since the TemplateFiller was put into automatic 
operation last September, we have been processing text 
downloaded from DialogTM on a weekly basis without 
further work on the system. Each week’s run of an average 

of about 65 articles is another test of the TemplateFiller. 
Since technology, and therefore terminology, change very 
rapidly in our domain area, we are leaving our training 

set further behind with each passing week. Some of our 
future research will be devoted to tracking the effect of this 
“domain drift” on system performance. 

The MUC-3/MUC-4 tasks focused on a single domain: 
terrorist activities. We speak in terms of two “domains” 
for the existing TemplateFiller. While these two domains 
are very closely related, we have built into the system 
everything necessary to facilitate extension to any new 
domain, regardless of its distance from our present area 
of operation; two extensions from the original domain 
of personal computer systems have tested these domain 
extension utilities. 

Finally, methods of evaluation differ somewhat between 
the EDS system and the MUC project. Evaluation will be 
discussed in more detail in the Results section. 

The EDS TemplateFiller 

The EDS TemplateFiller is designed as a series of 
processing modules. The transformation from raw text in 
machine-readable form to what we want as final out- 
put-very specific information represented in template 
or tabular form-cannot be effected in a single step. 
Rather, each module performs a different text-processing 

operation on the input and then sends its results to the next 
process, creating the effect of a series of text filters. The 
chained-together series of processes incrementally reduces 
the volume of downloaded text until what we have left is 
what we want and nothing else. 

Because what we return is not a text or text fragment 

but distilled information which we have extracted from 
the raw text, our system must be able to discover not 
only entities but also the relationships that hold between 
entities which are encoded in the text. This requires more 
than simple word-based search or categorization techniques; 
it depends upon actual analysis of the language used in 
the text. Since this analysis is computationally intensive, 

we want to do this type of processing on as little text 
as possible. Therefore, the analysis stage is preceded by 

a number of simpler processes, some of which filter out 
articles and sections of articles which are uninteresting and 
some of which add information, in the form of entity labels 
of various types, which serves to streamline the final, most 

computationally intensive, processing stage. 
Our philosophy has been to use a generic linguistic 

processing approach, applicable across any subject domain, 
in combination with programs which have access to reposi- 
tories of domain-specific knowledge where appropriate. All 
of our natural language parsing technology, for instance, is 
domain independent; that is, neither the analytical methods 
employed by the parser nor the representation used for its 
output are customized to any particular subject area. The 
input that the parser provides to the domain-specific, goal- 
directed, template-building mechanism in the final stage of 
analysis is itself completely generic. However, both the 
parsing and the final data-extraction stages in the Tem- 
plateFiller benefit from the labeled bracketing introduced 
in an earlier stage by domain-customized preprocessing. 
We have found this combination of generic and domain- 
dependent components to provide a maximum of portability 
and power. 

Two more benefits of this approach should be mentioned. 
First, since it is possible to examine the output of each 
processing stage separately, it is possible to identify the 
source of problems in the development phase by comparing 
input with output for any component module. Second, the 
ability of each of the TemplateFiller modules to stand on 
its own allows us to use each of them alone or in other 
combinations for other text-processing applications. For 
example, the parser and lexicon (see “Parsing and Logical 
Form” subsection) have been used in diverse projects with 
very little modification from one to the next. The same 
is true for the preprocessor (see “Format Regularization”). 
Various incarnations of the sentence selector (See “Sentence 
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Selection”) exist for purposes of summarization (Shuldberg, 
1991) and categorization. Modularizing allows reuse of 
applicable programs for many tasks. 

The Template 

The first step in creating a TemplateFiller system for a 

given domain or product type is designing the template. 

A template consists of a set of fields, or slots, each of 
which captures information about a particular feature of 
a target product. Since the template is domain-specific, it 
contains slots pertaining specifically to the type of product 
under consideration. In our case, we have been interested 
primarily in computer product announcements. We have 
designed templates for personal computer systems, for 
printers, and for monitors and displays. 

The template design process requires reading sample ar- 
ticles from the domain and determining the most important 
characteristics of the product type. Some characteristics are 
tied to a particular product type, such as print engine speed 
for laser printers, or refresh rate for monitors. Others are 
generic (at least across computer product announcements), 
such as vendor name, product name, and price. Once the 
appropriate characteristics have been identified, they are 

represented as slots in the template. The template definition 
in (3) is the one we created for personal computer systems. 
The words single and multiple refer to the possibility of 
more than one value for a given slot. 

(3 ;I 
Template: 
File: 

FloppyDiskCapacity 

Vendor Name: 
Product Name: 

NumberDrives 

Product Model: 
Weight: 

SIotAttrs 

Height: 

Depth: 

SlotSize 

Width: 
Price: 

SlotBits 

Number Parallel Ports: 
Number Serial Ports: 

NumberSlots 

Baud Rate: 
Warranty Period: 

BusType 

CPU Type: 
Ram (base): 
Ram (maximum): 
CPU Clock Speed: 

Ram Wait States: 

Cache Size: 

Footprint: 
FloppyDiskAttrs 

FloppyDiskSize 

computer-systems 

single 

single 

single 
single 

single 

single 
single 

multiple 

single 

single 

single 

single 
single 

single 

single 

single 

single 

single 
single 

single 

single 
single 
single 
single 

single 
single 

single 

multiple 
single 

DisplayAttrs multiple 
DisplayResolution 

DisplayType 
VideoStandard 

HardDiskAttrs multiple 
HardDiskSize 
HardDiskCapacity 
HardDiskAccessTime 

single 

single 
single 

single 
single 
single 

Note that a slot for product release date has not been 
included in the template, even though such information is 

likely to have high interest value. The slot has been omit- 
ted because, generally speaking, release date information 
in product announcement articles is vague; phrases like 
“next month” or “sometime early next year” are common. 
Although it may be possible to arrive at a more specific 
value for release date using the publication date for the 
article and then using information gained from the text to 
establish a distance from that date, such inferencing goes 
well beyond the scope of the current TemplateFiller system. 

Note also that the template is not a completely flat 
structure, because some product characteristics cannot be 
adequately represented with such an object. Consider the 
following sentence. 

(4) 
In addition, the ME 486EISA offers one parallel and 
two serial ports, seven 32-bit EISA slots and one 8-bit 

ISA slot. 

To identify dependencies between slots, we define function- 
ally dependent slots, where connected values form parts of a 
substructure. The template in (5) below was produced from 

the article which contained the sentence in (4). Note that 

the slot information has been collected into two functionally 
dependent structures labeled “Slot Info.” 

(5) 
File: pc-week1991-07-lo-08:34-58.clauses2 

Vendor Name: Micro Express Inc 
Product Name: 486-EISA-33 

Price: 4999 

CPU Type: 80486 

Ram (base): 4M 
Parallel Ports: one 
Serial Ports: tW0 

CPU Clock Speed: 33MHz 
Slot Info: 

Number: one 
Bits: 8 
Bus Type: ISA 

Slot Info: 

Number: seven 
Bits: 32 

Bus Type: EISA 
Hard Disk Info: 

Capacity: 1.50M 

Such dependency relationships should be detected in the 
initial examination of the domain and encoded as part of the 
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template construction process.* The use of functional de- 
pendencies addresses the same concerns that have prompted 
the MUC test designers to move to an object-oriented 
template (Krupka & Rau, 1992). 

Employing a preset template has advantages and dis- 
advantages. It restricts the kind of information that the 
system has to seek to a finite, manageable set of fields, 
but it also means that new developments in a domain 
will not be caught until the template is suitably modified, 
which, of course, does not happen automatically. On the 
positive side, limiting search to tightly focused topic areas 
means that when the system is presented with articles 
that have been miscategorized and have little or nothing 
to do with the topic of interest, the system often simply 
produces templates which are either empty or so sparsely 
populated that they are not preserved. This result ensures 
that miscategorized articles typically cost us only time and 
not accuracy. 

TemplateFiller Data Flow 

The actual work of text distillation by the TemplateFiller 
includes the following stages. Input to the system is raw, 
machine-readable text, which can come from any machine- 
readable source, but we are currently processing PC Week 
articles which we obtain from the DialogTM service. First, 
downloaded articles are automatically categorized on the 
basis of their probable utility for a domain, and only those 
deemed relevant are subjected to further processing. The 
next stages are dedicated to preprocessing: cleaning up 
format problems and recognizing and labeling domain- 
specific semantic objects-potential slot fillers-in the 
raw text. Next, a keyword-matching routine is used to 
discard individual sentences which do not contain enough 
of these semantic objects to warrant further processing. 
The remaining text is analyzed linguistically, transforming 
the input into a representation which shows the underlying 
semantic relations between objects, including those recog- 
nized by the preprocessor as potential slot values. The final 
component, the template builder, uses that representation to 
select values for slots in the template. 

Figure 1 illustrates the data flow through the individual 
TemplateFiller modules. Figure 2 gives examples of the 
output of the system at significant points in the flow. A 
more detailed discussion of each of the processing stages 
follows. 

The first step in template filling is article collection and 
categorization. A Bayesian categorization system (Hill & 
Schnedar, 1992; Mosteller & Wallace, 1964) is used to 
automatically choose articles that are likely to be relevant 
to the domain. The Bayesian categorizer was trained about 
two years ago on a set of 857 hand-sorted product release 
articles from computer industry journals. The classification 

*Note that the functional dependency Hard Disk Info is also present, 

although only one of its subslots has been filled. 

Nomalize 

FIG. 1. TemplateFiller data flow. 

which the system achieves is not perfect (see “Template- 
Filler Results”), but it does serve to reduce the workload for 
subsequent processes, and we have evidence that effective 
text categorization up front can contribute significantly to 
better end results (see “TemplateFiller Results”). In the 
meantime, miscategorized articles can be filtered out by 
later processes, so that in many cases we lose more time 
than accuracy. As for the occasional pertinent article which 
the system fails to retrieve, we rely on the repetition which 
is characteristic of the body of texts we receive to give us 
second chances at information missed in one pass. 

Format Regularization, Preprocessing, and Part-of- 
Speech Tagging. The preprocessing stage includes a 

number of separate components, which accomplish the 
following operations in sequence: format normalization, 
repair of separated words, recognition of domain-specific 
semantic objects in the text, and part-of-speech prediction. 
All of these separate processes are similar in that they 
involve the addition of structure or information to the 
original text. 

Articles that we download often contain formatting 
information that must be stripped out before the articles can 
be processed further. Header information, including bylines 
and datelines, one-line article summaries, and nonprinting 
characters, is removed. What remains is just the title and 
text of the article. 

We have also found that it is common for downloaded 
articles from at least one source to contain words with ran- 
domly placed extra spaces in them. Since word boundaries 
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Original Text 

Data General Corp. kast week released the 5.5-pound WalkAboutf386SL notebook and the Dasher 11-486/5OTE2 
deskside PC. 

Preprocessed Text 

((:PARAGRAPH 2) (:SENTENCE I) (:COMPANY-SG “Data General” “DataGeneral Corp.“) 
(TEMPORAL “last week” ) ((:VERB-PAST :VERB-PSP ) “released”) (:DET “the”) 
(:WEIGHT “5.5 pound” “5.5~pound” 1 (:HAS-A-NUMBER “WalkAbouU386SL” ) 
(:FOOTPRINT “notebook” “notebook” ) (:CONJ “and”) (:DET “the”) 

(:NAME-AN%NUMBER-SG “Dasher 11486/5OTE2” ) 
(:FOOTFRINT “deskside” ‘Ldeskside PC” ) :PERIOD ) 

Logical Form 

ctype act 
name release 
actor ctype company 

Plo 
“iiIW “Data General” 

theme list I( reference ref dehmte 
name the 

attr I( “i3tW “5.5 pound” 

ctype weight 

name “WalkAbout-386SL” 

ctype has-a_nomber )I 
“me “notebook” 

ctype footprint 

reference ref detimte 
name the 

attr I( llN”e “Dasher-II-4X6-5OTE2” 

ctype name-and-number-g )I 
“ame “deskside” 

ctYPe footprint )I 

ctype conj 
conjname and 

adjunct I( “ZlE “las week” 

we temporal)1 

Template (1 of 2) 

vendorname “Data General Corp.” 
productname “D<asher II-486/50TE2” 
physicalweight “5.5 pouod” 

cpotype -80486~~” 
ramsizebase “8M” (supplied by another sentence) 
cpuclockspeed “SOMHz” (supplied by another sentence1 
csfootprint “deskside” 

FIG. 2. Output at selected stages of processing. 

are defined in our system by spaces, and since a number 

of subsequent processes depend on reliable word boundary 
identification, it is important that extra spaces be removed. 
Relying on our lexicon to identify known words, the space- 
fixer looks for unknown words in the text and attempts 
to combine them with adjacent words. If the combination 
produces a known word, the combination is used in place 

of the separated parts. Note that our modular arrangement 
allowed us to add this extra processing stage with no 
disruption to the rest of the system. 

The next stage is string and regular expression matching 
on the text. Part of the TemplateFiller system’s success is 
due to the fact that domain knowledge can be used in the 
early stages of processing to help identify key text strings 
that are likely to provide potential values for template 
slots. The preprocessor, with the help of domain-specific 
control files, recognizes such strings and labels them with 
appropriate token labels. 

String constants that the system must recognize are 
words and phrases which either require a consistent labeling 

to aid in further processing or which have a particular 
meaning in the domain under consideration. Many product 
characteristics can be picked up directly in the form of 
string constants: known CPU types, known vendors, or 
particular kinds of ports or interfaces, for instance. Other 
characteristics are not completely described but can be 
located with the aid of words such as RAM or ROM, and 
strings such as characters-per-minute or pages-per-minute. 
Not only can these strings be labeled by the preprocessor, 
but also multiple distinct input strings can be mapped to the 
same output string. For instance, pages-per-minute and ppm 
both become PPM for the sake of subsequent processing. 

Using regular expression definitions, we can identify 
a potentially open-ended set of strings as vendor names, 
product names or dollar amounts. For example, any string 
of capitalized words followed by Co., Inc., Ltd., etc., is 
recognized and tagged as a company name. This allows 
many company names that have not been seeded into the 
string constant file to be recognized. Similarly, a variety 
of combinations of upper-case letters and numbers are 
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tagged and in subsequent processes considered as possible 
product names. Previously recognized and labeled string 
constants can also serve as input to regular expression 
matching. For example, either pages-per-minute or ppm, 
recognized and tagged as PPM, can participate in a regular 
expression that looks for a number preceding the tagged 

PPM string. The number and the PPM string can then 
be combined and labeled as PRINT-ENGINE-SPEED, a 
printer characteristic that could be used to fill a template 
slot. 

The tokenizer, a separate component which works on 
the output of the preprocessor, normalizes references in 
cases where one reference to a company or person is a 
shortened or elliptical version of another reference in the 

text. The tokenizer examines the set of tokens labeled by 
the preprocessor in a single text, and where it finds an 
acceptable partial match, it normalizes both strings into a 
single token. For example, if the article contains an early 
reference to Consolidated Electronic Technologies, Inc. and 
a subsequent reference to Consolidated, Inc., the tokenizer 
will recognize that the two tokens refer to the same entity 
and return the same output string (the longer of the two) 
for both. While it is capable of normalizing any specified 
set of labeled tokens, we currently use the tokenizer just for 
company and personal names, since both are cases where 

the patterns of elliptical reference are fairly regular. 
Recognizing and labeling strings at this early stage of 

processing provides two assets to subsequent processes. 
First, it catches words and phrases which may be proper 
values for slots in the template. Second, it collects multi- 
word strings into single units that can be treated as such 
for syntactic processing. 

The first sentence from the article in (1) is shown in (6) 
below, as it stands after format normalization, preprocess- 
ing, and tokenizing. 

(6) 
((:PARAGRAPH 2) (:SENTENCE 1) (:COMPANY 
“Data General” “ Data General Corp.“) (TEMPORAL 
“last week”) released the (:WEIGHT “5.5 pound” 
“5.5-pound”) (:HAS _ A- NUMBER “WalkAbouti 
386X”) (:FOOTPRINT “notebook” “notebook”) and 
the (:NAME-AND-NUMBER “Dasher II-486150TE2”) 
(:FOOTPRINT “deskside” “deskside PC”) :PERIOD) 

The next stage is part-of-speech tagging for the remain- 
ing unbracketed words in the text. A major contributor 
to complexity in natural language analysis is grammatical 
category ambiguity. For example, the word released in 
(6) can be an adjective, a past-tense verb, or a past- 
participle verb. The syntactic parser has to know which 

interpretation is correct in order to parse the sentence 
successfully, but considering all the possibilities supplied 
by the lexicon increases parsing complexity and processing 
time. To help reduce this complexity, and therefore also 
processing time, we have implemented a program which 
statistically predicts part of speech on the basis of context 
(Church, 1988; dehlarcken, 1989; DeRose, 1988). Our part- 
of-speech tagger narrows the choices for each word to one 

or two possibilities, with the result that the parser can now 

successfully handle much longer sentences than it could 
without tagging, and parsing is now twice as fast.3 

Sentence Selection. In order to further reduce the 
amount of text that must be processed, the system discards 
some sentences from the original text. Sentences are 

preserved if they contain one or more of a predetermined set 
of keywords or, in some cases, only if they contain certain 
combinations of those keywords. Typically, keywords are 
preprocessor labels, since it is assumed that the strings 
of most interest have been recognized and tagged in the 
preprocessor stage. However, any word in the text can serve 

as a keyword. The result is a file that contains only the 
sentences which are most likely to contribute information to 
a template. The amount of reduction in text volume depends 
on a number of factors, including the number and nature 
of the keywords in the controlling file and the number of 
keyword occurrences in the input file; but typically, it is 

between 50% and 75%. 

Parsing and Logical Form. Even though the preproces- 
sor has identified and labeled potential strings for slot values 
in the template, linguistic analysis of the language used in 
the description is necessary to decide which values are the 

correct ones for a given template. Parsing is the most CPU- 
intensive part of the template-filling process; however, it is 
necessary for accurate information extraction. The grammar 
we have developed is a GPSG-HPSG hybrid (Gazdar, 
Klein, Pullum, & Sag, 1985; Pollard & Sag, 1987), and our 
parser is based on the LR parsing algorithm (Tomita, 1986 
and 1991). Our syntactic lexicon of about 45,000 entries 
was created using information extracted from a machine- 
readable version of the Oxford Advanced Learner’s Dic- 
tionary of Current English, which we obtained from the 
Oxford Text Archive. 

Using just the syntactic lexicon and grammar, the parser 
is able to output syntactic structure trees for input sentences. 

Syntactic structure representations have been found to be 
sufficient for some information extraction applications, be- 
cause they do capture many of the important relationships 
encoded in the text (Metzler et al., 1989). However, we 
have also augmented our lexicon with a set of lexical 
types which, when expanded, allow the construction of 

thematic structure representations (Jackendoff, 1972) as 
well as parse trees for input sentences. These thematic 
structure representations, or “logical forms,” identify the 
underlying relationships encoded in a sentence. 

A slightly simplified example of how our thematic 
structure represents the logical form of a sentence is shown 

below in (7). Note that preprocessor token labels are now 
called ctype; has-a-number is a particular preprocessor 
label for certain strings which have a high likelihood of 

3The part of speech predictor can narrow the choice to a single 

possibility; however, in that case when it is wrong, it causes parse failures. 

When possibilities are statistically close in probability, we allow more than 

one category to be proposed. 
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being product names in this domain. Indentation represents 
embedding of one subgraph within another. 

(7) 
Sentence: DataGeneral last week released the 5.5 pound Walk- 

About-386SL notebook. 

Logical form: 

ctype act 
name release 
actor ctype company 

name “Data General” 
theme reference ref definite 

name the 
name “notebook” 
ctype footprint 
attrl( name “5.5 pound” 

ctype weight 

name “WalkAbout-386%” 
ctype has-a-number )I 

adjunct name “last week” 
ctype temporal 

Logical form representation exposes linguistic relation- 
ships in a more uniform way than surface syntactic structure 
representations can, and therefore, provides a better basis 
for the actual extraction of information. For instance, stan- 
dard surface syntactic representations for active and passive 
variants of the same message differ. A search for underlying 
relationships which used surface syntactic structure as input 

would have to allow for both of the surface possibilities. 
However, in our thematic structure representations, such 
surface variation is neutralized; active and passive variants 
of the same message have functionally identical “logical 
forms.“4 

Our logical forms also identify other relationships which 
are implicit but invisible in surface structure. For example, 
in a sentence like the one in (8), English speakers know that 
SuperCo will be the vendor of the computers, even though 
selling has no explicit direct object. Our representation of 
this sentence uses numerical indices to make the implicit 
linking explicit; note that SuperCo is correctly identified 

by means of these indices (gap-106) as the actor of both 
agree and sell, while computers is linked to sell as its theme 
despite its separation from the verb in surface structure. 

(8) 
Sentence: The computers which SuperCo has agreed to start 
selling are expensive. 

Logical form: 

attr name expensive 
ctype state 
name be 
topic reference ref definite 

name the 

4Note that for purposes of tracking discourse topic we do retain a marker 

specifying whether a passive construction was the source of the thematic 

structure. 

name “computers” 
ctype device-word 
varname gap- 106 

attr aux have 
ctype act 
name agree 
actor [#l] 

name “SuperCo” 
ctype company 

theme modal to 
ctype act 
context start 
situation ctype act 

name sell 
actor -1 
theme ctype ref 

refname gap - 106 

Note that because of this ability to neutralize surface 

variation, all of the variations on the example sentence 
in (7) [shown in (9)a-c, below] would result in thematic 
structure representations which are identical in their critical 
elements; they would share the substructure shown in (10). 

(9) 
a. 

b. 

C. 

(10) 

The WalkAbout-386SL notebook was released last 
week by Data General 
Data General, which just released the WalkAbout- 
386SL notebook, has also announced other new 
products. 
Data General has released a new .5.5-pound notebook, 

the WalkAbout-386SL. 

Logical form: 

ctype act 

name release 
actor name “Data General” 

ctype company 
theme reference ref definite 

name the 
name “notebook” 
ctype footprint 
attr I( name “WalkAbout-386%” 

ctype has-a-number )I 

In all these cases, the parser identifies the uniform 
relationship holding between the entity which has ctype 

company, which is a candidate for the slot vendorname, 
and the one with ctype has-a-number, which is one of 
several possibilities for the slot productname. When these 
representations are handed on to the template builder, that 
component need not know anything about the variation 
present in the original text. Instead, it can use a single 
thematic structure pattern to extract the correct data rela- 
tionships from each of these sentences. 

For a variety of reasons, such as memory limitations, 

ungrammatical or incomplete text, or syntactic structures 
that fall outside our grammar’s coverage, parsing some- 
times fails. Still, even when the parser has failed to resolve 
the structure of the sentence as a whole, in many cases 
it has succeeded in creating valid structures for some of 
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the sentence’s constituents. In these cases, the successfully 
resolved structures, such as they are, are collected into a 
partial thematic structure called a Recovery Logical Form. 
Frequently, a Recovery Logical Form will be complete 
enough that it can be used by the template builder to 
fill template slots. A Recovery Logical Form is “com- 
plete enough” if it contains enough information to satisfy 
all the goal statements in a relevant PROLOG predicate 
in the template builder. This is discussed in more detail in 

the next section. 

The Template Builder. The template builder is the com- 
ponent of the TemplateFiller system that makes assertions 
about specific values for template slots given thematic struc- 
ture input. Our approach to constructing templates com- 
bines the general-purpose linguistic information produced 
by the parsing component with very specific information 
about what sort of templates we need to generate. Instead 

of trying to produce a complete knowledge representation 
of the information in each sentence, we try to prove simple 
relationships between information in the sentence and in- 

formation we want. The process is more goal-directed and, 
we believe, more efficient than a more general knowledge- 
based approach. It is implemented in PROLOG as a simple 
pattern-matching and inferencing system. 

The basic approach of the template builder is quite 
simple and relies on two kinds of information. At the top 
level, template definitions provide the goal for the infer- 
encing process. At the bottom level, patterns of thematic 
structures define how individual pieces of linguistic infor- 
mation within a sentence can be combined to satisfy the 
goals established by the template definitions. The algorithm 
operates bottom-up, first identifying thematic patterns and 

then combining them into template structures. 
We refer to patterns of thematic information as COIZ- 

figurations in order to distinguish them from the regular 
expression patterns of the preprocessing phase of the sys- 
tem. Each configuration looks for a set of thematic elements 
that stand in a particular relationship to one another. For 
example, we have a series of configurations that look for 
verbal structures expressing relations between companies 
and products. One such configuration, shown here in (ll), 
can be paraphrased as shown below in (12). 

(11) 
configuration(vendor1, vp, assert, 

and(match(company-act, 
actor(match(company, name(V))), 
theme(match(product-name, name(P)))), 

This), 
[vendorname(This, V), productname(This, P)]). 

(12) 
A vendor1 pattern, composed of vendor V, and product P, is one 

in which: 

a) the verb is a ‘company-act,’ encoding one of a pre- 
defined set of actions (e.g., “announce, ” “roll out, ” 

“upgrade, ” etc.), 

b) the actor of the verb can be interpreted as a company 

name and has the surface form V, and 

c) the theme of the verb can be interpreted as a product 

name and has the surface form P. 

Note that the actor and theme portions of the configuration 
allow for items that may not have been explicitly marked 
as companies or products in the preprocessing stage. 

When a configuration is matched, it produces a number 
of assertions. In the vendor1 configuration above, two 
assertions are produced: 

vendorname(This, V). 
productname(This, P). 

These are treated as a single ANDed assertion. Here, the 
variable ‘This’ will be bound to the thematic structure of the 
verb as required to maintain the association between the two 
pieces of information V and P and to provide sequencing 
information for the subsequent template-filling process. The 
variables V and P will be bound to actual text strings from 
the text, for example: 

vendorname(lf1, ‘Data General Corp.‘), 
productname(lf1, ‘WalkAbout 386SL’). 

The second step in the template-building algorithm pro- 

cesses the assertions made in the configuration-matching 
step in sequential order, looking for the minimum set of 
templates that satisfy all the assertions. In other words, 
new assertions are combined with existing templates unless 
a conflict forces the creation of a new template. Each 
template is also treated as a set of related assertions, with 
the constraint that all assertions relating to single-valued 
slots are ANDed, and those relating to multivalued slots 
are ORed. Thus, a template corresponding to the example 
assertions shown above would have the following form. 

template(tl), 
vendorname(t1, ‘Data General Corp.‘), 
productname(t1, ‘WalkAbout 386SL’). 

The template-building process is simply one of finding an 
optimal set of template assertions consistent with the in- 
dividual assertions produced by the configuration-matching 
phase. “Optimal” in our system means finding the set of 
templates that has the fewest number of filled slots. For 
example, given the template tl above, the new assertions 

productname(lf2, ‘WalkAbout 386SL’), 
csfootprint(lf2, ‘notebook’). 

could be interpreted as a new template or as an extension of 
template tl. The first interpretation will result in two new 
slots in a new template, while the second results in only one 
new slot (csfootprint) in the existing template. Under our 
rule of finding the minimal set of templates, these assertions 
will cause template tl to be extended. 

template(tl), 
vendorname(t1, ‘Data General Corp.‘), 
productname(t1, ‘WalkAbout 386SL’), 
csfootprint(t1, ‘notebook’). 

The template-building process operates across sentence 
boundaries and in a sense provides a crude process for 
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resolving anaphoric reference. In the article (1) from which 
the preceding example was taken, the vendorname, product- 
name, and footprint information come from one sentence. 
In a subsequent sentence, the cputype is mentioned in con- 
junction with the footprint, generating two new assertions. 

csfootprint(lf3, ‘notebook’), 
cputype(lf3, ‘80386SL’). 

Although multiple candidate templates exist from the first 
sentence into which the new assertions might fit, the 
presence of the shared footprint information allows us to 
associate the new information with the correct template. 
This technique mimics the effect of definite NP anaphora, 
where a reference is made to a previously mentioned noun 
phrase by using a definite article (e.g., the as opposed to a). 
In the above example, the definite NP is the 25MHz 386SL- 
based notebook, and it adds two new pieces of information 
to the notebook template. 

template(H), 
vendorname(t1, ‘Data General Corp.‘), 
productname(t1, ‘WalkAbout 386SL’), 
csfootprint(t1, ‘notebook’), 
cpuclockspeed(t1, ‘25MHz’), 
cputype(t1, ‘80386SL’). 

Enforcing the minimal set of templates helps to avoid 
the creation of spurious templates, but it can also have 
the effect of illegitimately combining slot values for sepa- 
rate products into a single template, which occurs most 
frequently when multiple products are described in terms 
of different attributes, or when products are described in 
terms of attributes that can fill multivalued slots. Enforcing 
the minimal rule typically produces the correct results, but 
obviously has the price of sometimes combining informa- 
tion into a single template that should appear in multiple 
templates; however, all things considered, the tradeoff 
appears to work to our advantage. 

During the template-building process, a primitive ap- 
proximation of the effects of discourse focus is applied 
which allows ordering of templates by last reference. If 
a set of assertions could apply equally well to more than 

one template, the most recent is selected. Pronouns are al- 
lowed to match in certain positions during the configuration 
matching process, causing the information associated with 

the pronoun to be attached to the most recently mentioned 
product consistent with the rest of the assertions. 

Note that configuration definitions are separate from 
the actual pattern-matching algorithm that processes them. 
They are defined using a simple declarative syntax which 
facilitates maintenance. While developing the template- 
building system and extending it to new domains, we 
found that many of the configuration patterns could be 

expressed in terms of classes of “attributes” and mappings 
from these attributes to slot names. As a result, most of 
the patterns are defined in a domain-independent way and 
need only be augmented by a small number of domain- 
specific configurations, attribute definitions, and attribute- 
to-slot mappings. 

As the preceding examples illustrate, the system does 
not really know anything about what it means to announce 
or roll out a new product. Instead it knows that a certain 
set of linguistic structures, such as those for the verbs 
announce and roll out, may contain information that we 
want. In addition, it knows where within these structures 
the pertinent information may be and how that information 

corresponds to slots in a template. Finally, it has a simple 
strategy for combining these small bits of information into 
coherent templates. 

Domain Extension 

The capacity to compress large quantities of incoming 
text down into a relatively small volume by the final stage 
of processing depends on the system’s ability to take an 
extremely narrow view of what is likely to be important 

within a given domain. Ordinarily, while this kind of 
domain-targeting buys a great deal in terms of analysis 
of materials within the domain, it results in unacceptable 
fragility outside a domain. We have tried to prevent this in 
two ways: by compartmentalizing the system’s knowledge, 
and by providing domain extension utilities that streamline 
the process of extending the system to a new domain. 

Compartmentalization of knowledge itself takes two 
forms. First, the knowledge that the system uses at each 
of the processing stages is in all cases external to the 
programs that do the actual text processing. Therefore, 
no code, but only the knowledge files that the various 
programs consult, must be changed when we extend the 
system to a new domain. For example, the preprocessor 
consults domain-specific files of regular expression patterns 
and string constants for any given domain, but the program 
itself is domain-independent. The sentence selector and the 
template builder do likewise; on any given run they each 
consult files of target patterns pertinent to the domain in 
question, but they are themselves entirely generic and never 
need changing. 

Second, we have divided the knowledge sources them- 
selves into component files, depending on how generically 
useful the included knowledge is. These separate files are 
concatenated at run time into the single-file format that 
the various programs expect. For example, the preprocessor 
files are divided into generic, product-announcement, and 
domain-specific components. Patterns included in the first 
set would be useful across all text types; for example, 
they include patterns for recognizing personal names and 
titles, addresses, various ways of expressing numbers and 

measurements, etc. The second set includes patterns which 
are used in all categories of electronic technology prod- 
uct announcements; these files cover computer hardware 

“buzzwords” and phrases. The domain-specific set of files 
includes patterns which either are found only in discussions 
of a certain kind of hardware or have a unique meaning 
in such discussions. The target configurations used by the 
template builder have been divided in the same way, so 
that generic configurations for finding attributes of objects, 
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for example, are maintained separately from configurations 
targeted at particular domain-dependent bits of information. 

Because of this compartmentalization of the knowledge 
which the system requires, extending to a new but related 
domain is relatively simple and does not require the kind of 
backtracking that would be necessary without the system’s 
generic core. In the case of moving from one computer 
hardware area to another, for instance, the new domain uses 
all the same code, and its knowledge files can be “seeded” 
with the generic and product-announcement knowledge files 
from the last domain; all that must be added is whatever 
completely domain-specific patterns and configurations the 
new domain may require. When we move beyond computer 

hardware product announcements to a completely different 
arena, we will take the generic patterns and configurations 
along as seed. Recently, this design allowed us to create a 
generic preprocessor for patent text in about 15 minutes. 

To ensure consistency and generally to make the process 
easier, we have constructed a unified maintenance and test- 
ing environment for domain extension. Master knowledge 
files can be created or updated in their compartmentalized 
forms and can be concatenated and tested on any amount of 
text before being installed into the production system. The 
tool also includes a concordance utility, which facilitates 
the discovery of potential patterns within new batches of 
text files during the creation of a new domain. Using these 
tools, extending from the first domain we covered, personal 
computer systems, to the additional hardware domains of 
printers and monitors/displays took about two person weeks 
for each domain (Macpherson et al., 1992). 

TemplateFiller Results 

In this section, we describe the information extrac- 
tion performance of the TemplateFiller, including overall 
statistics of precision and recall. As much as possible, 
we report our statistics in the terms used in the most 
recent MUC evaluations. This is not because the statistics 
should be compared (as discussed in “Other Research 
in Template Filling: MUC,” the tasks and development 
constraints are too different in their details for comparison 
to be meaningful), but simply for the sake of following 
accepted practice. 

System Status 

We are now automatically building templates of new 
product information from PC Week articles and distribut- 
ing them as weekly bulletins to interested parties within 
EDS. Our automatically generated bulletins typically re- 
quire some editing, but the time we take doing that is much 
less than the time it would take to extract the information 
entirely by hand. The clerical errors that we sometimes 
make while filling templates by hand (a price of $22,500 
became $225,000 in one article) continue to remind us of 
the utility of a completely automatic information extraction 
system. Hand-checking the generated templates also allows 
us to quantify success and identify problem areas with each 

weekly batch of templates. After hand-editing, each run is 

automatically scored for accuracy and completeness as part 
of the bulletin generation process. 

System Performance 

In Tables 1 through 5 we show performance statis- 
tics calculated over 12 weeks’ worth of computer systems 
bulletins. 

Table 1 shows the filtering effect of the Bayesian text 
classification program. Note that 658 articles downloaded 
over the 12 weeks are reduced by this method to 144 
which must receive further processing, for a reduction of 
over 78%. Retrieval statistics show the classification system 
achieving 94% recall and 67% precision for the computer 
systems category, and 72% recall and 87% precision for 
printers. 

Table 1 also shows two additional statistics, one a mea- 
sure of system performance and the other a characteristic 
of the document collection. Fallout, which is a measure 
of the proportion of out-of-category documents which the 
system classifies as in-category, is satisfactorily low for 
both categories. Generality is the measure of how common 
articles of a particular category are within a collection of 
documents. All else being equal, low generality should 
impact precision; however, we see that text retrieval preci- 
sion is better for the printer category than for computer 
systems, despite the relative scarcity of printer articles. 
What may explain this pattern is that the classification 
system is not just deciding yes or rzo for each category 
on its own, but is making a three-way decision among the 
two hardware domains and the negative category neither. 
Since the latest printers include memory, multiple ports, 
and even sometimes hard drives, articles about printers 
are difficult for the Bayesian classifier to distinguish from 
articles about computer systems. The collection covered 
by these statistics contains three instances in which printer 
articles were automatically categorized as computer system 

TABLE 1. Categorizer performance. 

c (compsys articles) = 85 

p (printer articles) = 29 

n (neither category) = 544 

t (total downloaded) = 658 

compsys generality = c/t = 12.92% 

printer generality = p/t = 4.41% 

cc (compsys articles correctly categorized) = 80 

yc (articles categorized as compsys) = 120 

pp (printer articles correctly categorized) = 21 

yp (articles categorized as printers) = 24 

compsys recall = cc/c = 94.12% 

compsys precision = cc/ye = 66.67% 

compsys fallout = (yc - cc)/(t - c) = 6.98% 

printer recall = pp/p = 72.41% 

printer precision = pp/yp = 87.50% 

printer fallout = (yp - pp)/(t - p) = 0.48% 
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TABLE 2. Filtering effect of template filling. 

(Records whether a template file is generated for a categorized article, 
not whether the templates in the file are right. Considers articles 
selected by Bayesian classifier as complete corpus.) 

gtc (made template file for article RIGHTLY categorized = 72 
as compsys) 

tc (nonempty template files made for compsys) = 94 

empty compsys template files in category 8 
empty compsys template files out of category = 18 

template filler compsys recall = gtc/cc = 90.00% 

template filler compsys precision = gtc/tc = 76.60% 

gtp (made template file for article RIGHTLY categorized = I9 
as printer) 

tp (nonempty template files made for printers) = 21 

empty printer template files in category =2 

empty printer template files out of category 1 

template filler printer recall = gtp/pp = 90.48% 

template filler printer precision = gtp/tp = 90.48% 

articles, and no instances of the opposite mistake. That is, 
the deficit to printer recall is at the same time a deficit to 
precision in the computer systems category. 

Table 2 shows the additional filtering effect of the 
template filling process itself, given the output of the 
classification program. For these figures, just the articles 
automatically classified into a category are considered as 
the entire input collection for that domain. An article 
is considered to have been chosen as relevant in this 
stage if a nonempty template file was produced for it; no 
consideration is given to whether the information in the 
template file is completely correct or not. Here we see that 
the TemplateFiller weeds out about 10% of articles that 

it should have kept in both categories. It also does make 
templates for articles which were not placed in the correct 
category. Precision figures are somewhat higher than for 
the initial classification process, but since the generality 
of relevant articles is also much higher than in the initial 
collection (it is equal to the precision figures from the first 
stage), there is less likelihood of making a mistake at this 
stage. 

Table 3 combines the figures of Tables 1 and 2 to 
show overall text-filtering performance, as if Bayesian 
classification and text selection by the TemplateFiller were 
all one text-filtering operation. Note that for both categories 
recall is lower here than for the Bayesian classifier by 

itself, because the template filler does fail to select some 

TABLE 3. Overall filtering performance through template filling. 

(Records whether a template file is made for a categorized article, not 
whether the templates in the file are right. Considers all downloaded 
articles as the source corpus.) 

compsys recall after TF = gtc/c 

compsys precision after TF = gtc/tc 

printer recall after TF = gtp/p 

printer precision after TF = gtp/tp 

= 84.71% 

= 76.60% 

= 65.52% 

= 90.48% 

TABLE 4. TemplateFi/ler information extraction performance, all 
articles. 

Total possible correct templates: 

a. Valid generated templates: 

b. Missing templates: 

c. Spurious generated templates: 

d. Ignored templates: 

e. Possible slots: 

f. Correct slots in generated templates: 

g. Missing slots in generated templates: 

h. Modified slots in generated templates: 

i. Wrong slots in generated templates: 

j. Slots in added templates: 

k. Spurious slots in valid generated templates: 

1. Total spurious slots: 

Template recall (a/(a + b)): 180 of 257 

Template precision (a/(a + c)): 180 of 266 

Template overgeneration (c/(a + c)): 86 of 266 

Slot recall: 

257 

180 

77 

86 

120 

2294 

774 

696 

36 

103 

685 

30 

311 

70.04% 

67.67% 

32.33% 

all templates, modified slots are correct 

((f + h)/e): 810 of 2294 

all templates, modified slots are incorrect 

(f/e): 774 of 2294 

generated templates, modified slots are correct 

((f + h)/(e - j)): 810 of 1609 

generated templates, modified slots are incorrect 

(f/(e - j)): 774 of 1609 

Slot precision: 

35.31% 

33.74% 

50.34% 

48.10% 

all templates, modified slots are correct 

((f + h)/(f + h + i + 1): 810 of 1224 66.18% 

all templates, modified slots are incorrect 

(f/(f + h + i + 1): 774 of 1224 63.24% 

valid generated templates, modified slots are correct 

((f + h)/(f + h + i + k)): 810 of 943 85.90% 

valid generated templates, modified slots are incorrect 

(f/(f + h + i + k)): 774 of 943 82.08% 

Slot overgeneration: 

all templates (l/(f + h + i + I)): 311 of 1224 25.41% 

generated templates (k/(f + h + i + k)): 30 of 943 03.18% 

F-score, all templates, modified are incorrect, /? = 1: 44.00 

in-category articles. Precision, however, is higher in both 
categories. If recall and precision are summed into a single 
score, the total is about 161 for computer systems and about 
156 for printers at this stage. F-scores (Lewis & Tong, 
1992) with p = 1 (weighting precision and recall equally) 
are 80.5 for computer systems and 76.0 for printers. 

Tables 4 and 5 illustrate the actual information extraction 
performance of the TemplateFiller for computer systems 
articles5 The statistics for this assessment were assembled 
by comparing automatically generated template output with 
templates prepared by human template fillers. Our proce- 
dure is for two people to edit the output of each weekly 
run, and when agreement is reached on the best template 

‘We produce bulletins from articles announcing both personal computer 

systems and printers, but since the number of printer articles tends to 
be quite low (three or less per week) we have provided template-filling 

statistics for computer systems articles only. 
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TABLE 5. TemplateFiUer information extraction performance, 

in-category texts only. 

Total possible correct templates: 244 

a. Valid generated templates: 170 

b. Missing templates: 74 

c. Spurious generated templates: 53 

d. Ignored templates: 58 

e. Possible slots: 2208 

f. Correct slots in generated templates: 734 

g. Missing slots in generated templates: 667 

h. Modified slots in generated templates: 35 

i. Wrong slots in generated templates: 102 

j. Slots in added templates: 670 

k. Spurious slots in valid generated templates: 30 

1. Total spurious slots: 217 

Template recall (a/(a + b)): 170 of 244 69.67% 

Template precision (a/(a + c)): 170 of 223 76.23% 

Template overgeneration (c/(a + c)): 53 of 223 23.77% 

Slot recall: 

all templates, modified slots are correct 

((f + h)/e): 769 of 2208 

all templates, modified slots are incorrect 

(f/e): 734 of 2208 

34.83% 

33.24% 

generated templates, modified slots are correct 

((f + h)/(e - j)): 769 of 1538 

generated templates, modified slots are incorrect 

(f/(e - j)): 734 of 1538 

Slot precision: 

50.00% 

47.72% 

all templates, modified slots are correct 

((f + h)/(f + h + i + I): 769 of 1088 

all templates, modified slots are incorrect 

(f/(f + h + i + 1): 734 of 1088 

generated templates, modified slots are correct 

((f + h)/(f + h + i + k)): 769 of 901 

generated templates, modified slots are incorrect 

(f/(f + h + i + k)): 734 of 901 

Slot overgeneration: 

all templates (l/(f + h + i + I)): 217 of 1088 

generated templates (k/(f + h + i + k): 30 of 901 

F-score, all templates, modified are incorrect, p = 1: 

70.68% 

67.46% 

85.35% 

81.47% 

19.94% 

3.33% 

44.54 

fills for the week’s articles, then the generated templates 
are automatically scored as part of the bulletin generation 
process. 

In Table 4, the input is the entire set of articles which 
were automatically classified as containing information 
about computer systems. In Table 5, the input is limited to 
just those articles which were predicted by human judges 
to really contain such information, that is, it is limited to 
correctly classified articles. The two tables together reveal 
two significant phenomena. First, the difference between the 
two tables in slot precision for the all templates condition 
suggests that template-filling performance is affected by 
the success of article categorization. Since the system 
overgenerates in the presence of miscategorized article 
input, precision suffers. On the other hand, note that the 
“Total possible correct templates” figure is not the same 
in the two tables, but is higher in Table 4, as is the 
figure for template recall. This indicates that the system is 

extracting useful and correct information even from articles 
which were not judged to have been correctly categorized. 

“Perfect” domain categorization would therefore negatively 
impact system recall in this particular case. 

Lines a-l in Tables 4 and 5 are self-explanatory, with 
perhaps a couple of exceptions. Line d (“Ignored tem- 
plates”) records the number of generated templates which 
did not contain enough information to justify inclusion in 

the bulletin; a template must have at least a vendor name 
and a product name in order to escape this classification. 
Line h (“Modified slots in generated templates”) counts 
slot fills which were judged to be “close enough” to the 
completely accurate slot that some credit should be given. 
The MUC-3 and MUC-4 evaluation scoring allows partial 
credit for “Partially correct” fills; we choose instead to show 
all performance figures two ways: counting the “modified” 
fills as correct, and counting them as incorrect. 

Recall and precision figures are calculated for several 
different ways of looking at system performance. The all 
templates condition is always harsher, as it compares the 
total number of slot fills automatically generated to the total 
number which would have been correct for that collection 
of articles. The generated templates condition allows us 
to look just at the automatically produced templates and 
judge recall and precision for them; that is, in this condition, 
we judge the completeness and accuracy of the templates 
that the system did generate. The valid generated templates 
condition ignores completely spurious templates and judges 

slot precision just on the valid templates produced by the 

system. Our all templates condition corresponds to the 
scoring method of the same name in the MUC-4 evaluations 
(Chinchor, 1992). 

Continuing Problems 

In general, the system does best on articles which 
discuss only one product. Where an article contains multiple 
product descriptions, it is necessary to keep facts about 

one product from being attached to the templates for other 
products, and this requirement strains our rather simplistic 
methodology for combining information which comes from 
different sentences. An example of the difficulty involved 
in even a simple text can be seen in (1) and (2) repeated 
here as (13) and (14). 

(13) 
DG Rolls Out Notebook 486DX-Based System 
Data General Corp. last week released the 5.5- 
pound WalkAbouti386SL notebook and the Dasher IZ- 
48615OTE2 deskside PC. 

The 25MHz 386SL-based notebook starts at $2,445 with 
a 4-hour NiCad battery, 2M bytes of RAM and a 6OM- 
byte hard drive; the 5OMHz 486DX-based PC, which 
starts at $8,395, includes 8M bytes of RAM. Both units 
come with DOS 5.0 and Windows 3.1. 

(14) 
File: 

Vendor Name: 

Product Name: 

PC-week.920904.20.clauses2 

Data General Corp 

Dasher-II-486-50TE2 
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Weight: 5.5 pound 
CPU Type 80486DX 
Ram (base): 8M 
CPU Clock Speed: SOMHz 
Footprint: deskside 

File: PC-week.920904.20.clauses2 

Vendor Name: Data General Corp 
Product Name: WalkAbout-386SL 

Weight: 5.5 pound 
Price: 2445 
CPU Type: 80386SL 

Ram (base): 2M 

CPU Clock Speed: 25MHz 
Footprint: notebook 

Hard Disk Capacity: 60M 

Note in (14) that we fail to pick up the price of the 

Dasher-II-486-50TE2 because, while the system is able 
to link the relative clause containing the price to the noun 
head PC, it does not know that PC can be an elliptical 
way to refer to a deskside PC. On the other hand, the 
system does manage to extract Hard Disk Capacity, CPU 
Clock Speed, CPU Type, and RAM (base) from the same 
environment, using a target configuration which works here 
but which could be too permissive in combining assertions 
in other cases. This same example, in fact, shows a case 
in which such overpermissiveness does go wrong: there 
is no linguistic basis for distributing the weight value 

“5.5 pound” across both templates, but the system does it on 
the basis of a configuration which is simply less restrictive 
than it should be. Just as in other information retrieval tasks, 
tradeoffs between recall and precision must be made here 
also. 

An eye-opening lesson we have learned in the course of 

this research is the importance of certain seemingly low- 
level steps in the processing. Although we use linguistic 
processing to make the ultimate determination of relation- 
ships holding between entities in the text, the system is 
still very dependent on the early bracketing of semantic 
objects. Using the power of regular expression matching to 
accomplish this tokenizing obviously makes us much less 
dependent on literal patterns in the text than we otherwise 

would be, but we still often miss information because an 
object in the text which should be caught as an instance 
of a particular category falls slightly outside our regular- 
expression definition of that category. Again, this is a case 
where tradeoffs are necessary, because the broader the 
patterns are, the more likely they are to bracket elements 
inappropriately. 

Likewise, enhancing the power of the up-front matching 
must be balanced against letting the linguistic analysis 
components do their job. The early bracketing speeds 
parsing enormously, because it reduces both the number 
of “words” (words and tokens) in a sentence and overall 
category ambiguity, thereby cutting complexity tremen- 
dously. On the other hand, the grammar now contains a few 
very counterinutitive rules, because it must accommodate 
the “help” that it is being given by the preprocessing 
components. For instance, because we capture as labeled 

tokens many strings which consist of a number followed 
by some quantifiable feature such as “Mbytes of memory” 

or “pages-per-minute,” we end up with artificial “nouns” 
(e.g., “8 Mbytes of memory,” “four pages per minute”) 
which carry a feature that indicates that they contain a 

number. Since the number itself is not then a terminal 
element in the eyes of the parser, we must allow some 
of the modifiers which would ordinarily attach only to 
numbers (like “approximately”), to attach instead to these 

constructed “nouns.” 

Conclusion 

The EDS TemplateFiller is an attempt to take infor- 
mation distillation and retrieval to one of many possible 
extremes. In this article, we have stressed some of its more 

important characteristics, such as its modularity and its 
use of natural language technology, and we have provided 
some typical results which show both its strengths and 
weaknesses. 

We have described the TemplateFiller as an information 
distillation system. Yet one of its properties that we have 
discussed only indirectly is that, in its attempt to discover 
the information-intensive data core that is expressed in final 
template form, it actually adds a considerable amount of 
information to the original text. Each module makes use 
of a repository of knowledge to recognize and label text 
strings in ways that aid subsequent modules in their data 

recognition tasks, but which also amount to adding more 
information to the text. This is perhaps most obvious with 
the preprocessor and tagger, which recognize certain text 
strings and attach information-carrying labels to them, and 
the parser, which creates an entirely distinct and heavily 
annotated structure out of this labeled text. At each stage 

of the process, the output resembles the original raw text 
input less and less as more and more information is added. 
In fact, after the filtering effect of categorization, only two 

modules of the system actually reduce the amount of data 
from input to output: the sentence selector, which filters 
out sentences it does not see as relevant to the domain, 
and the template builder, which reduces the information 
it recognizes in the thematic structure to a simple set of 
assertions. It is perhaps ironic that the high ratio of text-to- 
data reduction achieved by the TemplateFiller is largely due 
to the addition of information at most stages; however, this 
methodology has been quite successful for our purposes. 

We plan to further address issues of discourse and 
anaphora resolution in the future. Better methods in these 
areas could ultimately increase both recall and precision; 
the short-term necessity will be to make sure that increases 
in recall brought about through an enhanced ability to 
detect anaphoric reference do not result in the lowering 
of precision. We also hope to move to new domains and to 
broaden the raw text input to include multiple periodicals, 
so that the system will eventually be processing several 
hundred articles per week across a variety of computer 
products-related subject areas. What we have achieved so 
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far clearly demonstrates the feasibility of fully automatic 
distillation of pure information from text. 
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