
Distilling Information from Text:
The EDS TemplateFiller System

H. Kelly Shuldberg: Melissa Macpherson, Pete Humphrey, and Jamii Corley
EDS Research, 5951 Jefferson Street NE, Albuquerque, NM 87109-3432

A system is described which digests large volumes
of text, filtering out irrelevant articles and distilling
the remainder into templates that represent infor-
mation from the articles in simple slot/filler pairs.
The system is highly modular in that it consists
of a series of programs, each of which contributes
information to the text to help in the final analysis
of determining which strings constitute valid values
for the slots in the template. This modular design
has the dual advantage of allowing relatively easy
debugging and of permitting many of the component
programs to participate in other projects. The system
is customized to specific domains, taking advantage
of simple string matching techniques to improve
the effectiveness of more complex sentence-level
semantic processes. The extension to new domains
has been facilitated by dividing system data files into
generic vs. specific categories; domain extension re-
quires the creation of only the domain-specific files.

Introduction

Among the most important challenges in information
science is the efficient management of machine-readable
text data. This basic problem breaks down into at least
two major divisions: (1) providing ways to find specific
information in very large but more or less static reposito-
ries of texts; and (2) effectively managing the enormous
volume of new text that becomes available every day. In
the first case, effective querying for retrieval of whole
texts is typically the goal, and since repositories of text
may have been assembled for diverse reasons and un-

der different conditions, flexibility is one of the most
important requirements. In the second case, it is often
possible to assume that machine-readable text is being
collected for a specific reason. The main goal then is just to
reduce the volume sufficiently that an information consumer
can get what he or she requires without having to wade
through a huge amount of redundant or irrelevant text along
with it.

*e-mail: hkelly@edsr.eds.com

Received December 1, 1992; revised March 17, 1993; accepted April 13,
1993.

0 1993 John Wiley & Sons, Inc.

The problem of the sheer volume of new information is
especially acute in the computer technology domain, and
here it is compounded by the additional factor of rapid
obsolescence. The computer industry is one of the fastest-
changing industries the world has ever witnessed. Rapid

advances and innovation in computer technology mean that
new computer products are constantly being introduced into

the marketplace. Keeping abreast of new products is critical
both to customers, who naturally want the most for their
money, and vendors, who hope to outdistance the com-

petition. Falling behind in knowledge of the most current
technology available could mean a tremendous competitive
disadvantage for any business that relies on computers
for sales or support. Because of this, literally dozens of
periodicals chronicle computer product innovations and
releases, and the amount of new text generated in this area
each week is significant. It is clear that an automatic method
of distilling large quantities of this text into small amounts
of information would be extremely valuable.

This paper describes the TemplateFiller system devel-
oped at EDS Research in Albuquerque, New Mexico. This
system reads raw text input from computer industry journals
and uses it to automatically produce bulletins on new
computer products; these bulletins are then distributed to
interested parties within EDS.

The remainder of the article is divided into four sections.
“Why Templates?” examines the concept of text distillation,
along with the conditions under which template filling is ap-
propriate as a method. “Other Research in Template Filling:

MUC,” gives a comparative overview of the most signifi-
cant research effort which is similar to what we are doing
here, the Message Understanding (MUC) evaluations spon-

sored by DARPA. “The EDS TemplateFiller” discusses the
various components of the TemplateFiller, with examples
of input and output for each module, and describes the

process of extending the system into a new domain. The
final section presents TemplateFiller results, addresses some
issues which remain difficult under this text distillation
methodology, and suggests further work in this area.

Why Templates?

Here at EDS Research we have developed various ef-
fective retrieval, categorization, and summarization algo-

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE. 44(9):493-507, 1993 CCC 0002-8231/93/090493-l 5

rithms. However, the EDS TemplateFiller goes beyond text
retrieval and categorization and simple methods of summa-
rization to the actual extraction of information from text. It
uses text-filtering technology just to reduce the workload for
the more computationally intensive processes of language
analysis which are necessary for data extraction. It is this
linguistic analysis which allows automatic text distillation,
so that the large quantities of text which are available
in the area of computer technology can be reduced to a

manageable volume of pure information.
Given the general goal of automatic text distillation,

the system could produce a number of different types of
actual output, ranging from automatically generated sets
of index terms to natural language abstracts of varying
degrees of sophistication. In the TemplateFiller system,
the output of the distillation process is extracted data
presented in the form of a simple table, or template, with

each row consisting of a slot name and a slot value.
Each product description in an article results in the con-
struction of one template. We have chosen this particular
form of output because of the nature of the texts we are
processing and the nature of the information needs we

are addressing.
First, we find that product announcement texts, while

they are unconstrained in format and overall writing style,
are still somewhat regular in other ways, just by the nature
of what the articles are talking about: new products with sets
of standard features, including name, vendor, price, physical
characteristics, and performance characteristics. Because
the content of the articles shows some predictability, it is
possible to represent it in a template with very little loss
of information.

Second, because these articles are product announce-
ments, both what readers want out of the text and how
they will use what they get out of it are also predictable.
What they want to retain from a product announcement text
is a concise description of the product(s) discussed. What
they want to do with such descriptions is to compare them.
Representing product descriptions in the form of templates,
which of course can also be straightforwardly converted to
database records, provides the best vehicle for comparing

products. Retrieving whole texts or even fragments of texts
would be less satisfactory for at least three reasons: (1) new
incoming texts often repeat information available earlier in
other articles or elsewhere in other journals; (2) information
in a single text may be economically conveyed in brief
bulletin style, or it may be dispersed through a very
long and otherwise factually uninteresting exposition; and
(3) since we are already narrowing the subject area consid-
erably by drawing from computer industry journals only,
categorization must be very fine-grained and therefore
sometimes goes wrong. All of these factors would make
a system which returned texts rather than pure information
more annoying than useful.

What we have constructed, therefore, is a system which
can read the raw text of articles such as that shown
in (1) and automatically produce from it filled templates

such as those shown in (2). Both examples are actual
TemplateFiller input and output.’

(1)
DG Rolls Out Notebook 486DX-Based System
Data General Corp. last week released the 5.5-
pound WalkAbouti386SL notebook and the Dasher II-
486/50TE2 deskside PC.

The 25MHz 386SL-based notebook starts at $2,445 with
a 4-hour NiCad battery, 2M bytes of RAM and a 60M-
byte hard drive; the 5OMHz 486DX-based PC, which
starts at $8,395, includes 8M bytes of RAM. Both units
come with DOS 5.0 and Windows 3.1.

(2)
File: PC-week.920904.20.clauses2
Vendor Name: Data General Corp
Product Name: Dasher-II-486-50TE2
Weight: 5.5 pound
CPU Type 80486DX
Ram (base): 8M
CPU Clock Speed: SOMHz
Footprint: deskside

File: PC-week.920904.20.clauses2

Vendor Name: Data General Corp

Product Name: WalkAbout -386SL

Weight: 5.5 pound
Price: 2445

CPU Type: 80386SL
Ram (base): 2M

CPU Clock Speed: 25MHz

Footprint: notebook

Hard Disk Capacity: 60M

Other Research in Template Filling: MUC

Research which most closely resembles the work behind
the EDS TemplateFiller is that associated with the ongoing
Message Understanding evaluations sponsored by DARPA
(Sundheim, 1991, 1992). These yearly efforts by a number

of research sites have provided a forum for a standardized
evaluation of the state of the art in information extraction.
Our work, like the work associated with the MUC tasks,
involves extracting information from text and using it
to fill slots in a predetermined template. However, there
are numerous differences between the MUC and EDS
projects which make direct comparison inappropriate. The

tasks MUC participants have been asked to perform differ
from those undertaken by the EDS project in at least the
following ways.

‘There are two things to note about these examples. First, the text we
have chosen to show here is very short (62 words) for example purposes.

The actual length of the articles we process is closer to 300 words, with

some articles longer than 700 words. Second, the templates in (2) are
obviously not perfect. The one missed slot and one inaccurate slot are

discussed in the final section.

494 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-October 1993

The MUC-3 and MUC-4 tasks involved extracting in-
formation about terrorist activities from a wide variety of

text sources, while the EDS system pulls information about
new computer products from product announcement articles
taken from a small number of computer industry journals.
The nature of the domains, as well as the heterogeneity
of the input, could have significant effects on the ease of
information extraction.

The input text for MUC3 and MUC-4 has been all upper
case, while input text to the EDS system more naturally
contains both upper and lower case. While this may seem an
insignificant difference, our system depends heavily on case
variation in recognizing novel strings as instances of such
categories as product name or company, and this capability

lessens the load on the preconstructed lexicon.
The MUC-3 and MUC-4 systems were required to find

information about terrorist events, with each separate event
producing a new template. A finite number of event types
was assumed for each stage of the MUC project. For the
EDS project, there is only one type of event-a product
announcement-but there are several types of products that
the system identifies, with each new product producing a
separate template.

A single master template was used in each stage of the
MUC research projects, varying in size and complexity

from one year to the next; the MUC-4 template contained
24-slots. The EDS system in its present state uses two

template types: one with 31 slots for personal computer
systems, and another with 45 slots for printers. The single
MUC template was mandated before the test, whereas we
have had the freedom to design a template in accordance
with the kinds of information that we find in the training
texts as we create a domain.

Text for the MUC-3 and MUC-4 evaluations consisted
of several hundred messages, some of which were used for
training, and a random sample of which were reserved for
a test set. Since the TemplateFiller was put into automatic
operation last September, we have been processing text
downloaded from DialogTM on a weekly basis without
further work on the system. Each week’s run of an average

of about 65 articles is another test of the TemplateFiller.
Since technology, and therefore terminology, change very
rapidly in our domain area, we are leaving our training

set further behind with each passing week. Some of our
future research will be devoted to tracking the effect of this
“domain drift” on system performance.

The MUC-3/MUC-4 tasks focused on a single domain:
terrorist activities. We speak in terms of two “domains”
for the existing TemplateFiller. While these two domains
are very closely related, we have built into the system
everything necessary to facilitate extension to any new
domain, regardless of its distance from our present area
of operation; two extensions from the original domain
of personal computer systems have tested these domain
extension utilities.

Finally, methods of evaluation differ somewhat between
the EDS system and the MUC project. Evaluation will be
discussed in more detail in the Results section.

The EDS TemplateFiller

The EDS TemplateFiller is designed as a series of
processing modules. The transformation from raw text in
machine-readable form to what we want as final out-
put-very specific information represented in template
or tabular form-cannot be effected in a single step.
Rather, each module performs a different text-processing

operation on the input and then sends its results to the next
process, creating the effect of a series of text filters. The
chained-together series of processes incrementally reduces
the volume of downloaded text until what we have left is
what we want and nothing else.

Because what we return is not a text or text fragment

but distilled information which we have extracted from
the raw text, our system must be able to discover not
only entities but also the relationships that hold between
entities which are encoded in the text. This requires more
than simple word-based search or categorization techniques;
it depends upon actual analysis of the language used in
the text. Since this analysis is computationally intensive,

we want to do this type of processing on as little text
as possible. Therefore, the analysis stage is preceded by

a number of simpler processes, some of which filter out
articles and sections of articles which are uninteresting and
some of which add information, in the form of entity labels
of various types, which serves to streamline the final, most

computationally intensive, processing stage.
Our philosophy has been to use a generic linguistic

processing approach, applicable across any subject domain,
in combination with programs which have access to reposi-
tories of domain-specific knowledge where appropriate. All
of our natural language parsing technology, for instance, is
domain independent; that is, neither the analytical methods
employed by the parser nor the representation used for its
output are customized to any particular subject area. The
input that the parser provides to the domain-specific, goal-
directed, template-building mechanism in the final stage of
analysis is itself completely generic. However, both the
parsing and the final data-extraction stages in the Tem-
plateFiller benefit from the labeled bracketing introduced
in an earlier stage by domain-customized preprocessing.
We have found this combination of generic and domain-
dependent components to provide a maximum of portability
and power.

Two more benefits of this approach should be mentioned.
First, since it is possible to examine the output of each
processing stage separately, it is possible to identify the
source of problems in the development phase by comparing
input with output for any component module. Second, the
ability of each of the TemplateFiller modules to stand on
its own allows us to use each of them alone or in other
combinations for other text-processing applications. For
example, the parser and lexicon (see “Parsing and Logical
Form” subsection) have been used in diverse projects with
very little modification from one to the next. The same
is true for the preprocessor (see “Format Regularization”).
Various incarnations of the sentence selector (See “Sentence

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-October 1993 495

Selection”) exist for purposes of summarization (Shuldberg,
1991) and categorization. Modularizing allows reuse of
applicable programs for many tasks.

The Template

The first step in creating a TemplateFiller system for a

given domain or product type is designing the template.

A template consists of a set of fields, or slots, each of
which captures information about a particular feature of
a target product. Since the template is domain-specific, it
contains slots pertaining specifically to the type of product
under consideration. In our case, we have been interested
primarily in computer product announcements. We have
designed templates for personal computer systems, for
printers, and for monitors and displays.

The template design process requires reading sample ar-
ticles from the domain and determining the most important
characteristics of the product type. Some characteristics are
tied to a particular product type, such as print engine speed
for laser printers, or refresh rate for monitors. Others are
generic (at least across computer product announcements),
such as vendor name, product name, and price. Once the
appropriate characteristics have been identified, they are

represented as slots in the template. The template definition
in (3) is the one we created for personal computer systems.
The words single and multiple refer to the possibility of
more than one value for a given slot.

(3 ;I
Template:
File:

FloppyDiskCapacity

Vendor Name:
Product Name:

NumberDrives

Product Model:
Weight:

SIotAttrs

Height:

Depth:

SlotSize

Width:
Price:

SlotBits

Number Parallel Ports:
Number Serial Ports:

NumberSlots

Baud Rate:
Warranty Period:

BusType

CPU Type:
Ram (base):
Ram (maximum):
CPU Clock Speed:

Ram Wait States:

Cache Size:

Footprint:
FloppyDiskAttrs

FloppyDiskSize

computer-systems

single

single

single
single

single

single
single

multiple

single

single

single

single
single

single

single

single

single

single
single

single

single
single
single
single

single
single

single

multiple
single

DisplayAttrs multiple
DisplayResolution

DisplayType
VideoStandard

HardDiskAttrs multiple
HardDiskSize
HardDiskCapacity
HardDiskAccessTime

single

single
single

single
single
single

Note that a slot for product release date has not been
included in the template, even though such information is

likely to have high interest value. The slot has been omit-
ted because, generally speaking, release date information
in product announcement articles is vague; phrases like
“next month” or “sometime early next year” are common.
Although it may be possible to arrive at a more specific
value for release date using the publication date for the
article and then using information gained from the text to
establish a distance from that date, such inferencing goes
well beyond the scope of the current TemplateFiller system.

Note also that the template is not a completely flat
structure, because some product characteristics cannot be
adequately represented with such an object. Consider the
following sentence.

(4)
In addition, the ME 486EISA offers one parallel and
two serial ports, seven 32-bit EISA slots and one 8-bit

ISA slot.

To identify dependencies between slots, we define function-
ally dependent slots, where connected values form parts of a
substructure. The template in (5) below was produced from

the article which contained the sentence in (4). Note that

the slot information has been collected into two functionally
dependent structures labeled “Slot Info.”

(5)
File: pc-week1991-07-lo-08:34-58.clauses2

Vendor Name: Micro Express Inc
Product Name: 486-EISA-33

Price: 4999

CPU Type: 80486

Ram (base): 4M
Parallel Ports: one
Serial Ports: tW0

CPU Clock Speed: 33MHz
Slot Info:

Number: one
Bits: 8
Bus Type: ISA

Slot Info:

Number: seven
Bits: 32

Bus Type: EISA
Hard Disk Info:

Capacity: 1.50M

Such dependency relationships should be detected in the
initial examination of the domain and encoded as part of the

496 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-October 1993

template construction process.* The use of functional de-
pendencies addresses the same concerns that have prompted
the MUC test designers to move to an object-oriented
template (Krupka & Rau, 1992).

Employing a preset template has advantages and dis-
advantages. It restricts the kind of information that the
system has to seek to a finite, manageable set of fields,
but it also means that new developments in a domain
will not be caught until the template is suitably modified,
which, of course, does not happen automatically. On the
positive side, limiting search to tightly focused topic areas
means that when the system is presented with articles
that have been miscategorized and have little or nothing
to do with the topic of interest, the system often simply
produces templates which are either empty or so sparsely
populated that they are not preserved. This result ensures
that miscategorized articles typically cost us only time and
not accuracy.

TemplateFiller Data Flow

The actual work of text distillation by the TemplateFiller
includes the following stages. Input to the system is raw,
machine-readable text, which can come from any machine-
readable source, but we are currently processing PC Week
articles which we obtain from the DialogTM service. First,
downloaded articles are automatically categorized on the
basis of their probable utility for a domain, and only those
deemed relevant are subjected to further processing. The
next stages are dedicated to preprocessing: cleaning up
format problems and recognizing and labeling domain-
specific semantic objects-potential slot fillers-in the
raw text. Next, a keyword-matching routine is used to
discard individual sentences which do not contain enough
of these semantic objects to warrant further processing.
The remaining text is analyzed linguistically, transforming
the input into a representation which shows the underlying
semantic relations between objects, including those recog-
nized by the preprocessor as potential slot values. The final
component, the template builder, uses that representation to
select values for slots in the template.

Figure 1 illustrates the data flow through the individual
TemplateFiller modules. Figure 2 gives examples of the
output of the system at significant points in the flow. A
more detailed discussion of each of the processing stages
follows.

The first step in template filling is article collection and
categorization. A Bayesian categorization system (Hill &
Schnedar, 1992; Mosteller & Wallace, 1964) is used to
automatically choose articles that are likely to be relevant
to the domain. The Bayesian categorizer was trained about
two years ago on a set of 857 hand-sorted product release
articles from computer industry journals. The classification

*Note that the functional dependency Hard Disk Info is also present,

although only one of its subslots has been filled.

Nomalize

FIG. 1. TemplateFiller data flow.

which the system achieves is not perfect (see “Template-
Filler Results”), but it does serve to reduce the workload for
subsequent processes, and we have evidence that effective
text categorization up front can contribute significantly to
better end results (see “TemplateFiller Results”). In the
meantime, miscategorized articles can be filtered out by
later processes, so that in many cases we lose more time
than accuracy. As for the occasional pertinent article which
the system fails to retrieve, we rely on the repetition which
is characteristic of the body of texts we receive to give us
second chances at information missed in one pass.

Format Regularization, Preprocessing, and Part-of-
Speech Tagging. The preprocessing stage includes a

number of separate components, which accomplish the
following operations in sequence: format normalization,
repair of separated words, recognition of domain-specific
semantic objects in the text, and part-of-speech prediction.
All of these separate processes are similar in that they
involve the addition of structure or information to the
original text.

Articles that we download often contain formatting
information that must be stripped out before the articles can
be processed further. Header information, including bylines
and datelines, one-line article summaries, and nonprinting
characters, is removed. What remains is just the title and
text of the article.

We have also found that it is common for downloaded
articles from at least one source to contain words with ran-
domly placed extra spaces in them. Since word boundaries

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-October 1993 497

Original Text

Data General Corp. kast week released the 5.5-pound WalkAboutf386SL notebook and the Dasher 11-486/5OTE2
deskside PC.

Preprocessed Text

((:PARAGRAPH 2) (:SENTENCE I) (:COMPANY-SG “Data General” “DataGeneral Corp.“)
(TEMPORAL “last week”) ((:VERB-PAST :VERB-PSP) “released”) (:DET “the”)
(:WEIGHT “5.5 pound” “5.5~pound” 1 (:HAS-A-NUMBER “WalkAbouU386SL”)
(:FOOTPRINT “notebook” “notebook”) (:CONJ “and”) (:DET “the”)

(:NAME-AN%NUMBER-SG “Dasher 11486/5OTE2”)
(:FOOTFRINT “deskside” ‘Ldeskside PC”) :PERIOD)

Logical Form

ctype act
name release
actor ctype company

Plo
“iiIW “Data General”

theme list I(reference ref dehmte
name the

attr I(“i3tW “5.5 pound”

ctype weight

name “WalkAbout-386SL”

ctype has-a_nomber)I
“me “notebook”

ctype footprint

reference ref detimte
name the

attr I(llN”e “Dasher-II-4X6-5OTE2”

ctype name-and-number-g)I
“ame “deskside”

ctYPe footprint)I

ctype conj
conjname and

adjunct I(“ZlE “las week”

we temporal)1

Template (1 of 2)

vendorname “Data General Corp.”
productname “D<asher II-486/50TE2”
physicalweight “5.5 pouod”

cpotype -80486~~”
ramsizebase “8M” (supplied by another sentence)
cpuclockspeed “SOMHz” (supplied by another sentence1
csfootprint “deskside”

FIG. 2. Output at selected stages of processing.

are defined in our system by spaces, and since a number

of subsequent processes depend on reliable word boundary
identification, it is important that extra spaces be removed.
Relying on our lexicon to identify known words, the space-
fixer looks for unknown words in the text and attempts
to combine them with adjacent words. If the combination
produces a known word, the combination is used in place

of the separated parts. Note that our modular arrangement
allowed us to add this extra processing stage with no
disruption to the rest of the system.

The next stage is string and regular expression matching
on the text. Part of the TemplateFiller system’s success is
due to the fact that domain knowledge can be used in the
early stages of processing to help identify key text strings
that are likely to provide potential values for template
slots. The preprocessor, with the help of domain-specific
control files, recognizes such strings and labels them with
appropriate token labels.

String constants that the system must recognize are
words and phrases which either require a consistent labeling

to aid in further processing or which have a particular
meaning in the domain under consideration. Many product
characteristics can be picked up directly in the form of
string constants: known CPU types, known vendors, or
particular kinds of ports or interfaces, for instance. Other
characteristics are not completely described but can be
located with the aid of words such as RAM or ROM, and
strings such as characters-per-minute or pages-per-minute.
Not only can these strings be labeled by the preprocessor,
but also multiple distinct input strings can be mapped to the
same output string. For instance, pages-per-minute and ppm
both become PPM for the sake of subsequent processing.

Using regular expression definitions, we can identify
a potentially open-ended set of strings as vendor names,
product names or dollar amounts. For example, any string
of capitalized words followed by Co., Inc., Ltd., etc., is
recognized and tagged as a company name. This allows
many company names that have not been seeded into the
string constant file to be recognized. Similarly, a variety
of combinations of upper-case letters and numbers are

498 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-October 1993

tagged and in subsequent processes considered as possible
product names. Previously recognized and labeled string
constants can also serve as input to regular expression
matching. For example, either pages-per-minute or ppm,
recognized and tagged as PPM, can participate in a regular
expression that looks for a number preceding the tagged

PPM string. The number and the PPM string can then
be combined and labeled as PRINT-ENGINE-SPEED, a
printer characteristic that could be used to fill a template
slot.

The tokenizer, a separate component which works on
the output of the preprocessor, normalizes references in
cases where one reference to a company or person is a
shortened or elliptical version of another reference in the

text. The tokenizer examines the set of tokens labeled by
the preprocessor in a single text, and where it finds an
acceptable partial match, it normalizes both strings into a
single token. For example, if the article contains an early
reference to Consolidated Electronic Technologies, Inc. and
a subsequent reference to Consolidated, Inc., the tokenizer
will recognize that the two tokens refer to the same entity
and return the same output string (the longer of the two)
for both. While it is capable of normalizing any specified
set of labeled tokens, we currently use the tokenizer just for
company and personal names, since both are cases where

the patterns of elliptical reference are fairly regular.
Recognizing and labeling strings at this early stage of

processing provides two assets to subsequent processes.
First, it catches words and phrases which may be proper
values for slots in the template. Second, it collects multi-
word strings into single units that can be treated as such
for syntactic processing.

The first sentence from the article in (1) is shown in (6)
below, as it stands after format normalization, preprocess-
ing, and tokenizing.

(6)
((:PARAGRAPH 2) (:SENTENCE 1) (:COMPANY
“Data General” “ Data General Corp.“) (TEMPORAL
“last week”) released the (:WEIGHT “5.5 pound”
“5.5-pound”) (:HAS _ A- NUMBER “WalkAbouti
386X”) (:FOOTPRINT “notebook” “notebook”) and
the (:NAME-AND-NUMBER “Dasher II-486150TE2”)
(:FOOTPRINT “deskside” “deskside PC”) :PERIOD)

The next stage is part-of-speech tagging for the remain-
ing unbracketed words in the text. A major contributor
to complexity in natural language analysis is grammatical
category ambiguity. For example, the word released in
(6) can be an adjective, a past-tense verb, or a past-
participle verb. The syntactic parser has to know which

interpretation is correct in order to parse the sentence
successfully, but considering all the possibilities supplied
by the lexicon increases parsing complexity and processing
time. To help reduce this complexity, and therefore also
processing time, we have implemented a program which
statistically predicts part of speech on the basis of context
(Church, 1988; dehlarcken, 1989; DeRose, 1988). Our part-
of-speech tagger narrows the choices for each word to one

or two possibilities, with the result that the parser can now

successfully handle much longer sentences than it could
without tagging, and parsing is now twice as fast.3

Sentence Selection. In order to further reduce the
amount of text that must be processed, the system discards
some sentences from the original text. Sentences are

preserved if they contain one or more of a predetermined set
of keywords or, in some cases, only if they contain certain
combinations of those keywords. Typically, keywords are
preprocessor labels, since it is assumed that the strings
of most interest have been recognized and tagged in the
preprocessor stage. However, any word in the text can serve

as a keyword. The result is a file that contains only the
sentences which are most likely to contribute information to
a template. The amount of reduction in text volume depends
on a number of factors, including the number and nature
of the keywords in the controlling file and the number of
keyword occurrences in the input file; but typically, it is

between 50% and 75%.

Parsing and Logical Form. Even though the preproces-
sor has identified and labeled potential strings for slot values
in the template, linguistic analysis of the language used in
the description is necessary to decide which values are the

correct ones for a given template. Parsing is the most CPU-
intensive part of the template-filling process; however, it is
necessary for accurate information extraction. The grammar
we have developed is a GPSG-HPSG hybrid (Gazdar,
Klein, Pullum, & Sag, 1985; Pollard & Sag, 1987), and our
parser is based on the LR parsing algorithm (Tomita, 1986
and 1991). Our syntactic lexicon of about 45,000 entries
was created using information extracted from a machine-
readable version of the Oxford Advanced Learner’s Dic-
tionary of Current English, which we obtained from the
Oxford Text Archive.

Using just the syntactic lexicon and grammar, the parser
is able to output syntactic structure trees for input sentences.

Syntactic structure representations have been found to be
sufficient for some information extraction applications, be-
cause they do capture many of the important relationships
encoded in the text (Metzler et al., 1989). However, we
have also augmented our lexicon with a set of lexical
types which, when expanded, allow the construction of

thematic structure representations (Jackendoff, 1972) as
well as parse trees for input sentences. These thematic
structure representations, or “logical forms,” identify the
underlying relationships encoded in a sentence.

A slightly simplified example of how our thematic
structure represents the logical form of a sentence is shown

below in (7). Note that preprocessor token labels are now
called ctype; has-a-number is a particular preprocessor
label for certain strings which have a high likelihood of

3The part of speech predictor can narrow the choice to a single

possibility; however, in that case when it is wrong, it causes parse failures.

When possibilities are statistically close in probability, we allow more than

one category to be proposed.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-October 1993 499

being product names in this domain. Indentation represents
embedding of one subgraph within another.

(7)
Sentence: DataGeneral last week released the 5.5 pound Walk-

About-386SL notebook.

Logical form:

ctype act
name release
actor ctype company

name “Data General”
theme reference ref definite

name the
name “notebook”
ctype footprint
attrl(name “5.5 pound”

ctype weight

name “WalkAbout-386%”
ctype has-a-number)I

adjunct name “last week”
ctype temporal

Logical form representation exposes linguistic relation-
ships in a more uniform way than surface syntactic structure
representations can, and therefore, provides a better basis
for the actual extraction of information. For instance, stan-
dard surface syntactic representations for active and passive
variants of the same message differ. A search for underlying
relationships which used surface syntactic structure as input

would have to allow for both of the surface possibilities.
However, in our thematic structure representations, such
surface variation is neutralized; active and passive variants
of the same message have functionally identical “logical
forms.“4

Our logical forms also identify other relationships which
are implicit but invisible in surface structure. For example,
in a sentence like the one in (8), English speakers know that
SuperCo will be the vendor of the computers, even though
selling has no explicit direct object. Our representation of
this sentence uses numerical indices to make the implicit
linking explicit; note that SuperCo is correctly identified

by means of these indices (gap-106) as the actor of both
agree and sell, while computers is linked to sell as its theme
despite its separation from the verb in surface structure.

(8)
Sentence: The computers which SuperCo has agreed to start
selling are expensive.

Logical form:

attr name expensive
ctype state
name be
topic reference ref definite

name the

4Note that for purposes of tracking discourse topic we do retain a marker

specifying whether a passive construction was the source of the thematic

structure.

name “computers”
ctype device-word
varname gap- 106

attr aux have
ctype act
name agree
actor [#l]

name “SuperCo”
ctype company

theme modal to
ctype act
context start
situation ctype act

name sell
actor -1
theme ctype ref

refname gap - 106

Note that because of this ability to neutralize surface

variation, all of the variations on the example sentence
in (7) [shown in (9)a-c, below] would result in thematic
structure representations which are identical in their critical
elements; they would share the substructure shown in (10).

(9)
a.

b.

C.

(10)

The WalkAbout-386SL notebook was released last
week by Data General
Data General, which just released the WalkAbout-
386SL notebook, has also announced other new
products.
Data General has released a new .5.5-pound notebook,

the WalkAbout-386SL.

Logical form:

ctype act

name release
actor name “Data General”

ctype company
theme reference ref definite

name the
name “notebook”
ctype footprint
attr I(name “WalkAbout-386%”

ctype has-a-number)I

In all these cases, the parser identifies the uniform
relationship holding between the entity which has ctype

company, which is a candidate for the slot vendorname,
and the one with ctype has-a-number, which is one of
several possibilities for the slot productname. When these
representations are handed on to the template builder, that
component need not know anything about the variation
present in the original text. Instead, it can use a single
thematic structure pattern to extract the correct data rela-
tionships from each of these sentences.

For a variety of reasons, such as memory limitations,

ungrammatical or incomplete text, or syntactic structures
that fall outside our grammar’s coverage, parsing some-
times fails. Still, even when the parser has failed to resolve
the structure of the sentence as a whole, in many cases
it has succeeded in creating valid structures for some of

500 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-October 1993

the sentence’s constituents. In these cases, the successfully
resolved structures, such as they are, are collected into a
partial thematic structure called a Recovery Logical Form.
Frequently, a Recovery Logical Form will be complete
enough that it can be used by the template builder to
fill template slots. A Recovery Logical Form is “com-
plete enough” if it contains enough information to satisfy
all the goal statements in a relevant PROLOG predicate
in the template builder. This is discussed in more detail in

the next section.

The Template Builder. The template builder is the com-
ponent of the TemplateFiller system that makes assertions
about specific values for template slots given thematic struc-
ture input. Our approach to constructing templates com-
bines the general-purpose linguistic information produced
by the parsing component with very specific information
about what sort of templates we need to generate. Instead

of trying to produce a complete knowledge representation
of the information in each sentence, we try to prove simple
relationships between information in the sentence and in-

formation we want. The process is more goal-directed and,
we believe, more efficient than a more general knowledge-
based approach. It is implemented in PROLOG as a simple
pattern-matching and inferencing system.

The basic approach of the template builder is quite
simple and relies on two kinds of information. At the top
level, template definitions provide the goal for the infer-
encing process. At the bottom level, patterns of thematic
structures define how individual pieces of linguistic infor-
mation within a sentence can be combined to satisfy the
goals established by the template definitions. The algorithm
operates bottom-up, first identifying thematic patterns and

then combining them into template structures.
We refer to patterns of thematic information as COIZ-

figurations in order to distinguish them from the regular
expression patterns of the preprocessing phase of the sys-
tem. Each configuration looks for a set of thematic elements
that stand in a particular relationship to one another. For
example, we have a series of configurations that look for
verbal structures expressing relations between companies
and products. One such configuration, shown here in (ll),
can be paraphrased as shown below in (12).

(11)
configuration(vendor1, vp, assert,

and(match(company-act,
actor(match(company, name(V))),
theme(match(product-name, name(P)))),

This),
[vendorname(This, V), productname(This, P)]).

(12)
A vendor1 pattern, composed of vendor V, and product P, is one

in which:

a) the verb is a ‘company-act,’ encoding one of a pre-
defined set of actions (e.g., “announce, ” “roll out, ”

“upgrade, ” etc.),

b) the actor of the verb can be interpreted as a company

name and has the surface form V, and

c) the theme of the verb can be interpreted as a product

name and has the surface form P.

Note that the actor and theme portions of the configuration
allow for items that may not have been explicitly marked
as companies or products in the preprocessing stage.

When a configuration is matched, it produces a number
of assertions. In the vendor1 configuration above, two
assertions are produced:

vendorname(This, V).
productname(This, P).

These are treated as a single ANDed assertion. Here, the
variable ‘This’ will be bound to the thematic structure of the
verb as required to maintain the association between the two
pieces of information V and P and to provide sequencing
information for the subsequent template-filling process. The
variables V and P will be bound to actual text strings from
the text, for example:

vendorname(lf1, ‘Data General Corp.‘),
productname(lf1, ‘WalkAbout 386SL’).

The second step in the template-building algorithm pro-

cesses the assertions made in the configuration-matching
step in sequential order, looking for the minimum set of
templates that satisfy all the assertions. In other words,
new assertions are combined with existing templates unless
a conflict forces the creation of a new template. Each
template is also treated as a set of related assertions, with
the constraint that all assertions relating to single-valued
slots are ANDed, and those relating to multivalued slots
are ORed. Thus, a template corresponding to the example
assertions shown above would have the following form.

template(tl),
vendorname(t1, ‘Data General Corp.‘),
productname(t1, ‘WalkAbout 386SL’).

The template-building process is simply one of finding an
optimal set of template assertions consistent with the in-
dividual assertions produced by the configuration-matching
phase. “Optimal” in our system means finding the set of
templates that has the fewest number of filled slots. For
example, given the template tl above, the new assertions

productname(lf2, ‘WalkAbout 386SL’),
csfootprint(lf2, ‘notebook’).

could be interpreted as a new template or as an extension of
template tl. The first interpretation will result in two new
slots in a new template, while the second results in only one
new slot (csfootprint) in the existing template. Under our
rule of finding the minimal set of templates, these assertions
will cause template tl to be extended.

template(tl),
vendorname(t1, ‘Data General Corp.‘),
productname(t1, ‘WalkAbout 386SL’),
csfootprint(t1, ‘notebook’).

The template-building process operates across sentence
boundaries and in a sense provides a crude process for

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-October 1993 501

resolving anaphoric reference. In the article (1) from which
the preceding example was taken, the vendorname, product-
name, and footprint information come from one sentence.
In a subsequent sentence, the cputype is mentioned in con-
junction with the footprint, generating two new assertions.

csfootprint(lf3, ‘notebook’),
cputype(lf3, ‘80386SL’).

Although multiple candidate templates exist from the first
sentence into which the new assertions might fit, the
presence of the shared footprint information allows us to
associate the new information with the correct template.
This technique mimics the effect of definite NP anaphora,
where a reference is made to a previously mentioned noun
phrase by using a definite article (e.g., the as opposed to a).
In the above example, the definite NP is the 25MHz 386SL-
based notebook, and it adds two new pieces of information
to the notebook template.

template(H),
vendorname(t1, ‘Data General Corp.‘),
productname(t1, ‘WalkAbout 386SL’),
csfootprint(t1, ‘notebook’),
cpuclockspeed(t1, ‘25MHz’),
cputype(t1, ‘80386SL’).

Enforcing the minimal set of templates helps to avoid
the creation of spurious templates, but it can also have
the effect of illegitimately combining slot values for sepa-
rate products into a single template, which occurs most
frequently when multiple products are described in terms
of different attributes, or when products are described in
terms of attributes that can fill multivalued slots. Enforcing
the minimal rule typically produces the correct results, but
obviously has the price of sometimes combining informa-
tion into a single template that should appear in multiple
templates; however, all things considered, the tradeoff
appears to work to our advantage.

During the template-building process, a primitive ap-
proximation of the effects of discourse focus is applied
which allows ordering of templates by last reference. If
a set of assertions could apply equally well to more than

one template, the most recent is selected. Pronouns are al-
lowed to match in certain positions during the configuration
matching process, causing the information associated with

the pronoun to be attached to the most recently mentioned
product consistent with the rest of the assertions.

Note that configuration definitions are separate from
the actual pattern-matching algorithm that processes them.
They are defined using a simple declarative syntax which
facilitates maintenance. While developing the template-
building system and extending it to new domains, we
found that many of the configuration patterns could be

expressed in terms of classes of “attributes” and mappings
from these attributes to slot names. As a result, most of
the patterns are defined in a domain-independent way and
need only be augmented by a small number of domain-
specific configurations, attribute definitions, and attribute-
to-slot mappings.

As the preceding examples illustrate, the system does
not really know anything about what it means to announce
or roll out a new product. Instead it knows that a certain
set of linguistic structures, such as those for the verbs
announce and roll out, may contain information that we
want. In addition, it knows where within these structures
the pertinent information may be and how that information

corresponds to slots in a template. Finally, it has a simple
strategy for combining these small bits of information into
coherent templates.

Domain Extension

The capacity to compress large quantities of incoming
text down into a relatively small volume by the final stage
of processing depends on the system’s ability to take an
extremely narrow view of what is likely to be important

within a given domain. Ordinarily, while this kind of
domain-targeting buys a great deal in terms of analysis
of materials within the domain, it results in unacceptable
fragility outside a domain. We have tried to prevent this in
two ways: by compartmentalizing the system’s knowledge,
and by providing domain extension utilities that streamline
the process of extending the system to a new domain.

Compartmentalization of knowledge itself takes two
forms. First, the knowledge that the system uses at each
of the processing stages is in all cases external to the
programs that do the actual text processing. Therefore,
no code, but only the knowledge files that the various
programs consult, must be changed when we extend the
system to a new domain. For example, the preprocessor
consults domain-specific files of regular expression patterns
and string constants for any given domain, but the program
itself is domain-independent. The sentence selector and the
template builder do likewise; on any given run they each
consult files of target patterns pertinent to the domain in
question, but they are themselves entirely generic and never
need changing.

Second, we have divided the knowledge sources them-
selves into component files, depending on how generically
useful the included knowledge is. These separate files are
concatenated at run time into the single-file format that
the various programs expect. For example, the preprocessor
files are divided into generic, product-announcement, and
domain-specific components. Patterns included in the first
set would be useful across all text types; for example,
they include patterns for recognizing personal names and
titles, addresses, various ways of expressing numbers and

measurements, etc. The second set includes patterns which
are used in all categories of electronic technology prod-
uct announcements; these files cover computer hardware

“buzzwords” and phrases. The domain-specific set of files
includes patterns which either are found only in discussions
of a certain kind of hardware or have a unique meaning
in such discussions. The target configurations used by the
template builder have been divided in the same way, so
that generic configurations for finding attributes of objects,

502 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-October 1993

for example, are maintained separately from configurations
targeted at particular domain-dependent bits of information.

Because of this compartmentalization of the knowledge
which the system requires, extending to a new but related
domain is relatively simple and does not require the kind of
backtracking that would be necessary without the system’s
generic core. In the case of moving from one computer
hardware area to another, for instance, the new domain uses
all the same code, and its knowledge files can be “seeded”
with the generic and product-announcement knowledge files
from the last domain; all that must be added is whatever
completely domain-specific patterns and configurations the
new domain may require. When we move beyond computer

hardware product announcements to a completely different
arena, we will take the generic patterns and configurations
along as seed. Recently, this design allowed us to create a
generic preprocessor for patent text in about 15 minutes.

To ensure consistency and generally to make the process
easier, we have constructed a unified maintenance and test-
ing environment for domain extension. Master knowledge
files can be created or updated in their compartmentalized
forms and can be concatenated and tested on any amount of
text before being installed into the production system. The
tool also includes a concordance utility, which facilitates
the discovery of potential patterns within new batches of
text files during the creation of a new domain. Using these
tools, extending from the first domain we covered, personal
computer systems, to the additional hardware domains of
printers and monitors/displays took about two person weeks
for each domain (Macpherson et al., 1992).

TemplateFiller Results

In this section, we describe the information extrac-
tion performance of the TemplateFiller, including overall
statistics of precision and recall. As much as possible,
we report our statistics in the terms used in the most
recent MUC evaluations. This is not because the statistics
should be compared (as discussed in “Other Research
in Template Filling: MUC,” the tasks and development
constraints are too different in their details for comparison
to be meaningful), but simply for the sake of following
accepted practice.

System Status

We are now automatically building templates of new
product information from PC Week articles and distribut-
ing them as weekly bulletins to interested parties within
EDS. Our automatically generated bulletins typically re-
quire some editing, but the time we take doing that is much
less than the time it would take to extract the information
entirely by hand. The clerical errors that we sometimes
make while filling templates by hand (a price of $22,500
became $225,000 in one article) continue to remind us of
the utility of a completely automatic information extraction
system. Hand-checking the generated templates also allows
us to quantify success and identify problem areas with each

weekly batch of templates. After hand-editing, each run is

automatically scored for accuracy and completeness as part
of the bulletin generation process.

System Performance

In Tables 1 through 5 we show performance statis-
tics calculated over 12 weeks’ worth of computer systems
bulletins.

Table 1 shows the filtering effect of the Bayesian text
classification program. Note that 658 articles downloaded
over the 12 weeks are reduced by this method to 144
which must receive further processing, for a reduction of
over 78%. Retrieval statistics show the classification system
achieving 94% recall and 67% precision for the computer
systems category, and 72% recall and 87% precision for
printers.

Table 1 also shows two additional statistics, one a mea-
sure of system performance and the other a characteristic
of the document collection. Fallout, which is a measure
of the proportion of out-of-category documents which the
system classifies as in-category, is satisfactorily low for
both categories. Generality is the measure of how common
articles of a particular category are within a collection of
documents. All else being equal, low generality should
impact precision; however, we see that text retrieval preci-
sion is better for the printer category than for computer
systems, despite the relative scarcity of printer articles.
What may explain this pattern is that the classification
system is not just deciding yes or rzo for each category
on its own, but is making a three-way decision among the
two hardware domains and the negative category neither.
Since the latest printers include memory, multiple ports,
and even sometimes hard drives, articles about printers
are difficult for the Bayesian classifier to distinguish from
articles about computer systems. The collection covered
by these statistics contains three instances in which printer
articles were automatically categorized as computer system

TABLE 1. Categorizer performance.

c (compsys articles) = 85

p (printer articles) = 29

n (neither category) = 544

t (total downloaded) = 658

compsys generality = c/t = 12.92%

printer generality = p/t = 4.41%

cc (compsys articles correctly categorized) = 80

yc (articles categorized as compsys) = 120

pp (printer articles correctly categorized) = 21

yp (articles categorized as printers) = 24

compsys recall = cc/c = 94.12%

compsys precision = cc/ye = 66.67%

compsys fallout = (yc - cc)/(t - c) = 6.98%

printer recall = pp/p = 72.41%

printer precision = pp/yp = 87.50%

printer fallout = (yp - pp)/(t - p) = 0.48%

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-October 1993 503

TABLE 2. Filtering effect of template filling.

(Records whether a template file is generated for a categorized article,
not whether the templates in the file are right. Considers articles
selected by Bayesian classifier as complete corpus.)

gtc (made template file for article RIGHTLY categorized = 72
as compsys)

tc (nonempty template files made for compsys) = 94

empty compsys template files in category 8
empty compsys template files out of category = 18

template filler compsys recall = gtc/cc = 90.00%

template filler compsys precision = gtc/tc = 76.60%

gtp (made template file for article RIGHTLY categorized = I9
as printer)

tp (nonempty template files made for printers) = 21

empty printer template files in category =2

empty printer template files out of category 1

template filler printer recall = gtp/pp = 90.48%

template filler printer precision = gtp/tp = 90.48%

articles, and no instances of the opposite mistake. That is,
the deficit to printer recall is at the same time a deficit to
precision in the computer systems category.

Table 2 shows the additional filtering effect of the
template filling process itself, given the output of the
classification program. For these figures, just the articles
automatically classified into a category are considered as
the entire input collection for that domain. An article
is considered to have been chosen as relevant in this
stage if a nonempty template file was produced for it; no
consideration is given to whether the information in the
template file is completely correct or not. Here we see that
the TemplateFiller weeds out about 10% of articles that

it should have kept in both categories. It also does make
templates for articles which were not placed in the correct
category. Precision figures are somewhat higher than for
the initial classification process, but since the generality
of relevant articles is also much higher than in the initial
collection (it is equal to the precision figures from the first
stage), there is less likelihood of making a mistake at this
stage.

Table 3 combines the figures of Tables 1 and 2 to
show overall text-filtering performance, as if Bayesian
classification and text selection by the TemplateFiller were
all one text-filtering operation. Note that for both categories
recall is lower here than for the Bayesian classifier by

itself, because the template filler does fail to select some

TABLE 3. Overall filtering performance through template filling.

(Records whether a template file is made for a categorized article, not
whether the templates in the file are right. Considers all downloaded
articles as the source corpus.)

compsys recall after TF = gtc/c

compsys precision after TF = gtc/tc

printer recall after TF = gtp/p

printer precision after TF = gtp/tp

= 84.71%

= 76.60%

= 65.52%

= 90.48%

TABLE 4. TemplateFi/ler information extraction performance, all
articles.

Total possible correct templates:

a. Valid generated templates:

b. Missing templates:

c. Spurious generated templates:

d. Ignored templates:

e. Possible slots:

f. Correct slots in generated templates:

g. Missing slots in generated templates:

h. Modified slots in generated templates:

i. Wrong slots in generated templates:

j. Slots in added templates:

k. Spurious slots in valid generated templates:

1. Total spurious slots:

Template recall (a/(a + b)): 180 of 257

Template precision (a/(a + c)): 180 of 266

Template overgeneration (c/(a + c)): 86 of 266

Slot recall:

257

180

77

86

120

2294

774

696

36

103

685

30

311

70.04%

67.67%

32.33%

all templates, modified slots are correct

((f + h)/e): 810 of 2294

all templates, modified slots are incorrect

(f/e): 774 of 2294

generated templates, modified slots are correct

((f + h)/(e - j)): 810 of 1609

generated templates, modified slots are incorrect

(f/(e - j)): 774 of 1609

Slot precision:

35.31%

33.74%

50.34%

48.10%

all templates, modified slots are correct

((f + h)/(f + h + i + 1): 810 of 1224 66.18%

all templates, modified slots are incorrect

(f/(f + h + i + 1): 774 of 1224 63.24%

valid generated templates, modified slots are correct

((f + h)/(f + h + i + k)): 810 of 943 85.90%

valid generated templates, modified slots are incorrect

(f/(f + h + i + k)): 774 of 943 82.08%

Slot overgeneration:

all templates (l/(f + h + i + I)): 311 of 1224 25.41%

generated templates (k/(f + h + i + k)): 30 of 943 03.18%

F-score, all templates, modified are incorrect, /? = 1: 44.00

in-category articles. Precision, however, is higher in both
categories. If recall and precision are summed into a single
score, the total is about 161 for computer systems and about
156 for printers at this stage. F-scores (Lewis & Tong,
1992) with p = 1 (weighting precision and recall equally)
are 80.5 for computer systems and 76.0 for printers.

Tables 4 and 5 illustrate the actual information extraction
performance of the TemplateFiller for computer systems
articles5 The statistics for this assessment were assembled
by comparing automatically generated template output with
templates prepared by human template fillers. Our proce-
dure is for two people to edit the output of each weekly
run, and when agreement is reached on the best template

‘We produce bulletins from articles announcing both personal computer

systems and printers, but since the number of printer articles tends to
be quite low (three or less per week) we have provided template-filling

statistics for computer systems articles only.

504 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-October 1993

TABLE 5. TemplateFiUer information extraction performance,

in-category texts only.

Total possible correct templates: 244

a. Valid generated templates: 170

b. Missing templates: 74

c. Spurious generated templates: 53

d. Ignored templates: 58

e. Possible slots: 2208

f. Correct slots in generated templates: 734

g. Missing slots in generated templates: 667

h. Modified slots in generated templates: 35

i. Wrong slots in generated templates: 102

j. Slots in added templates: 670

k. Spurious slots in valid generated templates: 30

1. Total spurious slots: 217

Template recall (a/(a + b)): 170 of 244 69.67%

Template precision (a/(a + c)): 170 of 223 76.23%

Template overgeneration (c/(a + c)): 53 of 223 23.77%

Slot recall:

all templates, modified slots are correct

((f + h)/e): 769 of 2208

all templates, modified slots are incorrect

(f/e): 734 of 2208

34.83%

33.24%

generated templates, modified slots are correct

((f + h)/(e - j)): 769 of 1538

generated templates, modified slots are incorrect

(f/(e - j)): 734 of 1538

Slot precision:

50.00%

47.72%

all templates, modified slots are correct

((f + h)/(f + h + i + I): 769 of 1088

all templates, modified slots are incorrect

(f/(f + h + i + 1): 734 of 1088

generated templates, modified slots are correct

((f + h)/(f + h + i + k)): 769 of 901

generated templates, modified slots are incorrect

(f/(f + h + i + k)): 734 of 901

Slot overgeneration:

all templates (l/(f + h + i + I)): 217 of 1088

generated templates (k/(f + h + i + k): 30 of 901

F-score, all templates, modified are incorrect, p = 1:

70.68%

67.46%

85.35%

81.47%

19.94%

3.33%

44.54

fills for the week’s articles, then the generated templates
are automatically scored as part of the bulletin generation
process.

In Table 4, the input is the entire set of articles which
were automatically classified as containing information
about computer systems. In Table 5, the input is limited to
just those articles which were predicted by human judges
to really contain such information, that is, it is limited to
correctly classified articles. The two tables together reveal
two significant phenomena. First, the difference between the
two tables in slot precision for the all templates condition
suggests that template-filling performance is affected by
the success of article categorization. Since the system
overgenerates in the presence of miscategorized article
input, precision suffers. On the other hand, note that the
“Total possible correct templates” figure is not the same
in the two tables, but is higher in Table 4, as is the
figure for template recall. This indicates that the system is

extracting useful and correct information even from articles
which were not judged to have been correctly categorized.

“Perfect” domain categorization would therefore negatively
impact system recall in this particular case.

Lines a-l in Tables 4 and 5 are self-explanatory, with
perhaps a couple of exceptions. Line d (“Ignored tem-
plates”) records the number of generated templates which
did not contain enough information to justify inclusion in

the bulletin; a template must have at least a vendor name
and a product name in order to escape this classification.
Line h (“Modified slots in generated templates”) counts
slot fills which were judged to be “close enough” to the
completely accurate slot that some credit should be given.
The MUC-3 and MUC-4 evaluation scoring allows partial
credit for “Partially correct” fills; we choose instead to show
all performance figures two ways: counting the “modified”
fills as correct, and counting them as incorrect.

Recall and precision figures are calculated for several
different ways of looking at system performance. The all
templates condition is always harsher, as it compares the
total number of slot fills automatically generated to the total
number which would have been correct for that collection
of articles. The generated templates condition allows us
to look just at the automatically produced templates and
judge recall and precision for them; that is, in this condition,
we judge the completeness and accuracy of the templates
that the system did generate. The valid generated templates
condition ignores completely spurious templates and judges

slot precision just on the valid templates produced by the

system. Our all templates condition corresponds to the
scoring method of the same name in the MUC-4 evaluations
(Chinchor, 1992).

Continuing Problems

In general, the system does best on articles which
discuss only one product. Where an article contains multiple
product descriptions, it is necessary to keep facts about

one product from being attached to the templates for other
products, and this requirement strains our rather simplistic
methodology for combining information which comes from
different sentences. An example of the difficulty involved
in even a simple text can be seen in (1) and (2) repeated
here as (13) and (14).

(13)
DG Rolls Out Notebook 486DX-Based System
Data General Corp. last week released the 5.5-
pound WalkAbouti386SL notebook and the Dasher IZ-
48615OTE2 deskside PC.

The 25MHz 386SL-based notebook starts at $2,445 with
a 4-hour NiCad battery, 2M bytes of RAM and a 6OM-
byte hard drive; the 5OMHz 486DX-based PC, which
starts at $8,395, includes 8M bytes of RAM. Both units
come with DOS 5.0 and Windows 3.1.

(14)
File:

Vendor Name:

Product Name:

PC-week.920904.20.clauses2

Data General Corp

Dasher-II-486-50TE2

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-October 1993 505

Weight: 5.5 pound
CPU Type 80486DX
Ram (base): 8M
CPU Clock Speed: SOMHz
Footprint: deskside

File: PC-week.920904.20.clauses2

Vendor Name: Data General Corp
Product Name: WalkAbout-386SL

Weight: 5.5 pound
Price: 2445
CPU Type: 80386SL

Ram (base): 2M

CPU Clock Speed: 25MHz
Footprint: notebook

Hard Disk Capacity: 60M

Note in (14) that we fail to pick up the price of the

Dasher-II-486-50TE2 because, while the system is able
to link the relative clause containing the price to the noun
head PC, it does not know that PC can be an elliptical
way to refer to a deskside PC. On the other hand, the
system does manage to extract Hard Disk Capacity, CPU
Clock Speed, CPU Type, and RAM (base) from the same
environment, using a target configuration which works here
but which could be too permissive in combining assertions
in other cases. This same example, in fact, shows a case
in which such overpermissiveness does go wrong: there
is no linguistic basis for distributing the weight value

“5.5 pound” across both templates, but the system does it on
the basis of a configuration which is simply less restrictive
than it should be. Just as in other information retrieval tasks,
tradeoffs between recall and precision must be made here
also.

An eye-opening lesson we have learned in the course of

this research is the importance of certain seemingly low-
level steps in the processing. Although we use linguistic
processing to make the ultimate determination of relation-
ships holding between entities in the text, the system is
still very dependent on the early bracketing of semantic
objects. Using the power of regular expression matching to
accomplish this tokenizing obviously makes us much less
dependent on literal patterns in the text than we otherwise

would be, but we still often miss information because an
object in the text which should be caught as an instance
of a particular category falls slightly outside our regular-
expression definition of that category. Again, this is a case
where tradeoffs are necessary, because the broader the
patterns are, the more likely they are to bracket elements
inappropriately.

Likewise, enhancing the power of the up-front matching
must be balanced against letting the linguistic analysis
components do their job. The early bracketing speeds
parsing enormously, because it reduces both the number
of “words” (words and tokens) in a sentence and overall
category ambiguity, thereby cutting complexity tremen-
dously. On the other hand, the grammar now contains a few
very counterinutitive rules, because it must accommodate
the “help” that it is being given by the preprocessing
components. For instance, because we capture as labeled

tokens many strings which consist of a number followed
by some quantifiable feature such as “Mbytes of memory”

or “pages-per-minute,” we end up with artificial “nouns”
(e.g., “8 Mbytes of memory,” “four pages per minute”)
which carry a feature that indicates that they contain a

number. Since the number itself is not then a terminal
element in the eyes of the parser, we must allow some
of the modifiers which would ordinarily attach only to
numbers (like “approximately”), to attach instead to these

constructed “nouns.”

Conclusion

The EDS TemplateFiller is an attempt to take infor-
mation distillation and retrieval to one of many possible
extremes. In this article, we have stressed some of its more

important characteristics, such as its modularity and its
use of natural language technology, and we have provided
some typical results which show both its strengths and
weaknesses.

We have described the TemplateFiller as an information
distillation system. Yet one of its properties that we have
discussed only indirectly is that, in its attempt to discover
the information-intensive data core that is expressed in final
template form, it actually adds a considerable amount of
information to the original text. Each module makes use
of a repository of knowledge to recognize and label text
strings in ways that aid subsequent modules in their data

recognition tasks, but which also amount to adding more
information to the text. This is perhaps most obvious with
the preprocessor and tagger, which recognize certain text
strings and attach information-carrying labels to them, and
the parser, which creates an entirely distinct and heavily
annotated structure out of this labeled text. At each stage

of the process, the output resembles the original raw text
input less and less as more and more information is added.
In fact, after the filtering effect of categorization, only two

modules of the system actually reduce the amount of data
from input to output: the sentence selector, which filters
out sentences it does not see as relevant to the domain,
and the template builder, which reduces the information
it recognizes in the thematic structure to a simple set of
assertions. It is perhaps ironic that the high ratio of text-to-
data reduction achieved by the TemplateFiller is largely due
to the addition of information at most stages; however, this
methodology has been quite successful for our purposes.

We plan to further address issues of discourse and
anaphora resolution in the future. Better methods in these
areas could ultimately increase both recall and precision;
the short-term necessity will be to make sure that increases
in recall brought about through an enhanced ability to
detect anaphoric reference do not result in the lowering
of precision. We also hope to move to new domains and to
broaden the raw text input to include multiple periodicals,
so that the system will eventually be processing several
hundred articles per week across a variety of computer
products-related subject areas. What we have achieved so

506 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-October 1993

far clearly demonstrates the feasibility of fully automatic
distillation of pure information from text.

References

Chinchor, N. (1992). MUC-4 Evaluation Metrics. Proceedings of the

Fourth Message Understanding Conference (MUC-4) pp. 22-29.
Church, K. (1988). A stochastic parts program and noun phrase

parser for unrestricted text. Proceedings of the Second Conference
on Applied Natural Language Processing, 1988.

DeRose, S. (1988). Grammatical category disambiguation by statisti-

cal optimization. Computational Linguistics, 14, pp. 31-39.

de Marcken, C. (1990). Parsing the LOB corpus. Proceedings of

the 28th Annual Meeting of the Association for Computational

Linguistics, pp. 243-251.
Gazdar, G., Klein, E., Pullum, G. K., & Sag, I. A. (1985). Generalized

phrase structure grammar. Cambridge, MA: Harvard University

Press.

Hill, J., & Schnedar, M. (1992). Bayesianprocedures for automatically

categorizing text documents (Technical Paper). Albuquerque, NM:

EDS Research.

Jackendoff, R. S. (1972). Semantic interpretation in generative gram-

mar. Cambridge, MA: MIT Press.

Krupka, G., & Rau, L. (1992). GE adjunct test report: Object-oriented

design and scoring for MUC-4. Proceedings of the Fourth Message
Understanding Conference (MUC-4), pp. 78-84.

Lewis, D.D., & Tong, R.M. (1992). Text filtering in MUC3 and

MUC-4. Proceedings of the Fourth Message Understanding Con-

ference (MUC-I), pp. 51-66.

Macpherson, M., Corley, J., & Shuldberg, K. (1992). Template filling

domain extension: Report of the first domain (Technical Report).

Albuquerque, NM: EDS Research.

Metzler, D. P., Haas, S. W., Cosic, C. L., & Wheeler, L.H. (1989).

Constituent object parsing for information retrieval and similar

text processing problems. Journal of the American Society for

Information Science, 40, 398-423.
Mosteller, F., & Wallace, D. (1964). Applied Bayesian and classical

inference: The case of the Federalist Papers. New York: Springer-

Verlag.

Pollard, C., & Sag, I. (1987). Information-based syntax and semantics.

CSLI lecture notes.

Shuldberg, H. K. (1991, October). The EDS summarizer: Automatic

generation of article summaries. ASIS Workshop on Language and

Information Processing, Washington, DC.

Sundheim, B. M. (1991). Overview of the third message understand-

ing evaluation and conference. Proceedings of the Third Message

Understanding Conference (MUC-3), pp. 3- 16.

Sundheim, B. M. (1992). Overview of the fourth message understand-

ing evaluation and conference. Proceedings of the Fourth Message

Understanding Conference (MUC-4) pp. 3 -21.
Tomita, M. (1986). Efficient parsing for natural language. Boston,

MA: Kluwer.

Tomita, M. (1991). Generalized LR parsing. Boston, MA: KIuwer.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-October 1993 507

	Introduction
	Why Templates?
	Other Research in Template Filling: MUC
	The EDS TemplateFiller
	FIG. 1.
	FIG. 2.

	TemplateFiller Results
	TABLE 1.
	TABLE 2.
	TABLE 3.
	TABLE 4.
	TABLE 5.

	References

