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Abstract

Knowledge distillation is a widely used paradigm for in-

heriting information from a complicated teacher network to

a compact student network and maintaining the strong per-

formance. Different from image classification, object detec-

tors are much more sophisticated with multiple loss func-

tions in which features that semantic information rely on

are tangled. In this paper, we point out that the information

of features derived from regions excluding objects are also

essential for distilling the student detector, which is usu-

ally ignored in existing approaches. In addition, we eluci-

date that features from different regions should be assigned

with different importance during distillation. To this end,

we present a novel distillation algorithm via decoupled fea-

tures (DeFeat) for learning a better student detector. Specif-

ically, two levels of decoupled features will be processed for

embedding useful information into the student, i.e., decou-

pled features from neck and decoupled proposals from clas-

sification head. Extensive experiments on various detectors

with different backbones show that the proposed DeFeat is

able to surpass the state-of-the-art distillation methods for

object detection. For example, DeFeat improves ResNet50

based Faster R-CNN from 37.4% to 40.9% mAP, and im-

proves ResNet50 based RetinaNet from 36.5% to 39.7%

mAP on COCO benchmark. Code will be released1,2.

1. Introduction

As one of the fundamental computer vision tasks, ob-

ject detection has attracted increasing attention in various

real-world applications including autonomous driving and

surveillance video analysis. Recent advances of deep learn-

ing introduce many convolutional neural network based

solutions to object detection. The backbone of a detec-

tor is often composed of heavy convolution operations to

produce intensive features that is critical to the detection

∗Corresponding author.
1https://github.com/huawei-noah/noah-research/tree/master/DeFeat
2https://www.mindspore.cn/resources/hub
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Figure 1. Error analyses of different distillation methods on COCO

minival. KD via background regions alleviates the false positive

rate and achieves comparable result with KD via object regions.

Cor: correct class (IoU > 0.5). Loc: correct class but misaligned

box (0.1 < IoU < 0.5). Sim: wrong class but correct supercate-

gory (IoU > 0.1). Oth: wrong class (IoU > 0.1). BG: background

false positives (IoU < 0.1). FN: false negatives (remaining errors).

accuracy. But doing so inevitably results in a sharp in-

crease in the cost of computing resource and an apparent

decrease in detection speed. Techniques such as quanti-

zation [19, 58, 31, 57, 62], pruning [2, 17, 20], network

design [55, 49, 15, 18] and knowledge distillation [56, 6]

have been developed to overcome this dilemma and achieve

an efficient inference on detection task. We are particu-

larly interested in knowledge distillation [24], as it provides

an elegant way to learn a compact student network when

a performance proven teacher network is available. Clas-

sical knowledge distillation methods are firstly developed

for the classification task to decide which category the im-

age belongs to. The information from soft label outputs

[24, 28, 38, 13] or intermediate features [1, 23, 66] of a

well-optimized teacher network have been well exploited to

learn the student networks, but these methods cannot be di-

rectly extended to the detection task which needs to further

figure out where the objects are.

There are a few attempts investigating knowledge distil-

lation in the object detection task. For example, FGFI [56]

asks the student network to imitate the teacher network on
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Figure 2. Left: L2-Norm of the gradient in intermediate neck feature during back propagation, the darkest blue indicates the largest norm

value. Images are randomly selected from COCO training set, and object regions are marked with the green box. Right: Average L2-Norm

of object and background regions. Avg (train) indicates the average norm of all images from COCO training set.

the near object anchor locations. TADF [47] distills the stu-

dent via Gaussian masked object regions in neck features

and positive samples in detection head. These works only

distilled knowledge from object regions, as background re-

gions were supposed to be not of interests in the detec-

tion task. Intuitively, during the distillation, background re-

gions might introduce a large amount of noise and they have

rarely been explored. But there lacks a thorough analysis of

background regions when conducting the distillation. The

hasty decision of throwing away background regions thus

might not be wise. Most importantly, background informa-

tion has already been proven to be helpful for visual recog-

nition [53, 46, 9, 16]. Instead of guessing that background

regions are useless or even harmful for distillation, it is time

to have a fair and thorough analysis of the background and

let the facts speak for themselves.

We first examine the roles of object and background

regions in knowledge distillation by comparing two ap-

proaches: (i) distilling only via object-region FPN features

and (ii) distilling only via background-region FPN features.

It was taken for granted that the student would not be en-

hanced significantly when distilled via the background re-

gions from teacher detector, since the background is less in-

formative and noisy [56]. However, after extensive experi-

ments on various models and datasets, we observe a surpris-

ing result that distilling student only via background-region

features can also enhance the student remarkably and even,

achieve comparable results with that of distillation via ob-

ject regions (Figure 4). We further explore where the perfor-

mance improvement comes from by distilling background

features. Taking two classes from COCO as an example

(see Figure 1), we conduct the error analysis [25] and find

that distillation via background regions effectively reduces

the number of background false positives.

The above evidence points to the conclusion that back-

ground regions can actually be a complementary to that dis-

tillation on object regions. Except that, prior literature has

shown that there is a strong relationship between objects

and background [53, 69]. The object likelihood [53] can be

written as P (O|Vo, Vb)=P (O|Vb)
P (Vo|O,Vb)
P (Vo|Vb)

(Vo and Vb are

features of object region and background, respectively). All

probabilities are related to background information which

provides an estimate of the likelihood of finding an object

(for example, one is unlikely to find a car in the room). The

background-based priors vary from different images [69],

thus we need to learn background feature for better predic-

tion. However, the promising expectation above was failed

to be justified by previous works [6, 30] that take both ob-

ject and background regions into account. Although they

leveraged both types of regions, the student was not sig-

nificantly improved compared to those only using object

regions, which seems to agree with the phenomenon indi-

cated by [56]. Either the object or background regions can

independently benefit the object detection through the dis-

tillation, but once they are integrated together, the perfor-

mance drops unexpectedly. The reason could be that their

methods integrate these two types of regions directly. From

the gradient point of view, we illustrate the discordance be-

tween object and background regions in Figure 2. Images in

the left column are randomly selected from COCO training

set, and images in the right column are their corresponding

gradients of neck features in student detector. We can ob-

serve that the magnitude of gradients from object regions

are consistently larger than that from background regions.

This therefore reminds us of different importance of object

regions and background regions during the distillation.

Based on these insightful observations, we propose to

decouple the features used for knowledge distillation and

highlight their unique importance during the distillation.

Two levels of features are included, i.e., FPN features and

RoI-aligned features. The FPN features are split into ob-

ject and background parts using the ground-truth mask, and

the mean square error loss is applied between teacher and

student. The RoI-aligned features are also decoupled into

positive and negative parts using teacher’s predicted re-

gion proposals. The classification logits generated based

on these decoupled RoI-aligned features are distilled us-

ing the KL divergence loss. The resulting DeFeat algo-

rithm can be adaptively incorporated into both one-stage

and two-stage detectors to improve the detection accuracy.
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To validate our method, we conduct extensive experiments

on Faster R-CNN [43] and RetinaNet [34] under various

scenarios including distillation on shallow student and nar-

row student on two common detection benchmarks PAS-

CAL VOC [12] and COCO [35]. In particular, our DeFeat

improves ResNet50 based FPN from 37.4% to 40.9% mAP,

and ResNet50 based RetinaNet from 36.5% to 39.7% mAP

on COCO benchmark.

2. Related Work

Object detection is considered as one of the most chal-

lenging vision tasks which aims at finding out what and

where the objects are when given an image. In the past

few years, noticeable improvements in accuracy have been

made in both one-stage [42, 36, 34, 29, 11, 67] and two-

stage [43, 21, 33, 26, 27, 5] detectors. Although detec-

tors fitted with very deep backbone [59, 48] have better de-

tection accuracy, they are expensive in terms of computa-

tion cost and hard to deploy to mobile devices. There has

been an interesting line of research that compresses large

detection models by weight quantization [31, 57], repre-

senting the parameter weights with fewer bits. Pruning

[37, 14, 60, 52, 51] is another line of research that removes

unimportant connections from a large pre-trained model

to compress detector. Designing a detector coupled with

lightweight backbone network [55, 41, 45, 32, 61, 64] is

also a trend for faster detection speed. Besides, there is also

a line of research that transfers knowledge from a large de-

tector to a smaller detector [6, 56, 30], in which one can

boost the performance of a small detector without design-

ing new architectures.

Knowledge distillation (KD) has become one of the most

effective techniques to compress large models into smaller

and faster ones. KD was first proposed by Buciluǎ et

al. [4] and popularized by Hinton et al. [24] that transfers

the dark knowledge from teacher network to student net-

work through the soft outputs. FitNets [44] shows that ac-

tivations [23] and features of intermediate layers [39] can

also be treated as knowledge to guide the student network.

Since then, KD has been widely adopted in classification

tasks [22, 63, 3, 54, 7, 65, 10]. Recently, there are sev-

eral works which propose to compress object detector us-

ing knowledge distillation. Chen et al. [6] distills the stu-

dent through all components (i.e., neck feature, classifica-

tion head and regression head), but the imitation of entire

feature maps and distillation in classification head both ig-

nore the imbalance in foreground and background which

could lead to a suboptimal result. Tang et al. [50] proposes

adaptive distillation loss for one-stage detector to magnify

loss on hard samples. Li et al. [30] distills the features

sampled from region proposals, however, only mimicking

above regions could cause misguidance since the propos-

als can sometimes perform poorly. Wang et al. [56] intends

to distill the student with fine-grained features from fore-

ground object regions. However, we find that the remaining

background features are also critical for distilling a better

student detector.

In summary, current distillation frameworks for object

detection ignore the important roles of the background re-

gions in intermediate features and negative region propos-

als in classification head. In this work, we identify that

the object and background regions in FPN features are both

practical for distillation and treating positive and negative

proposals equally would withhold the detector of stronger

performance. Therefore we first generate a binary mask to

decouple the intermediate features and then distill the fea-

tures accordingly. Meanwhile, we decouple the positive and

negative proposals in classification head to further improve

the generalization.

3. Distillation via Decoupled Features

Generally, an object detector consists of three or four

components: (a) backbone for extracting semantic features;

(b) neck for fusing multi-level features; (c) RPN for gener-

ating proposals (only in two-stage detectors); and (d) head

for object classification and bounding box regression. The

purpose of distillation is to imbue the student with dark

knowledge inside the teacher, which can be features of inter-

mediate layer or soft predictions of region proposals in clas-

sification head. Define S ∈R
H×W×C and T ∈R

H×W×C

as the intermediate features of student and teacher, respec-

tively. The distillation via intermediate features can be for-

mulated as:

Lfea =
γ

2N

H∑

h=1

W∑

w=1

C∑

c=1

I(φ(Sh,w,c)− Th,w,c)
2, (1)

where N = HWC is the total number of elements, γ is

used to control the scale of distillation loss, φ denotes the

adaptation layer [6] and I denotes the imitation mask, i.e.,

Gaussian mask in [47] and fine-grained mask in [56]. In

previous works, only object regions are considered or the

entire feature maps are distilled uniformly. Mask in meth-

ods that treat all regions uniformly [6, 30] can be seen as an

all-one tensor.

Given K region proposals output from RPN, the classi-

fication head needs to compute soft labels of all proposals.

The distillation via soft predictions can be formulated as:

Lcls =
1

K

K∑

i=1

LCE(y
s
i , Yi) +

λ

K

K∑

i=1

LKL(y
s
i , y

t
i), (2)

where the hyper-parameter λ is used to balance different

loss items, LCE and LKL denote the cross entropy loss and

the KL divergence loss, respectively. Yi is the ground truth

label of the i-th proposal, and the predictions of student and
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teacher detectors are ysi and yti , respectively. The overall

training targets of the student can be formulated as:

L = Lfea + Lcls + Lreg + Lrpn, (3)

where Lreg is the bounding box regression loss in detector

head and Lrpn denotes the RPN loss in two-stage detector.

3.1. Decouple Intermediate Features in Distillation

Previous works either choose partial regions or use all

regions but treat each location on intermediate features

equally. In particular, FGFI [56] presumed that background

regions could introduce a large amount of noise and would

impair the performance. However, this intuitive judgment is

not consistent with what we have observed in experiments,

as shown in Figure 1. Distillation via background only re-

gions still achieves comparable results as distillation via ob-

ject only regions. We come to a conclusion that the back-

ground regions in intermediate features can complement the

object regions and further help the training of student de-

tector, but the remaining question is how to appropriately

integrate these two types of regions in distillation.

Based on the observations above, we propose to distill

the student via decoupled features. Given the intermediate

features of size H ×W , we first generate a binary mask M
according to the ground truth box B:

Mi,j = 1[(i, j) ∈ B], (4)

where M ∈{0, 1}H×W , the value of location (i, j) is 1 if it

belongs to an object, and 0 otherwise. Specifically, if detec-

tors contain the feature pyramid network (FPN) which can

output multi-level features, we will assign each ground truth

box to its corresponding level and generate the mask M for

each level accordingly. Then we use the generated binary

mask to decouple the neck features, as shown in Figure 3.

The intermediate feature distillation is formulated as:

Lfea =
αobj

2Nobj

H∑

h=1

W∑

w=1

C∑

c=1

Mh,w(φ(Sh,w,c)− Th,w,c)
2

+
αbg

2Nbg

H∑

h=1

W∑

w=1

C∑

c=1

(1−Mh,w)(φ(Sh,w,c)− Th,w,c)
2,

(5)

where Nobj =C
∑H

h=1

∑W

w=1 Mw,h is the number of ele-

ments in object regions, Nbg =C
∑H

h=1

∑W

w=1 (1−Mw,h)
is the number of elements in background regions. αobj and

αbg are the loss coefficients for object and background re-

gions, respectively. Through the ground-truth based mask,

we decouple the features into object and background re-

gions to distill both of them in a balanced manner.

3.2. Decouple Region Proposals in Distillation

Knowledge distillation via the soft predictions has been

widely used in classification task, and can be useful for

distilling the classification head in detection task. How-

ever, different from the classification task that there is no

background category during training (e.g., CIFAR and Ima-

geNet), the object and background categories in detection

head can have extremely different numbers of proposals.

We conduct experiments to explore the separate distilla-

tion losses of object (positive) proposals and background

(negative) proposals as shown in Figure 6. The distillation

loss of positive proposals is consistently larger than that of

negative proposals. If they are not properly balanced, the

small gradients produced by background proposals can be

drowned into the large gradients produced by positive ones,

thus limiting further refinement. Besides, Table 5 shows

that treating all proposals equally gets worse result com-

pared to using negative only proposals. Hence, we propose

to decouple the region proposals into positive ones and neg-

ative ones towards the optimal convergence when distilling

the classification head. We feed the region proposals pro-

duced by teacher detector into both teacher’s and student’s

head to generate the category predictions pt and ps as shown

in Figure 3. The positive proposals and negative proposals

are processed separately in our method. Given the logits z
of positive proposals, we soften the predictions by a tem-

perature Tobj for teacher and student as following:

ps,Tobj (c | θs) =
exp(zsc/Tobj)∑C

j=1 exp(z
s
j/Tobj)

, c ∈ Y (6)

pt,Tobj (c | θt) =
exp(ztc/Tobj)∑C

j=1 exp(z
t
j/Tobj)

, c ∈ Y (7)

where θs and θt denote the parameters of the student and

the teacher, respectively. Y = {1, 2, ..., C} are the classes

of detection benchmark. For proposals belonging to back-

ground regions, we soften the predictions by a temperature

Tbg for teacher and student similar to equations above. To

distill the student with knowledge from teacher detectors,

we use the Kullback Leibler (KL) divergence written as:

Lcls =
βobj

Kobj

K∑

i=1

biLKL(p
s,Tobj

i , p
t,Tobj

i )

+
βbg

Kbg

K∑

i=1

(1− bi)LKL(p
s,Tbg

i , p
t,Tbg

i )

(8)

LKL(p
s,T , pt,T ) = T 2

C∑

c=1

pt,T (c | θt) log
pt,T (c | θt)

ps,T (c | θs)

(9)

where bi ∈{0, 1} is the binary label of i-th proposal with

respect to ground truth object. βobj and βbg are the co-

efficients of positive and negative samples, respectively.

Kobj =
∑

i bi and Kbg =
∑

i (1− bi) are the numbers of

positive and negative proposals, respectively. And we mul-

tiply the distillation loss by T 2 to ensure the scale of gradi-

ent magnitudes.
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Figure 3. Overview of the proposed distillation via decoupled features (DeFeat) framework. We decouple the regions in intermediate

FPN features and the region proposals from RPN to distill the student detector. The terms “score (pos)” and “score (neg)” indicate the

classification scores on positive and negative proposals, respectively.

Table 1. Distillation results of both two-stage detector FPN and one-stage detector RetinaNet on COCO benchmark. “ResNet152-R50-

FPN” indicates that the teacher detector is ResNet152 based FPN, while the student detector is ResNet50 based FPN.

Method Distillation mAP APS APM APL

Teacher ResNet152-FPN 41.3 24.4 45.3 54.0

Student ResNet50-FPN 37.4 21.8 41.0 47.8

KD: all-neck ResNet152-R50-FPN 40.1 (N2.7) 22.8 44.0 53.3

KD: decoupled-neck ResNet152-R50-FPN 40.4 (N3.0) 23.4 44.4 53.1

KD: decoupled-neck + all-cls ResNet152-R50-FPN 40.5 (N3.1) 23.6 44.6 53.1

KD: decoupled-neck + decoupled-cls ResNet152-R50-FPN 40.8 (N3.4) 23.5 44.8 53.3

KD: backbone + decoupled-neck + decoupled-cls ResNet152-R50-FPN 40.9 (N3.5) 23.6 44.8 53.5

Teacher ResNet152-RetinaNet 40.5 24.1 44.7 53.4

Student ResNet50-RetinaNet 36.5 20.9 40.2 47.0

KD: all-neck ResNet152-R50-RetinaNet 39.1 (N2.6) 22.1 43.1 52.3

KD: decoupled-neck ResNet152-R50-RetinaNet 39.5 (N3.0) 23.3 43.4 52.7

KD: backbone + decoupled-neck ResNet152-R50-RetinaNet 39.7 (N3.2) 23.4 43.6 52.9

4. Experiments

4.1. Datasets and Metrics

COCO [35] is a challenging benchmark in object detection

which contains 80 object classes. Our training set is the

union of 80k training images and 35k subset of validation

images (trainval35k), and the validation set is the remaining

5k validation images (minival). We consider Average Pre-

cision as evaluation metric, i.e., mAP, AP50, AP75, APS,

APM and APL. The last three measure performance with

respect to objects with different scales.

Pascal VOC [12] contains 20 object classes. Our training

set is the union of VOC 2007 trainval (5K) and VOC 2012

trainval (11K), and the validation set is the VOC 2007 test

(4.9K). We report the mAP scores using IoU at 0.5.

4.2. Implementation Details

All experiments are performed on 8 Tesla V100 GPUs.

Our implementation is based on mmdetection [8] with Py-

torch framework [40]. We use SGD optimizer with a batch

size of 4 images per GPU, all models are trained for 12

epochs, known as 1× schedule. The input image is resized

such that its shorter side has 800 pixels on COCO and 600

pixels on VOC. The initial learning rate is set as 0.04 and

0.02 for FPN [33] and RetinaNet [34], respectively. And the

learning rate is divided by 10 at the 8-th and 11-th epochs.

We set momentum as 0.9 and weight decay as 0.0001.

4.3. Main Results

We first verify the effectiveness of our proposed De-

Feat on typical two-stage detection framework FPN [33] on

COCO [35] benchmark, as shown in Table 1. ResNet50

based FPN is chosen as the student detector and ResNet152

based FPN as the teacher detector. “All-neck” indicates

that the student is distilled via treating all regions in FPN

features equally as illustrated in Equation 1. “Decoupled-

neck” means the student is distilled via decoupled FPN

features as illustrated in Equation 5. “All-cls” indicates

that all region proposals are treated equally in distillation.

“Decoupled-cls” denotes that region proposals are decou-
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Table 2. Comparison with state-of-the-art methods on COCO.

Method Distillation mAP APS APM APL

Teacher R152-FPN 41.3 24.4 45.3 54.0

Student R50-FPN 37.4 21.8 41.0 47.8

FGFI R152-R50-FPN 39.9 22.9 43.6 52.8

TADF R152-R50-FPN 40.1 23.0 43.6 53.0

DeFeat R152-R50-FPN 40.9 23.6 44.8 53.5

Teacher R50-FPN 37.4 21.8 41.0 47.8

Student R50(1/4)-FPN 29.1 16.2 31.1 38.5

FGFI R50-R50(1/4)-FPN 31.8 17.1 34.2 43.0

DeFeat R50-R50(1/4)-FPN 33.0 18.2 35.5 44.0

Teacher R152-RetinaNet 40.5 24.1 44.7 53.4

Student R50-RetinaNet 36.5 20.9 40.2 47.0

FGFI R152-R50-RetinaNet 38.9 21.9 42.5 52.2

DeFeat R152-R50-RetinaNet 39.7 23.4 43.6 52.9

Table 3. Comparison with state-of-the-art methods on VOC.

Method Distillation mAP

Teacher R152-FPN 82.69

Student R50-FPN 80.53

FGFI [56] R152-R50-FPN 81.57

TADF [47] R152-R50-FPN 81.71

DeFeat R152-R50-FPN 82.28

Teacher R101-FPN 82.13

Student R50-FPN 80.53

FGFI [56] R101-R50-FPN 81.02

FGFI + PAD [68] R101-R50-FPN 81.25

Mimic [30] R101-R50-FPN 80.90

Mimic + PAD [68] R101-R50-FPN 81.11

DeFeat R101-R50-FPN 81.47

pled into positive (object) and negative (background) as il-

lustrated in Equation 8. “Backbone” means the backbone

features are also distilled. Directly distilling all regions in

FPN features achieves 40.1% mAP, and the decoupled FPN

features can further improve student detector by 0.3% mAP.

Student distilled via decoupled FPN features and RPN pro-

posals achieves a higher result, and our decoupled propos-

als can boost the result from 40.5% to 40.8% mAP. Further

adopting the backbone features in distillation will achieve

40.9% mAP on COCO benchmark, bringing 3.5% gains

compared to the student baseline model. In addition, we

also conduct the experiments on typical one-stage detection

framework RetinaNet [34], our ResNet152-R50-RetinaNet

improves the baseline counterpart from 36.5% to 39.7%

mAP on COCO. These results clearly elucidate the versatil-

ity and generality of our proposed DeFeat in both one-stage

and two-stage detectors.

4.4. Comparison with State­of­the­art Methods

Comparison of the results obtained with other state-of-

the-art distillation methods on COCO [35] benchmark and

Pascal VOC [12] benchmark are shown in Table 2 and Ta-

ble 3, respectively. Mimic [30] uses all regions in neck fea-

tures to distill the student detector. FGFI [56] distills the

Figure 4. Comparisons of different distillation regions and vari-

ous distillation loss coefficients on COCO. Left: ResNet152 based

FPN teacher distills a shallower ResNet50-FPN student. Right:

ResNet50-FPN teacher distills a narrower Quartered-ResNet50-

FPN student (number of backbone channels is quartered).

Figure 5. Training loss of distillation via neck features on COCO.

Legend “object” denotes using object only regions and “back-

ground” denotes using background only regions.

Figure 6. Training loss of distillation via region proposals on

COCO. Legend “positive” denotes using positive only proposals

and “negative” denotes using negative only proposals.

student detector via partial fine-grained regions in neck fea-

tures. TADF [47] distills the student detector via Gaussian

masked regions in neck features and positive only region

proposals in both classification and regression head. PAD

[68] proposes to estimate the weight of each region proposal

during distillation. For fair comparison, we re-implement

their methods, and most of them are slightly higher than the

results in original paper. Our proposed DeFeat can be easily

applied to the two most mainstream frameworks and con-

sistently improve the performances of student detectors un-

der various circumstances, e.g., different backbones, shal-

lower student and narrower student. FGFI achieves 39.9%

mAP and TADF obtains 40.1% mAP on COCO bench-

mark. However, these two methods both ignore the im-

portant roles of background regions in neck features. Our

distillation via decoupled features outperforms the FGFI by

1.0% mAP, and surpasses the TADF by 0.8% mAP, which

indicates the effectiveness of the proposed method. Further-
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more, our ResNet152-R50-FPN boosts the baseline model

from 80.5% to 82.3% mAP, and ResNet101-R50-FPN im-

proves the baseline model from 80.5% to 81.5% mAP on

Pascal VOC benchmark, which outperforms other distilla-

tion methods apparently. To be specific, PAD [68] uses

a stronger baseline implemented on detectron2 (ms-train,

17 epoch, and 1200×800 size). We report the results on

mmdetection (ss-train, 12 epoch, and 1000×600 size) for

fair comparisons with FGFI and TADF here.

4.5. Ablation Study

Impact of background regions in neck features. We in-

vestigate the object and background regions in neck fea-

tures under two circumstances: (1) ResNet152 based FPN

as teacher detector and ResNet50 based FPN as student

detector; (2) ResNet50 based FPN as teacher detector

and Quartered-ResNet50 based FPN (number of backbone

channel is quartered, 64.28% Top-1 accuracy on ImageNet)

as student detector. Figure 4 shows the corresponding re-

sults on COCO minival. We combine distillation loss based

on FG-Mask [56] with original detection loss to guide the

learning of student detector. The orange line indicates that

the student detector is distilled via all regions in teacher’s

neck features. The green line indicates that the student is

distilled via object only regions. The blue line denotes that

the student is distilled via background only regions. γ is

the coefficient in Equation 1. When the coefficient of dis-

tillation loss is small, learning from the object only (fine-

grained) regions achieves better results. While the coeffi-

cient increases, performance improvement brought by back-

ground (non fine-grained) regions increases and then sur-

passes the result of mimicking object only regions. And the

best results of mimicking object only regions and mimick-

ing background only regions are comparable. Thus, we can

come to the conclusion that both object regions and back-

ground regions in neck features are critical and have detri-

mental effects on the distillation of student detector. And

we set αobj=4 and αbg=16 in Equation 5 accordingly.

In addition, we find that the distillation loss of back-

ground regions is much smaller than that of object regions

during training, which indicates that background regions

have smaller gradients compared to object regions. Figure

5 shows the training losses (i.e., regression loss, classifica-

tion loss and distillation loss) of mimicking object only and

background only regions. Besides, the values of classifica-

tion and regression losses are about four times larger than

that of distillation via object regions, which should be the

reason for why “Object regions” gets the best performance

at γ = 4 in Figure 4. This can also explain that background

regions need larger loss weight in training phase.

Evaluation of different region selection masks. Here we

evaluate several region selection masks, namely FG-Mask

from [56], Gaussian-Mask from [47], GT-Mask that di-

Table 4. Comparison of various region selection masks on COCO.

Model Region Mask mAP

R152-R50-FPN obj FG-Mask 39.9

R152-R50-FPN obj Gaussian-Mask 39.8

R152-R50-FPN obj GT-Mask 39.9

R152-R50-FPN obj + bg FG-Mask 40.4

R152-R50-FPN obj + bg GT-Mask 40.4

R152-R50-FPN obj + bg Random-Mask 40.0

R152-R50-FPN obj + bg w/o Mask 40.1

R101-R50-FPN obj FG-Mask 38.9

R101-R50-FPN obj Gaussian-Mask 38.7

R101-R50-FPN obj GT-Mask 38.8

R50-R50(1/4)-FPN obj FG-Mask 31.8

R50-R50(1/4)-FPN obj Gaussian-Mask 31.5

R50-R50(1/4)-FPN obj GT-Mask 31.7

Table 5. Ablation study on the effects of positive and negative re-

gion proposals for R152-R50-FPN on COCO.

Teacher (R152-FPN) 41.3 Proposal βbg Tbg mAP

Student (R50-FPN) 37.4 negative 4 1 38.3

Proposal βobj Tobj mAP negative 2 1 38.6

positive 1 1 35.2 negative 1 1 38.4

positive 0.1 1 37.7 negative 1 2 38.2

positive 0.1 3 37.9 sub-neg. 1 1 38.2

positive 0.05 3 38.1 negative 0.1 1 37.4

Proposal βobj βbg Tobj Tbg λ mAP

positive + sub-neg. - - - - 1 37.4

positive + negative - - - - 1 38.2

positive + negative - - - - 0.1 38.1

positive + negative 0.05 2 1 1 - 38.6

positive + negative 0.05 2 3 1 - 38.9

Table 6. Ablation study on shared proposals on COCO.

Model Proposal mAP

R152-R50-FPN, decoupled-cls Teacher 38.9

R152-R50-FPN, decoupled-cls Student 38.7

R50-R50(1/4)-FPN, decoupled-cls Teacher 31.5

R50-R50(1/4)-FPN, decoupled-cls Student 31.2

rectly leverages the ground truth boxes and Random-Mask

which is generated randomly. Table 4 depicts the corre-

sponding results. We can find that simply choosing scaled

ground truth boxes as imitation regions achieves similar re-

sult compared to using fine-grained regions. And the dis-

tillation via object regions selected by Gaussian-Mask [47]

obtains worse result. R152-R50-FPN achieves 40.1% mAP

by treating all regions equally, decoupled regions can fur-

ther boost the result by 0.3% mAP, while Random-Mask

leads to a slight decrease of performance.

Impact of positive and negative proposals in classifica-

tion head. The evaluation of distillation on proposals are

shown in Table 5, coefficients βobj , βbg , Tobj , Tbg and λ
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Figure 7. Precision-Recall curves and error analyses of different distillation methods on COCO benchmark. For each case, top figures

correspond to raw student model, middle figures correspond to distillation via object only regions, bottom figures correspond to distillation

via background only regions.

are illustrated in Equation 8 and Equation 2. We can find

that using positive only proposals in distillation can slightly

boost the performance of student detector, but demands a

smaller coefficient. Using negative only proposals in distil-

lation achieves better performance compared to using pos-

itive only proposals. One main reason is that the numbers

of positive and negative proposals are imbalanced, and the

difficulty in optimizing these two types of proposals can be

different. Figure 6 also indicates that the distillation loss of

negative proposals drops faster than that of positive propos-

als. The “sub-negative” in Table 5 denotes that we randomly

select samples with the same number of positive propos-

als from negative proposals, which decreases the mAP by

0.2%, demonstrating that the distillation result is associated

with the number of proposals. Our decoupled distillation

improves the performance of previous method that treats

all proposals equally from 38.2% to 38.9% mAP, which

demonstrates the effectiveness of DeFeat.

Comparison of the shared proposals from teacher and

student. Given a teacher detector and a student detector,

the region proposals output by two models are inevitably

different and consequently the student cannot be distilled

directly. We analyze the performances of sharing teacher

proposals with student and sharing student proposals with

teacher. As can be seen in Table 6, feeding the proposals

from teacher into distillation performs better than feeding

the proposals from student detector. One main reason is

that due to the large amount of possible region proposals,

the proposals from teacher detector would be more accurate

and contain more intensive information for distillation.

Performance gain from object and background regions.

Figure 7 presents analyses on three randomly selected

classes. Distillation via object regions and background re-

gions both improve the number of correct detection signifi-

cantly. Object regions can bring stronger localization ability

(Loc) to the student, while background regions can effec-

tively reduce the false positive rate (BG).

5. Conclusion

In this paper, we propose a simple yet efficient distilla-

tion method via decoupled features for object detection. We

analyze and demonstrate the important roles of background

regions during the distillation process. Based on ample ob-

servations, we introduce the DeFeat method in which the

features are split into object and background parts at FPN

level and RoI-aligned feature level, and distillation is ap-

plied on these two parts separately. DeFeat is general and

can be easily used for both one-stage and two-stage detec-

tion frameworks. Extensive experiments validate the effec-

tiveness of DeFeat by consistently outperforming other dis-

tillation techniques.
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