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Abstract

State-of-the-art CNN based recognition models are of-

ten computationally prohibitive to deploy on low-end de-

vices. A promising high level approach tackling this lim-

itation is knowledge distillation, which let small student

model mimic cumbersome teacher model’s output to get im-

proved generalization. However, related methods mainly fo-

cus on simple task of classification while do not consider

complex tasks like object detection. We show applying the

vanilla knowledge distillation to detection model gets mi-

nor gain. To address the challenge of distilling knowledge

in detection model, we propose a fine-grained feature imi-

tation method exploiting the cross-location discrepancy of

feature response. Our intuition is that detectors care more

about local near object regions. Thus the discrepancy of

feature response on the near object anchor locations re-

veals important information of how teacher model tends

to generalize. We design a novel mechanism to estimate

those locations and let student model imitate the teacher on

them to get enhanced performance. We first validate the

idea on a developed lightweight toy detector which carries

simplest notion of current state-of-the-art anchor based de-

tection models on challenging KITTI dataset, our method

generates up to 15% boost of mAP for the student model

compared to the non-imitated counterpart. We then exten-

sively evaluate the method with Faster R-CNN model under

various scenarios with common object detection benchmark

of Pascal VOC and COCO, imitation alleviates up to 74%

performance drop of student model compared to teacher.

Codes released at https://github.com/twangnh/

Distilling-Object-Detectors

1. Introduction

Object detection has benefited a lot from recent ad-

vances of deep CNN architectures. However state-of-

art detectors are cumbersome to deploy on low computa-

tion devices. Previous works mainly focus on Quantiza-

tion [12, 14, 36, 28] which efficiently reduces computation
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Figure 1. Illustration on principle of the proposed method. Red

and green bounding boxes on the left two images are selected

prior anchor boxes on corresponding locations. The red anchors

have the largest overlap with ground truth bounding boxes and

the green ones indicate near object samples. The motivation is

that the discrepancy of feature response on near object anchor lo-

cations reveals how a learned teacher model tends to generalize

(e.g., how the teacher responses on those intersections of crowed

objects compared to on-object locations reflects how it separates

and detects those crowded instances). Our method thus first lo-

cates these knowledge-dense locations and let the student model

imitate teacher’s high-level feature responses on them.

and model size, and network pruning [14, 13, 1, 34] that

prunes redundant connections in large models. However

these approaches may require dedicated hardware or soft-

ware customization to get practical speedup.

A promising high level method to directly learn compact

models end-to-end is knowledge distillation [16]. A student

model learns the behavior of a stronger teacher network

to get enhanced generalization. However, prior works on

knowledge distillation [16, 32, 38, 6, 18] are mostly devoted

to classification and rarely consider object detection. A de-

tection model may only involve a few classes, with which

much less knowledge can be distilled from inter-class simi-

larity of teacher’s softened outputs. Also, detection requires

reliable localization in addition to classification, vanilla dis-

tillation can not be applied for distilling localization knowl-

edge. Besides, the extreme imbalance of foreground and

background instances also makes bounding box annotations
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less voluminous. We find that merely adding distillation

loss only gives minor boost for student (ref. Sec. 4.2).

Similar to knowledge distillation, hint learning [32] im-

proves student models by minimizing the discrepancy of

full high level features of the teacher and student models.

But we find that directly applying hint learning on detec-

tion model hurts performance (ref. Sec. 4.2). The intuition

is that detectors care more about local regions that overlap

with ground truth objects while classification models pay

more attention to global context. So directly doing full fea-

ture imitation would unavoidably introduces large amount

of noise from uncared areas, especially for object detection

where background instances are overwhelming and diverse.

Recall in knowledge distillation, relative probabilities on

different classes indeed tell a lot about how the teacher

model tends to generalize. Similarly, since detectors care

more about local object regions, the discrepancy of fea-

ture response on close anchor locations near the object also

conveys important information about how a complex detec-

tion model detects the object instances. Aiming to utilize

this inter-location discrepancy for distilling knowledge in

object detector, we develop a novel mechanism exploiting

ground truth bounding boxes and anchor priors to effec-

tively estimate those informative near object anchor loca-

tions, then make student model imitate teacher on them, as

shown in Figure 1.

We term this method as fine-grained feature imita-

tion. Our method effectively addresses the above men-

tioned challenge: 1) We do not rely on softened output

of teacher model as in vanilla knowledge distillation of

classification model, but depends on a inter-location dis-

crepancy of teacher’s high level feature response. 2) Fine-

grained feature imitation before classification and localiza-

tion heads improves both sub-tasks. We show in Sec 4.4.2

and Sec 4.4.3 that our method effectively enhanced the stu-

dent model’s ability on class discrimination and localiza-

tion. 3) Our method avoids those noisy less informative

background area which leads to degraded performance of

full feature imitation, study of the per-channel variance on

high level feature maps in Sec 4.4.5 validates this intuition.

To validate our method, we first experiment on a de-

veloped lightweight toy detector that carries main princi-

ple of current state-of-the-art anchor based detection mod-

els. Applying the method to this lightweight architecture,

we can produce much smaller model with up to 15% boost

of mAP compared to the non-imitated counterpart. We then

perform extensive experiments on the state-fo-the-art Faster

R-CNN model under various scenarios including imitation

over shallow student, halved student and multi-layer imita-

tion, on the widely used common object detection bench-

marks of PASCAL VOC [7] and MSCOCO [23]. The ex-

periments demonstrate the broad applicability and superior

performance of our proposed method.

2. Related Works

Object detection Recently with the development of deep

CNN model for image classification task, various ap-

proaches [10, 9, 31, 4, 29, 30, 24, 22] are proposed for

object detection which significantly outperform traditional

methods. The line of works are pioneered by R-CNN [10]

that extracts and classifies each region of interest (ROI) to

detect objects. [9, 31] extend and improve the framework

for improved performance. One-stage detectors [29, 24] are

proposed driven by the requirement of real time inference.

Similarly we design the lightweight detector partly for im-

plementation on mobile devices.

Knowledge distillation Following the seminal work [15],

various knowledge distillation approaches were pro-

posed [32, 38, 6, 18]. Hint learning [32] explores an al-

ternative way for distillation, where the supervision from

teacher models comes from high level features. [38] pro-

posed to force the student model to mimic the teacher model

on the features specified by an attention map. [6] proposed

to exploit relationship between different samples, and uti-

lizes cross sample similarities to improve distillation. [18]

formalizes distillation as a distribution matching problem to

optimize the student model. A few recent works explored

distillation approach for compressing detection models. [5]

tried adding both full feature imitation and specific distil-

lation loss on detection heads, but we find full feature im-

itation brings degraded performance for student model and

it is unclear how to deal with region proposal [11] incon-

sistency between teacher and student when performing the

distillation. [20] proposed to only transfer knowledge under

the area of proposals, but the mimicking regions depend on

the output of model itself and it is not applicable for one-

stage detector.

Model acceleration To speed up deep neural network

model without losing accuracy, quantization [40, 28, 37, 12,

14, 36] uses low-precision model parameter representation.

Connection pruning or weight sparsifying [14, 13, 27] prune

redundant connections in large models. However, these ap-

proaches require specific hardware or software customiza-

tion to get practical speedup. For example, weight pruning

needs support of sparse computations and quantization re-

lies on low-bit operations. Some prior works [19, 25, 2]

propose to do channel level pruning. But when pruning ra-

tio is higher, those methods unavoidably hurt performance

significantly. Some works employ low rank approximation

to large layers [33, 35]. But the actual speedup are usually

much less than theoretical values.

3. Method

In this work, we developed a simple to implement fine-

grained feature imitation method utilizing inter-location

discrepancy of teacher’s feature response on near object
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Figure 2. Illustration of the proposed fine-grained feature imitation

method. The student detector is trained by both ground truth su-

pervision and imitating teacher’s feature response on close object

anchor locations. The feature-adaptation layer makes student’s

guided feature layer compatible with the teacher. To identify

informative locations, we iteratively calculate IOU map of each

groundtruth bounding box with anchor priors, filter and combine

candidates, and generate the final imitation mask, ref. to Sec. 3.1

for details.

anchor locations for distilling the knowledge in cumber-

some detection models. Our Intuition is that the discrep-

ancy of feature response on the near object anchor locations

reveals important information of how large detector tends

to generalize, with which learned knowledge can be dis-

tilled. Specifically, we propose a novel mechanism to esti-

mate those anchor locations which forms fine-grained local

feature regions close to object instances, and let a student

model imitate teacher model’s high level feature response

on those regions to get enhanced performance. This intu-

itive method is general for current state-of-the-art anchor

based detection models (e.g., Faster R-CNN [31], SSD [24],

YOLOV2 [30]), and is orthogonal to other model accelera-

tion methods including network pruning and quantization.

3.1. Imitation region estimation

As shown in Fig. 1, the near object anchor locations form

local feature region for each object. To formally define

and study the local feature region, we utilize ground truth

bounding boxes and anchor priors to calculate those regions

as a mask I for each independent image, and control the size

of regions by a thresholding factor ψ. In the following, with

feature maps, we always refer to the last features where an-

chor priors are defined on [31].

Specifically, as shown in Fig. 2, for each ground truth

box, we compute the IOU between it and all anchors, which

forms a W ×H ×K IOU map m. Here W and H denote

width and height of the feature map, and K indicates the

K preset anchor boxes. Then we find the largest IOU value

M = max(m), times the thresholding factor ψ to obtain

a filter threshold F = ψ ∗M . With F , we filter the IOU

map to keep those larger thenF locations and combine them

with OR operation to get a W × H mask. Loop over all

ground truth boxes and combine the masks, we get the final

fine-grained imitation mask I .

When ψ = 0, the generated mask includes all locations

on the feature map while no locations are kept when ψ =
1. We can get varied imitation mask by varying ψ. In all

experiments, a constant ψ = 0.5 is used. We show ψ = 0.5
offers the best distillation performance in detailed ablation

study (ref. to Sec 4.4.4). The reason we do not use fixed

value of F to filter the IOU map is that object size usually

varies in a large range. Fixed threshold values would be

biased for objects at certain scales and ratios (ref. Sec. 4.2).

3.2. Finegrained feature imitation

In order to carry out imitation, we add a full convolution

adaptation layer after corresponding student model before

calculating distance metric between student and teacher’s

feature response, as shown in Figure 2. We add the adapta-

tion layer for two reasons: 1) The student feature’s channel

number may not be compatible with teacher model. The

added layer can align the former to the later for calculating

distance metric. 2) We find even when student and teacher

have compatible features, forcing student to approximate

teacher feature directly leads to minor gains compared to

the adapted counterpart.

We now introduce the feature imitation details. Define s

as student model’s guided feature map and t as correspond-

ing teacher’s feature map. For each near object anchor lo-

cation (i, j) on the feature map of width W and height H ,

we train student model to minimize the following objective:

l =
C∑

c=1

(fadap(s)ijc − tijc)
2, (1)

to learn the teacher detection model’s knowledge. Together

with all estimated near anchor location(the imitation mask

I), the distillation objective is to minimize:

Limitation =
1

2Np

W∑

i=1

H∑

j=1

C∑

c=1

Iij(fadap(s)ijc − tijc)
2,

where Np =

W∑

i=1

H∑

j=1

Iij .

(2)

Here I is the imitation mask, Np is the number of positive

points in the mask, fadap(·) is the adaptation function. Then

the overall training loss of a student model is:

L = Lgt + λLimitation, (3)

where Lgt is the detection training loss and λ is imitation

loss weight balancing factor.
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Models Flops/G Params/M
car pedestrian cyclist

mAP

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

1× 5.1 1.6 84.56 74.11 65.64 65.28 55.95 50.79 70.39 50.09 46.88 62.63

0.5×

0.5×-I

-

1.5

1.5

-

0.53

0.53

-

76.39

80.56

+4.2

68.35

71.46

+3.1

59.74

61.71

+2.0

63.69

64.18

+0.5

54.34

54.62

+0.3

49.58

49.95

+0.4

64.52

68.25

+3.7

43.67

48.28

+4.6

41.57

45.09

+3.5

57.98

60.46

+2.5

0.25×

0.25×-I

-

0.67

0.67

-

0.21

0.21

-

60.36

74.26

+13.9

54.85

61.63

+6.8

46.56

53.94

+7.4

52.41

59.80

+7.4

43.63

50.15

+6.5

39.84

46.28

+6.4

51.35

54.64

+3.3

33.41

38.13

+4.7

31.26

34.84

+3.6

45.96

52.63

+6.7

0.25×-F

0.25×-G

0.25×-D

0.25×-ID

0.67

0.67

0.67

0.67

0.21

0.21

0.21

0.21

-12.9

+8.8

+3.5

+10.8

-14.5

+2.3

+1.2

+5.8

-11.3

+1.2

+1.3

+6.3

-2.9

+3.1

+1.1

+6.2

-1.9

+0.8

+0.8

+4.1

-1.3

+2.4

+0.3

+3.6

-16.7

-0.5

+0.2

+2.2

-9.3

-0.1

-0.3

+4.7

-9.4

-0.3

-0.1

+3.1

-8.9

+2.0

+0.9

+5.2

Table 1. Imitation result on the toy detector and results of some comparing methods. 1× is the base detector, 0.5× and 0.25× are directly

pruned model trained with ground truth supervision, serving as baselines. -I means with additional proposed imitation loss, -F indicates

with full feature imitation, -G means using directly scaled ground truth boxes as imitation region, -D means adding only vanilla distillation

loss, -ID indicates the case that both proposed imitation loss and distillation loss are imposed.

4. Experiments

To validate our method, we first perform experiments on

a developed lightweight toy detector with the KITTI detec-

tion benchmark which contains three road object classes.

We then further validate the method on state-of-the-art

Faster R-CNN model under various network setting with

widely used common object detection benchmarks. The toy

detector carries simplest principle of state-of-the-art anchor

based detection model, while the performance is not compa-

rable to those cumbersome and multi-stage stage or multi-

layer detection models, it can applied to mobile devices. All

quantitative results are evaluated in average precision (AP).

4.1. Lightweight detector

We first present a manually designed lightweight detec-

tor for evaluating the performance enhancement of the pro-

posed imitation method. This detector is based on the Shuf-

flenet [39] which gives excellent classification performance

with limited flops and parameters. However, the Shufflenet

architecture itself is dedicated for image classification. We

find directly adapting it to detection produces terrible result.

This is because each point on the top feature map has an

equivalent stride of 32, leading to very coarse alignment of

anchor boxes on the input images. Moving to lower output

layer with smaller stride also performs not well as features

are less powerful therein.

To address the above deficiencies, we make the fol-

lowing refactoring and develop an improved one-stage

lightweight model for detection. (1) We change stride of

Conv1 from 2 to 1. The original network design quickly

downsamples the input image to reduce computational cost.

But object detection requires higher resolution feature to

make downstream feature decoder (the detector heads)

work well. Such modification enables utilization of all con-

volution layers while preserves high resolution for the top

feature map. (2) We modify the output channel of Conv1

from 24 to 16, which reduces memory footprint and com-

putation. (3) We reduce the block number of stage-3 from

8 to 6. We find such modification leads to slightly lower

pre-training precision, but does not hurt detection perfor-

mance. The overall runtime is reduced significantly. (4) We

add two additional shufflenet blocks which are trained from

scratch before the regression and classification head. The

added blocks provide additional adaptation of the high level

feature for detection. (5) We employ very simple RPN-

alike detector which discriminate between classes. Unlike

previous layers, the detection heads use full convolution,

while parameters are increased, we find this significantly

improves accuracy. We refer such lightweight base detector

as 1× in the following sections. Refer to the supplementary

material for architecture diagram of the model.

4.2. Imitation with lightweight detectors

We first apply the proposed method to the toy detector

presented above. We use the base model as teacher (denoted

as 1×), and directly halve channels of each layer for student

model. Specifically, we halve once of teacher model to get

the 0.5× model, and halve twice (75% channels removed)

to obtain the 0.25× model. We conduct the experiments on

challenging KITTI [8] dataset. Since test set annotation is

not available, we follow [3, 26] to split training dataset into

training and validation sets and carefully make sure they do

not come from the same video sequence. We use the of-

ficial evaluation tool to evaluate detector performance on

the validation set. Table 3.2 shows overall imitation results

of the student models, as well as comparison to other meth-

ods. It is well known that reduction on parameters and com-

putation always brings exponential performance drop, e.g.,
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the 0.5× model sacrifices only around 4.7 mAP compared

to the teacher, while 0.25× halving results in 16.7 mAP

drop. In such hard cases, the presented method still achieves

significant boost for student models, i.e., the 0.5× model

gets 2.5 mAP improvement, the 0.25× model is boosted

by 6.6 mAP (0.25×-I), which is 14.7% of the non-imitated

one. Note the improvement for 0.5× model on pedestrian

is smaller than other classes as the gap between teacher and

non-imitated student is minor on pedestrian.

We conduct experiments on 4 comparing settings with

the 0.25× model. As shown in last 4 lines of Table 3.2.

The first is hint learning [32] (i.e. full feature imitation,

denoted as 0.25×-F). Though performing well for classifi-

cation, it brings large performance drop (8.9 mAP) to the

original 0.25× model. We conjecture this is because back-

ground noise overwhelms the informative supervision sig-

nal from teacher model which is verified in Sec. 4.4.5. The

very simple setting (0.25×-G) of directly scaling ground

truth boxes with same stride on the feature layer and apply-

ing imitation on those areas gives much less gain than the

proposed method. The reason is that while noise from back-

ground regions is avoided, the method also missed the im-

portant supervision from some near object locations. In the

third setting (0.25×-D), we find adapting the vanilla knowl-

edge distillation [16] to detection setting produces unpleas-

ant result (only 0.9 increase of mAP), verifies our intuition

in Sec. 1. Finally, we try to combine distillation loss with

imitation loss (denoted as 0.25-ID), but the performance is

worse than only using imitation term, implying high level

feature imitation and distillation on model outputs have very

divergent objectives.

4.3. Imitation with Faster RCNN

We further perform extensive experiments with the more

general architecture of Faster R-CNN model under three

settings: 1) halved student model. 2) shallow student

model. 3) multi-layer imitation.

Halved student model In this setting, we use Resnet101

based Faster R-CNN as teacher model and halve channel

number of each layer including the fully connected layers

to construct the student model. As shown in Table 4 and

Table 2, we perform experiments with COCO and Pascal

VOC07 dataset. Clearly halving the whole teacher model

cause the performance to drop significantly. With imita-

tion, the halved student model gets significant boost, i.e.,

2.8 absolute mAP gain both in Pascal style average preci-

sion and COCO style average precision with COCO dataset;

and 3.8 absolute mAP gain for Pascal VOC07 dataset. The

results demonstrate that our method can effectively distill

the teacher detector’s knowledge into the halved student.

Shallow student network For this setting, instead of

halving layer channels of teacher model, we choose shal-

lower student backbone with similar architecture of teacher

model. Specifically, we perform two imitation experiments:

VGG11 based Faster R-CNN as student and VGG16 based

one as teacher; Resnet50 based Faster R-CNN as student

and Resnet101 based one as teacher. As shown in Table 3,

the shallow backbone based student model all gets signifi-

cant improvement, especially for the VGG11 based student

model, the imitated model gets 8.0 absolute gain in mAP,

our method nearly recovers 74% of the performance drop

due to shallow backbone.

Multi-layer imitation The previous imitation experi-

ments are with single layer of feature map, we further ex-

tend the experiment to multi-layer imitation with seminal

work of Feature Pyramid Networks (FPN) [21]. The FPN

combined with Faster R-CNN framework perform region

proposal on different layer with different anchor prior size,

and pools feature on corresponding layer according to roi

size. We compute the imitation region on each layer with

corresponding prior anchors, and let student model imitate

feature response on each layer. The teacher detection model

is a Resnet50 FPN based Faster R-CNN, and student is a

halved counterpart. As shown in Table 5, imitated student

gets 3.2 absolute mAP gain in Pascal style average precision

and 3.6 mAP gain with COCO style average precision.

4.4. Analysis

4.4.1 Visualization of imitation mask

To better understand the imitation region generated by our

approach, we visualize some example masks I on input im-

age with the toy detector given sample from KITTI dataset.

Specifically we scale the generated imitation mask I on the

feature map to input image with corresponding stride(16 for

the toy detector). Fig 3 shows example imitation masks

scaled and overlaid on input image. Of the 6 images,

Fig 3(a) is original image; Fig 3(b) 3(c) 3(d) are gener-

ated with ψ = 0.2, ψ = 0.5, and ψ = 0.8 respectively;

Fig 3(e) 3(f) are filtered with constant threshold value of

F = 0.5 and F = 0.8 respectively. It is obvious that some

objects are missing with only F = 0.5, and nearly all im-

itation mask disappeared with F = 0.8. This is because

constant filter threshold of F biases for those ground truth

boxes of similar size with prior anchors. Our method with

adaptive filter threshold greatly mitigates this problem.

4.4.2 Qualitative performance gain from imitation

In this subsection, we present some sampled detection

outputs reflecting the enhanced ability of student detector

through the imitation learning. The results are from VGG11

based Faster R-CNN model on VOC07 dataset (ref. to Ta-

ble 3 for quantitative results). We only show one exam-

ple for each type of gain due to space limited, and choose
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Model mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

res101 74.4 77.8 78.9 77.5 63.2 62.6 79.2 84.4 85.6 54.5 81.5 68.7 85.7 84.6 77.8 78.6 47.1 76.3 74.9 78.8 71.2

res101h 67.4 73.9 78.6 66.3 52.5 42.4 73.8 80.4 80.1 43.5 71.8 61.9 78.7 81.7 74.4 76.8 42.2 66.9 65. 74.3 62.8

res101h-I 71.2 77.2 80.0 72.9 56.0 50.4 77.1 82.3 85.5 47.4 80.2 59.9 84.3 83.9 73.8 79.1 44.6 70.8 69.4 78.7 70.4

+3.8 +3.3 + 1.4 + 6.6 + 3.5 + 8.0 + 3.3 + 1.9 + 5.4 + 3.9 + 8.4 -2.0 + 5.6 + 2.2 -0.6 + 2.3 + 2.4 + 3.9 + 4.4 + 4.4 + 7.6

Table 2. Imitation with halved student model with Faster R-CNN model on Pascal VOC07 dataset.

Model mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

VGG16 70.4 70.9 78.0 67.8 55.1 53.2 79.6 85.5 83.7 48.7 78.0 63.5 80.2 82.0 74.5 77.2 43.0 73.7 65.8 76.0 72.5

VGG11 59.6 67.3 71.4 56.6 44.3 39.3 68.8 78.4 66.6 37.7 63.2 51.6 58.3 76.4 70.0 71.9 32.2 58.1 57.8 62.9 60.0

VGG11-I 67.6 72.5 73.8 62.8 53.1 49.2 80.5 82.7 76.8 44.8 73.5 64.3 72.6 81.1 75.3 76.3 40.2 66.3 61.8 73.4 70.6

+8.0 +5.2 +2.4 +6.2 +8.8 +9.9 +11.7 +4.3 +10.2 +7.1 +10.3 +12.7 +14.3 +4.7 +5.3 +4.4 +8.0 +8.2 +4.0 +10.5 +10.6

res101 74.4 77.8 78.9 77.5 63.2 62.6 79.2 84.4 85.6 54.5 81.5 68.7 85.7 84.6 77.8 78.6 47.1 76.3 74.9 78.8 71.2

res50 69.1 68.9 79.0 67.0 54.1 51.2 78.6 84.5 81.7 49.7 74.0 62.6 77.2 80. 72.5 77.2 40.0 71.7 65.5 75.0 71.0

res50-I 72.0 71.5 80.6 71.1 57.0 52.4 82.1 90.0 82.7 51.6 74.5 66.2 82.3 82.3 75.7 78.3 43.5 79.6 69.1 77.3 72.1

+2.9 +2.6 +1.6 +4.1 +2.9 +1.2 +3.5 +5.0 +1.0 +1.9 +0.5 +3.6 +5.1 +2.3 +3.2 +1.1 +3.5 +7.9 +3.6 +2.3 +1.1

Table 3. Imitation with shallow student model on Pascal-VOC07 dataset with Faster R-CNN model.

(a) (b) (c)

(d) (e) (f)

Figure 3. Examples of calculated imitation masks overlaid on input image. Note that the actual masks are calculated on last feature map,

we enlarge the mask with corresponding ratio to display on the input image. (a) Original image. (b) ψ = 0.2. (c) ψ = 0.5. (d) ψ = 0.8. (e)

Hard-thresh-0.5. (f) Hard-thresh-0.8. Thresh-* indicates different thresholding factor for proposed approach, Hard-thresh-* means using

constant threshold of F when filtering the IOU map.

Model AP@0.5 AP APs APm APl AR ARs ARm ARl

res101 54.6 34.4 14.3 39.1 51.9 45.9 23.0 52.2 66.4

res101h 48.4 28.8 11.8 32.0 44.9 41.5 19.8 45.9 62.3

res101h-I 51.2 31.6 13.2 35.9 47.5 44.0 22.4 50.3 64.5

+2.8 +2.8 +1.4 +3.9 +2.6 +2.5 +2.6 +4.4 +2.2

Table 4. Imitation with halved student model with Faster R-CNN

model on COCO dataset.

the examples containing simple objects for clearer visual-

ization. In Fig 4, the upper row of detection outputs are

from raw student model trained with ground truth supervi-

sion only, and the lower row of detection outputs are from

imitated student model. The improvement of the student

model with teacher supervision can be summarized into fol-

Model AP@0.5 AP APs APm APl AR ARs ARm ARl

res50 59.0 36.9 21.5 39.8 48.3 50.5 31.4 53.9 63.6

res50h 52.6 31.2 18.5 32.0 42.4 46.3 27.7 47.5 60.6

res50h-I 55.8 34.8 21.0 34.9 45.5 49.1 30.5 52.6 63.5

+3.2 +3.6 +2.5 +2.9 +3.1 +2.8 +2.8 +5.1 +2.9

Table 5. Result of multi-layer imitation on COCO dataset with

Resnet50 FPN based Faster R-CNN model.

lowing aspects: Improved discrimination ability. As shown

in Fig 4(a) and Fig 4(f), the color and style of lower part of

the man’s clothes is somewhat similar to that in some sofa

objects. The raw student model mistakingly detect that as

a sofa object with rather high confidence. While the imi-

tated student avoids the error, indicating better discrimina-
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4. Qualitative results on the gain from imitation learning. The bounding box visualization threshold is set as 0.3. The top row

images are student model’s output without imitation, the bottom row shows imitated student’s output.

(a) (b) (c)

Figure 5. Imitation gain from error perspective with VGG11 based Faster R-CNN student and VGG16 based teacher on the Pascal VOC07

dataset. For each pair, the left figure corresponds to raw student model, and the right corresponds to imitated student.

tion ability. It is interesting to note that the imitated stu-

dent has lower confidence on the dog instance compared to

the raw student model, we have observed the teacher model

(VGG16 based Faster R-CNN) outputs confidence of 0.38

for the instance. This phenomenon reveals that the teacher

model’s learned knowledge has been effectively transfered

to the student model. More reliable localization. As shown

in Fig 4(b) and Fig 4(g), the raw student model outputs

a rather inaccurate location of the woman as a person in-

stance. While the imitated student model learns better lo-

calization knowledge from the teacher and outputs a rather

accurate bounding box for the person instance. Less re-

peated detection. As shown in Fig 4(c) and Fig 4(h), the

raw student model outputs repeated detections for the tv-

monitors which are unfortunately not able to be suppressed

by NMS. While the imitated model predicts single bound-

ing box for each object. This phenomenon indicates imi-

tated student has better ability handling close to object in-

put regions, this improvement comes from improved region

proposal and enhanced ROI processing ability. Less back-

ground error. As shown in Fig 4(d) and Fig 4(i), the raw

student model wrongly predict an area of background as

a cat instance. While the imitated the student avoids the

error, indicating lower background false positive predic-

tion. Avoiding grouped detection error. We have observed

grouped detection of near objects is a common error case

for the raw student model, as shown in left image of Fig 4(e)

and Fig 4(j). The imitated student gets improved ability in

avoiding such error case.

4.4.3 Quantitative performance gain from imitation

We use the analysis tool from [17] to understand the type

of detection errors reduced by imitating teacher model. The

analysis is performed with the VGG11 Faster R-CNN stu-

dent on Pascal VOC07 dataset (the teacher model is VGG16

based Faster R-CNN, ref. to Table 3 for average precision

gain results). We present analysis on 3 grouped object class

set: 1) vehicles. 2) animals containing all animals including

person. 3) furniture including chair, dining table and sofa.

The detections were classified into five groups: 1) Correct
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Figure 6. Results for further investigation of the method. (a) Varying imitation thresholding factor ψ for the toy detector experiment.

(b),(c) Per-channel variance on high level feature map of learned teacher model. (b) is calculated with toy detector on KITTI dataset.(c) is

calculated with Faster R-CNN on COCO dataset.

detection(Cor): correct class and IoU > 0.5. 2) Local-

ization (Loc): correct class, but misaligned bounding box

(0.1 < IoU < 0.5). 3) Similar (Sim): wrong class, correct

category, IoU > 0.1. 4) Other (Oth): wrong class and cate-

gory, IoU > 0.1. 5) Background (BG): IoU < 0.1 for any

object class. Due to limited space we only present pie chart

error percentage result, and defer to supplementary file for

other analysis result. As shown in Fig 5, we observe for the

three sub-set of object class, our method significantly im-

proves the number of correct detections, and effectively re-

duces all other kinds of detection errors, especially for the

Loc term. The error composition analysis reveals follow-

ing important improvements: 1) Stronger localization abil-

ity (Loc); 2) less confusion between the same category and

other category objects (Sim and Oth); 3) less background

induced errors (BG).

4.4.4 Varying ψ for generating mask

To investigate the effects of region selection for imitation,

we perform experiments on the 0.5× and 0.25× student

models with varying thresholding factor ψ. We record mean

value among three runs and plot the performance curve in

Fig. 6(a) When ψ = 0 , all points will be preserved and the

method degenerates to full feature imitation as in hint learn-

ing. It is clear that imitated models are misguided severely.

The mAP is even much lower than the ones trained with

only ground truth supervision. As the threshold value in-

creases, the student model performs much better, even with

very low threshold of 0.1. This is strong evidence that

the proposed approach effectively finds useful information

while filters detrimental knowledges. The neutral value of

0.5 turns out to be optimal. When ψ is larger than 0.5, both

students’ mAP starts decreasing, but all the way still higher

than when the value is 1.0, under which case the imitation

reduces to only ground truth supervision. It is worth not-

ing that when the ψ is larger than 0.5, the imitation regions

quickly shrink and become extremely tiny and sparse, but

imitation on those area still significantly boosts the students.

4.4.5 Per-channel variance of high level responses

To understand why full feature imitation produces deterio-

rated performance, we calculate the per-channel variance of

the imitation feature map from a trained teacher model. We

randomly sample and pass 10 images through the teacher

model, calculate and record variances for anchor location

within imitation region (with ψ = 0.5) and outside the

region for each channel separately. Results are shown in

Fig 6(b) and Fig 6(c) for the KITTI and COCO dataset on

our 1× toy detector and Resnet101 based Faster R-CNN

model. Clearly the variances under the regions selected

with proposed approach are smaller than those outside the

areas, and holds for nearly all channels. This indicates that

responses on background areas contain much noise. Fea-

tures from the regions within the mask are more informa-

tive. Since convolution shares weights for whole feature

map, directly imitating global feature responses would un-

avoidably accumulate large amount of noisy gradients from

background areas. We also empirically observed that the

loss value of full feature imitation is more than ten times

that of proposed approach throughout training with same

normalization method, which corroborates the analysis.

5. Conclusion

In this work, we developed a simple to implement fine-

grained feature imitation method which employs the inter-

location discrepancy of teacher detection model’s feature

response on near object anchor locations to distill the

knowledge in a cumbersome object detector into a smaller

one. Extensive experiments and analysis demonstrate the

effectiveness of our method. Importantly, the method is or-

thogonal to and can be further combined with other model

acceleration method including pruning and quantization.
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