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Abstract Given the judgments of multiple voters regarding some issue, it is generally

assumed that the best way to arrive at some collective judgment is by following the

majority. We consider here the now common case in which each voter expresses some

(binary) judgment regarding each of a multiplicity of independent issues and assume

that each voter has some fixed (unknown) probability of making a correct judgment

for any given issue. We leverage the fact that multiple votes by each voter are known

in order to demonstrate, both analytically and empirically, that a method based on

maximum likelihood estimation is superior to the simple majority rule for arriving at

true collective judgments.
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1 Introduction

One of the key innovations spawned by the Internet is the compilation of judgments

of non-experts regarding multiple questions of a particular type. Some web tools (for

example, Amazon’s Mechanical Turk 1 and social bookmarking tools such as Digg and

de.licio.us) leverage collective judgment to obtain answers to simple questions (e.g., is

this keyword an appropriate tag for this web page?) at low cost. Others attempt to

tap into “the wisdom of crowds” to determine answers to questions with potentially

significant political or commercial consequences, such as who will win an election or

a sporting event or whether a given product idea is likely to succeed. In either case,

the respective independent judgments of all the voters with regard to a given issue are

then aggregated into a single collective judgment. Typically, this is done by straight-

forward averaging or, in the case of binary judgments, by following the simple majority

rule (SMR). It has been often noted, however, that voter decisional skills are uneven;

some voters offer judgments that are arbitrary, skewed or otherwise misguided. Thus,

a fundamental question is how, in cases where we lack access to any ground truth

against which to compare judgments, we can estimate each voter’s decisional skills and

accordingly reach a collective decision that is most likely to be correct.

Indeed where nothing at all is known about individual voter’s relative decisional

skills (except that, on average, they are better than random), we cannot improve upon

SMR (Karotkin [8], Ben-Yashar and Paroush [1]). We will show, however, that in many

common scenarios, although we have no direct information about individual voters’

skills, we can still outperform SMR by exploiting the fact that we have each voter’s

judgments regarding each of a multiplicity of independent issues. That such tracking

is possible is plainly true in the Internet setting mentioned above, but is also quite

common in standing expert committees - such as courts, medical diagnostic bodies,

investment committees, central bank committees - that periodically invoke voting to

reach collective decisions.

Note that we consider here judgment scenarios where one of the alternatives is

correct and the other incorrect. In principle, however, the method can be applied just as

well to parliaments and other decision-making bodies where choices reflect preferences.

In that context, we need to employ the fiction that there exists some “right” answer

and that preferences reflect noisy judgments (Conitzer and Sandholm [3]).

Our basic insight is that, even without ever knowing who is right and who is wrong,

voters whose judgments regarding many issues are different from those of other vot-

ers ought to be given less weight than other voters. While this simplistic insight is

debatable, we will show in this paper that it can be leveraged into a highly accurate al-

gorithm for vote aggregation whenever voter judgments across issues are available. The

algorithm’s objective is to find maximum likelihood values for the voters’ competency.

In particular, we will show how the output of this algorithm enables to aggregate votes

in a manner that is vastly superior to SMR.

We note that the use of maximum likelihood estimators for vote aggregation has a

rich history. Condorcet [4] already observed that in the case of dichotomous choice, if

individual voter reliabilities are better than random, SMR yields a maximum likelihood

estimator of the “correct” answer. Subsequently, such maximum likelihood estimators

were computed explicitly given voter reliabilities (Nitzan and Paroush [11], Shapley and

Grofman [12]). More recently Conitzer and Sandholm [3] showed that certain methods

1 www.mturk.com/mturk
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for vote (ranking) aggregation implicitly compute maximum likelihood estimators of

the “correct” ranking using some implied underlying model of voter competency. Our

problem differs from all this earlier work in that we wish to exploit multiple votes by

the voters to find a maximum likelihood estimator of the voter reliabilities, which can

then be used, as by Nitzan and Paroush [11] and Shapley and Grofman [12], to find a

maximum likelihood estimator of the “correct” answer for each issue.

2 The Q Procedure

Let N = {1, ..., n}, n ≥ 3, denote a finite set of voters and let M denote a set of m

distinct binary issues, m ≥ 2. The judgment of voter i ∈ N on issue j ∈ M is denoted

by aij ∈ {0, 1}. The symbol a denotes the entire matrix of judgments (aij). The j

column in the matrix a, denoted by aj , is the judgment set on issue j. We assume

that each issue has some (unknown) “correct” resolution, denoted by tj ∈ {0, 1}, and

that every voter i is associated with an unknown probability pi of making the correct

decision. The vector of individual probabilities (p1, ...pn) is denoted by θ. For simplicity,

we assume that, in the absence of any information, the two possible resolutions of an

issue are equally likely; that is, for every j, the prior probability p(tj = 1) = 0.5.

(We will see below that relaxation of this assumption requires only minor adjustments

to our basic algorithm.) We also assume that the issues are all independent of each

other so that all outcomes over the set of issues are equiprobable. For this reason, we

do not need to deal with questions of consistency that arise when issues are logically

dependent (List and Pettit [10], Dokow and Holzman [7]).

A judgment aggregation rule V is a mapping from the judgments matrix a = (aij)

to a set of binary decisions in {0, 1}m. Our objective is to find an optimal judgment

aggregation rule, given no information other than the matrix of judgments a. The

suggested framework does not assume that the individual skills, p1, ..., pn, and the

correct resolution for each issue are (ex-ante) known; hence, one might wonder in what

sense a decision method could be optimal. In principle, given θ = (pi) and assuming

that, for all j, the prior probability p(tj = 1) = 0.5, we can explicitly write the

probability of the observed judgement matrix a:

p(a; θ) =
∏

j

p(aj ; θ) =
∏

j

(p(tj = 0)p(aj |tj = 0) + p(tj = 1)p(aj |tj = 1)) (1)

=
∏

j

(
1

2

∏

i

(aijpi + (1 − aij)(1 − pi)) +
1

2

∏

i

(pi(1 − aij) + (1 − pi)aij))

Note that in this probabilistic modeling the individual skills p1, ..., pn are viewed as

(unknown) parameters and the “correct” resolutions {tj} are treated as hidden binary

random variables. Thus, given some matrix of judgments a, optimality is obtained by

the values of θ that maximize the probability of the observed data p(a; θ). That is, we

wish to find a maximum likelihood estimator of θ:

θ̂ = arg max
θ∈[0,1]n

p(a; θ) (2)

The suggested iterative approach for finding this maximum is based on some initial

estimate of θ. These values are re-used to compute, for each issue j, the probability

that tj = 1. Moreover, once all the conditional resolution probabilities p(tj = 1|a) are
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given, one is able to compute, for each decision maker i, a more likely value of pi, which

we refer to as p,
i. The iterative procedure is incomplete so long as θ 6= θ,, i.e. pi 6= p,

i

for at least one decision maker; such θ = (pi) is considered inconsistent. Inconsistency

implies sub-optimality, in the sense that θ is not a maximal-likelihood estimate. The

procedure is complete when θ = θ,, i.e. for all i, pi = p,
i; at this stage a skill-evaluation

equilibrium is obtained. Let us first show how p(tj = 1|a) is obtained given pi (List [9],

Nitzan and Paroush [11] and Grofman et al. [12]), and how an updated value of pi is

computed, given the probabilistic truth values p(tj = 1|a).

Lemma 1: Given the judgments a = (aij) and the probabilities θ = (p1, ..., pn), the

conditional “correct” resolution probabilities are given by:

p(tj = 1|a) =
H

H + 1
where H =

∏

i

(
pi

1 − pi
)(2aij−1)

Proof: Recalling that the prior probability p(tj = 1) = 1/2, Bayes’ rule implies that:

p(tj = 1|a) = p(tj = 1|aj) =
p(aj |tj = 1)

p(aj |tj = 0) + p(aj |tj = 1)
(3)

where aj is the judgment set on issue j. From our independence assumption, it follows

that

p(aj |tj = 1) =
∏

i(aijpi + (1 − aij)(1 − pi))

p(aj |tj = 0) =
∏

i(pi(1 − aij) + (1 − pi)aij)

Observing that H =
p(aj |tj=1)
p(aj |tj=0) , we obtain that p(tj = 1|a) = H

1+H . Q.E.D

In the event that the prior probability p(tj = 1) = αj other than 1/2, we only need

to modify Eq. (3) as follows:

p(tj = 1|aj) =
αjp(aj |tj = 1)

(1 − αj)p(aj |tj = 0) + αjp(aj |tj = 1)
=

αjH

(1 − αj) + αjH
(4)

Now assume that the correct resolutions {tj} are known. They can be compared

to the judgments of individual i, in order to compute the maximum-likelihood values

of pi:

p̂i =
1

m
|{j|aij = tj}| (5)

Assume that we are given only stochastic information on the correct resolution set

{tj}. Denote the probability that tj = 1 by wj1 and the probability that tj = 0 by

wj0. Then we can still apply a modified version of Eq. (5):

p,
i =

1

m
E(|{j|aij = tj}|) =

1

m

m∑

j=1

p(aij = tj) =
1

m

∑

j

(aijwj1 + (1 − aij)wj0) (6)

Finally, we define the hill-climbing procedure, Q, for approximating a skill-evaluation

equilibrium by iterating the two steps described above:

1. Choose some initial θ.



5

2. For each j = 1, ..., m, compute p(tj = 1|a; θ) (as computed in Lemma 1).

3. Let wj0 = p(tj = 0|aj ; θ) and wj1 = p(tj = 1|aj ; θ). Replace θ = (pi) with the

induced θ′ = (p,
i) using Eq. (6).

4. Repeat until convergence (termination).

3 Analytic Results

The procedure Q is a special case of the EM algorithm (Dempster et al.[5]), but with

special properties not implied by the general theory. Hence, though our proofs follow

the general outline of Dempster et al. [5], we will prove the below theorems from scratch.

Our two main theorems are as follows:

Theorem 1: For any voting matrix a ∈ {0, 1}nm and any initial choice of θ ∈ [0, 1]n,

procedure Q converges to a skill-evaluation equilibrium θ∗ (i.e., applying Q procedure

iteration on θ∗ yields the same parameter vector θ∗).

Theorem 2: For any voting matrix a ∈ {0, 1}nm and almost any initial choice of

θ ∈ [0, 1]n, procedure Q converges to a probability vector θ∗ that is a local maximum

of the probability function p(a; θ).

The proofs of the two theorems will invoke the following three lemmas:

Lemma A1: Let the cross-entropy between two binary distributions p = (p0, p1) and

q = (q0, q1) be CE(p, q) = −p0 log q0 − p1 log q1. Every pair of binary distributions p

and q satisfies CE(p, p) ≤ CE(p, q) and there is equality if and only if p = q.

Proof of Lemma A1: CE(p, p) − CE(p, q) = p0 log q0

p0
+ p1 log q1

p1
≤ log(p0

q0

p0
+

p1
q1

p1
) = log(1) = 0. The inequality is obtained because log is a concave function. The

log function is, in fact, strictly concave (the second derivative is always negative), hence

there is equality if and only if p = q. Q.E.D.

Lemma A2: The probability function p(aj ; θ) (see Eq. (1)) satisfies:

log p(aj ; θ) = Lj(θ, θ0) + CE(p(t|aj ; θ0), p(t|aj ; θ)) (7)

where

Lj(θ, θ0) =
∑

t=0,1

p(t|aj ; θ0) log p(t, aj ; θ)

and θ0 can be any other possible parameter value.

Proof of Lemma A2: Taking the log of p(tj , aj ; θ) = p(aj ; θ)p(tj |aj ; θ) we obtain:

log p(aj ; θ) = log p(tj , aj ; θ) − log p(tj |aj ; θ) (8)

Multiplying each term in (8) by p(tj |aj ; θ0) and summing over tj = 0, 1, we obtain:

log p(aj ; θ) =
∑

t

p(t|aj ; θ0) log p(t, aj ; θ) −
∑

t

p(t|aj ; θ0) log p(t|aj ; θ) (9)

= Lj(θ, θ0) + CE(p(t|aj ; θ0), p(t|aj ; θ))
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Q.E.D.

Lemma A3: The Q procedure satisfies p(a; θt+1) ≥ p(a; θt) where θt is the value of θ

obtained in the t-th iteration of the Q procedure.

Proof of Lemma A3: Using the notation L(θ, θ0) =
∑

j Lj(θ, θ0), Lemma 2 implies

that for each parameter value θ:

log p(a; θ) = L(θ, θt) +
∑

j

CE(p(t|aj; θt), p(t|aj ; θ)) (10)

log p(a; θt) = L(θt, θt) +
∑

j

CE(p(t|aj ; θt), p(t|aj ; θt)) (11)

Lemma A1 implies that for every issue j

CE(p(t|aj ; θt), p(t|aj ; θ)) ≥ CE(p(t|aj ; θt), p(t|aj ; θt))

Subtracting Eq. (11) from Eq. (10) we obtain:

log p(a; θ) − log p(a; θt) ≥ L(θ, θt) − L(θt, θt)

Hence, to prove that p(a; θt+1) ≥ p(a; θt), it is enough to show that L(θt+1, θt) ≥

L(θt, θt). We shall show that θt+1 = arg maxθ L(θ, θt). Denote wj0 = p(t = 0|aj ; θt)

and wj1 = p(t = 0|aj ; θt).

L(θ, θt) =
∑

j

wj1

∑

i

(aij log pi + (1 − aij) log(1 − pi)) + (12)

∑

j

wj0

∑

i

((1 − aij) log pi + aij log(1 − pi))

=
∑

i

log pi(
∑

j

(aijwj1 + (1 − aij)wj0)) + log(1 − pi)(
∑

j

(aijwj0 + (1 − aij)wj1))

Using the notation p,
i = 1

m

∑
j(aijwj1 + (1 − aij)wj0), we obtain:

L(θ, θt) = −m
∑

i

CE((p,
i, 1 − p,

i), (pi, 1 − pi)) (13)

Eq. (13) implies that we can maximize L(θ, θt) separably for each pi. Lemma A1 implies

that for every voter i

p,
i = arg max

pi∈[0,1]
−CE((p,

i, 1 − p,
i), (pi, 1 − pi)) (14)

and this maximum is unique. Therefore, the unique maximum of L(θ, θt) is obtained

at the parameter vector θt+1 = (p,
i) obtained by applying a single iteration of the Q

procedure on θt. Hence, θt+1 = arg max L(θ, θt) and therefore p(a; θt+1) ≥ p(a; θt).

Q.E.D

Proof of Theorem 1: Lemma A3 asserts that the sequence {p(a; θt)} is monotoni-

cally increasing. It is also a bounded sequence since {p(a; θ)} viewed as a function of

θ is a polynomial function defined on the compact n-dimensional set [0, 1]n. Therefore

p(a; θt) converges to a limit point p(a; θ∗). It remains only to show that the Q proce-

dure does not oscillate between points with the same likelihood. Denote the result of
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applying the Q procedure on θ∗ by θ∗∗. We need to show that θ∗ = θ∗∗. Since p(a, θ∗)

is a limit point, it follows that p(a; θ∗) = p(a; θ∗∗). From Lemma A3 we have that,

by definition of the Q procedure, θ∗∗ = arg max L(θ, θ∗). It follows from the proof

of Lemma 3 that maxθ L(θ, θ∗) is obtained at a single point. Hence if θ∗ 6= θ∗∗ then

L(θ∗∗, θ∗) > L(θ∗, θ∗) and therefore p(a; θ∗∗) > p(a; θ). This, however, contradicts our

assumption that p(a, θ∗) is a limit point and therefore p(a; θ∗) = p(a; θ∗∗). Hence θ∗ is

the unique maximum point of L(θ, θ∗), i.e θ∗∗ = θ∗. Q.E.D.

Proof of Theorem 2: Let θ∗ be an equilibrium point of the Q procedure. By Lemma

A2 we obtain that for every θ

log p(a; θ) = L(θ, θ∗) +
∑

j

CE(p(t|aj ; θ∗)), p(t|aj ; θ)) (15)

Hence,
d

dθ
log p(a; θ) =

d

dθ
L(θ, θ∗) +

d

dθ

∑

j

CE(p(t|aj ; θ∗)), p(t|aj ; θ)) (16)

Note that as long as θ∗ falls in the interior of the parameter space [0, 1]n the functions

above are all differentiable. By Theorem 1, θ∗ is a fixed point of the Q procedure, i.e.,

θ∗ = arg maxθ L(θ, θ∗). Hence

d

dθ
L(θ, θ∗)|θ=θ∗

= 0 (17)

Lemma A1 implies that θ∗ = arg minθ

∑
j CE(p(t|aj ; θ∗), p(t|aj ; θ)). Thus

d

dθ
(
∑

j

CE(p(t|aj ; θ∗), p(t|aj ; θ)))|θ=θ∗
= 0 (18)

By substituting (15) and (16) into (18) we obtain:

d

dθ
log p(a; θ∗) = 0

Hence the Q-procedure converges to a stationary point of p(a; θ). A stationary point

is a local maximum, a local minimum or a saddle point. In fact, though, it can be

shown that, since local minima and saddle points are not attractors, the probability of

selecting an initial point that leads to convergence to a local minimum or to a saddle

point is 0. Q.E.D.

To conclude this section, we note that in our setting two properties hold which

are not implied by the general EM theory. Let θt be the value of θ obtained in the

t-th iteration of the Q procedure. The EM theory [5] guarantees that the likelihood

sequence p(a; θt) is monotonically increasing and therefore, if it is bounded, it neces-

sarily converges to a limit number. This is exactly what is shown in Lemma A3. In

our case, however, there are two additional properties that do not necessary hold in

the general EM theory. First, in the general EM theory, the fact that the sequence

{p(θt)} converges does not guarantee that the parameter sequence {θt} converges to a

limit point in the parameter domain. It can happen that the sequence {θt} oscillates

between different points whose likelihoods are equal. Second, although EM converges
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to a limit point of the likelihood function p(a, θ), there is no theoretical guarantee that

this limit point is indeed a local maximum (see, e.g., Wu [13]). The convergence of the

sequence θt (proved in Theorem 1) follows in our case from the fact that the parameter

re-estimation step (corresponding to the M-step in EM) in each iteration is applied to

the cross-entropy, which is strictly concave (as a function of its second argument) and

thus has a unique maximum point. The proof (in Theorem 2) that this limit point is

a local maximum follows from the same fact. In the general EM theory, there is no

guarantee of convexity on the function maximized in the M-step.

4 Empirical Results

While our analytic result only shows that Q finds a local maximum, we find empirically

that in fact Q does considerably better than that. On simulated examples, where we

know the true θ used to generate the voting data, Q nearly always converges to some θ∗
that is at least as good as the true θ, in the sense that p(a; θ∗) ≥ p(a; θ). This strongly

suggests that Q generally converges to some value close to the global maximum of

p(a; θ). Thus, our main claim for practical purposes is that given a matrix of votes, the

proper method of reaching a collective decision regarding each issue j is to assign the

consensus judgment 1 if Q converges to a value of p(tj = 1|a) greater than (or equal

to) 1/2 and 0 otherwise. (Of course, in principle, if in some context we regard Type

1 errors with different severity than Type 2 errors, we can use a threshold other than

1/2 (Nitzan and Paroush [11] and Dietrich [6]).) We will see that this method is vastly

superior to SMR precisely in the sense that it is more likely to arrive at the correct

answer for any given issue.

4.1 The Simulation Procedure

We use the following simulation procedure. Choose values of n and m, representing the

number of voters and the number of issues, respectively. Assign some random binary

correct answer tj to each issue j and some random reliability level pi to each voter i

(subject to a single condition, as will be described below). For each 1 ≤ i ≤ n and each

1 ≤ j ≤ m, generate aij ∈ {0, 1}, the vote of voter i on issue j, by tossing a coin with

probability pi of yielding tj . The task is to ascertain tj for each issue j, given only the

voting matrix a.

We do need to make one assumption about the values of θ = (pi). Note that for

every vector θ∗ = (pi), there is a dual vector, θ̄∗ = (1− pi), such that p(a; θ) = p(a; θ̄).

Thus, for every “sensible” solution, θ, there is a counter-intuitive one, θ̄. In order to

distinguish between them, we note that for at most one of them,
∏

pi >
∏

(1 − pi),

namely, that if voters are unanimous on some issue, their vote is correct with probability

greater than 1/2. Thus, to break the symmetry between the sensible solution and its

dual, we assume that
∏

pi >
∏

(1 − pi).

4.2 A Simple Example

Now, to illustrate our simulation procedure, we first run through a single toy exam-

ple with n = 5 and m = 10. We arbitrarily assign the correct answer 0 to the first
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(pi) Votes

.99 .94 .86 .82 .79 .9 0 0 0 1 1 1 1 1 1 1

.50 .53 .57 .63 .68 .9 1 0 0 0 1 0 0 0 1 1

.99 .94 .86 .82 .79 .9 0 0 0 1 1 1 1 1 1 1

.50 .55 .63 .67 .70 .9 0 0 1 1 0 0 0 0 1 1

.70 .75 .82 .86 .87 .9 0 0 1 1 1 0 0 1 1 1

{p(tj = 1|a)}

.01 .01 .10 .99 .99 .10 .10 .90 .99 .99

.01 .01 .34 .99 .99 .31 .31 .96 .99 .99

.01 .01 .29 .99 .99 .50 .50 .98 .99 .99

.01 .01 .13 .99 .99 .80 .80 .99 .99 .99

.01 .01 .01 .99 .99 .98 .98 .99 .99 .99

.01 .01 .01 .99 .99 .99 .99 .99 .99 .99

Fig. 1 A matrix of votes by five voters over ten issues. Values of (pi) at respective iterations
are shown in left columns progressing from right to left. Corresponding values of p(tj = 1|a)
are shown at bottom progressing from top to bottom.

three issues and 1 to the other seven issues and assign the respective reliability values

{0.82, 0.61, 0.83, 0.60, 0.76} to the five voters. Using coin-tossing as described, we ob-

tain the matrix shown in Figure 1. Note that SMR would return incorrect answers for

issues 6 and 7. We now apply Q to the matrix in the hope of reconstructing the correct

answers (which are, of course, unknown to us).

As in all our simulations below, we initialize all pi to 0.9. (Other initial values return

essentially the same overall results.) We terminate when p(a; θt+1)− p(a; θt) < 0.0001.

The columns to the left of the matrix represent reliability levels for the respective

voters during successive iterations of the algorithm and the rows below the matrix

represent probabilities that the correct answer for the respective issues is 1 during

successive iterations of the algorithm. The algorithm converges after six iterations and,

unlike SMR, reaches the correct answer for every issue. Moreover, p(a, θ) increases

after each iteration and the value to which it converges (exp(−20.2)) is in fact far

greater than that obtained from the actual reliability values used to generate the votes

(exp(−29.0)).

4.3 Simulation Results

We now systematically compare the performance of our algorithm Q on this task with

that of the standard algorithm, namely, SMR. For our first experiment, we fix the

number of voters at n = 50 and let the number of issues m vary. For each value of m,

we run 10,000 trials, each representing a new randomized choice of (pi) and {tj}. The

values of (pi) are sampled uniformly in the range [0, 1], subject to the single requirement

that
∏

pi >
∏

(1 − pi). For each trial, the accuracy of the algorithm is the proportion

of j for which the algorithm correctly ascertains the value of tj . Results are shown in

Figure 2. As can be seen, SMR remains steady at accuracy of 0.7 and does not improve

as the number of issues increases since it does not learn from one issue to the other. On

the other hand, Q increases steadily to near-perfect accuracy as the number of issues
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increases, since the greater the number of issues the more accurately we can estimate

voter reliability.

10
1

10
2

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

# issues (m) 

ac
cu

ra
cy

 

 

Q
SMR

Fig. 2 Accuracy of SMR and Q for 50 voters and increasing number of issues. Each datapoint
represents 10,000 trials in each of which values of pi are sampled uniformly in the range [0,1]
subject to the unanimity condition.

Our second experiment operates according to the same principles as the first, except

the number of issues is held fixed at m = 100 and the number of voters n varies. Results

are shown in Figure 3a. Remarkably, we find the same phenomenon in this experiment

as in the previous one. SMR remains steady at accuracy of 0.7 and does not improve

as the number of voters increases. On the other hand, Q increases steadily to accuracy

of 0.95 as the number of voters increases.

Note that when voters’ collective decision skills are sufficient, Condorcet’s Jury

Theorem [4] ensures convergence of SMR to perfect decision-making as the number of

voters grows. However, in this experiment, our assumptions regarding voters’ collective

decision skills are too weak for that theorem to hold (Berend and Paroush [2]). We thus

reran our second experiment, this time sampling values of (pi) uniformly in the range

[0.1,1], so that Condorcet’s Jury theorem would hold. As can be seen in Figure 3b, even

in this case, as the number of voters grows, the accuracy of Q converges to 1 much

faster than that of SMR. In Figure 3c, we show results for the same experiment with

values of (pi) sampled uniformly in the range [0.5,1]. As is evident, in such cases SMR

converges rapidly and the advantage of Q is diminished.

5 Conclusions

To summarize, we have considered scenarios in which the following conditions hold:

1. Voter records are available over a variety of issues.
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Fig. 3 Accuracy of SMR and Q for 100 issues and increasing number of voters. Each datapoint
represents 10,000 trials in each of which values of pi are sampled uniformly in the range: (a)
[0,1], (b) [0.1,1], (c) [0.5,1].
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2. For each voter, there is some fixed (unknown) probability that that voter gives the

correct answer for any given issue.

3. Voters’ judgments are independent of each other.

4. Voters are collectively at least minimally competent in the sense that a unanimous

vote is more likely to be right than wrong.

To be sure, some of these assumptions are quite restrictive, particularly the indepen-

dence assumptions. Moreover, our method applies principally to voting with regard to

the truth of propositions rather than voting with regard to personal preferences, and

assumes that voter’s competency is the same for all propositions. Nevertheless, such

scenarios are quite common, especially in the context of standing expert committees

and online judgment aggregation sites.

We have found that in such scenarios a judgment aggregation method in the

expectation-maximization framework is far more likely to reach correct answers than

the standard SMR. This result holds regardless of the number of voters or the num-

ber of issues each has voted on, but the advantage of the proposed method over SMR

is especially pronounced when the track records of individual voters are sufficiently

abundant and when voters’ decisional skills are sufficiently heterogeneous.

Our approach is trivially generalizable to cases in which voting records are incom-

plete so that we have the votes of each voter on some subset of all issues. A common

instance of this scenario is refereeing of conference papers; Q could be used to aggregate

judgments of referees in a manner that optimally discounts referees whose judgments of

a variety of papers suggest idiosyncratic views. Moreover, as our preliminary investiga-

tions indicate, the method is easily generalized to cases in which votes are not binary,

but rather real numbers in the range [0, 1]. In such cases, we assume a different gen-

erative model, for example, that each voter’s noise is (truncated) normally distributed

with fixed bias and variance.
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