PHYSICAL REVIEW A 74, 043820 (2006)

Distilling two-atom distance information from intensity-intensity correlation functions
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The intensity-intensity correlation function of the resonance fluorescence light of two two-level atoms driven
by a resonant standing-wave laser field is examined. Our aim is to gain information on the distance between the
two atoms from observables accessible in experiments. For this, we numerically solve the time-evolution
equations of the system and calculate the steady-state intensity-intensity correlation by using the Laplace
transform and quantum regression theory. By varying the interatomic distance from about half a wavelength
down to small fractions of a wavelength, we show that the correlation function exhibits characteristic proper-
ties for different distance ranges. Based on these results, we propose a scheme to obtain interatomic distance
information from the power spectrum of the correlation function, which allows us to extract the desired
distance information over a wide range of distances with high accuracy.
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I. INTRODUCTION

Precise atomic position measurement has attracted a great
deal of interest for many years. It has many applications such
as atom lithography, microscopy, and atom imaging. How-
ever, due to the optical diffraction, in classical lens-based
optical microscopy or imaging, the resolution in the focus
plane cannot exceed the limit of half the wavelength of the
illuminating light. In the past several decades, many methods
have been developed to overcome this limit. Lens-based
techniques include confocal [1], nonlinear femtosecond, and
stimulated emission depletion microscopy [2]. Also nonclas-
sical features such as entanglement [3], quantum interferom-
etry [4], or multiphoton processes [5] can be used to enhance
resolution. Somewhat complementary to this, a particularly
promising development is lensless near-field optics, which
can achieve nanometer spatial resolution [6].

On the other hand, the resonance fluorescence emitted
collectively by many interacting two-level atoms in an exter-
nal driving laser field has been studied extensively for differ-
ent parameter ranges [7—14]. Following the idea of reaching
subwavelength resolution for nonidentical, individually ad-
dressable objects [15], a relation between collective fluores-
cent light and the geometry of the setup was also shown
experimentally [16].

In our previous work [17], motivated by the localization
of an atom inside an optical field [18], we showed that dis-
tance and position information can be obtained by measuring
the fluorescence spectrum of a two-atom system inside a
standing-wave field, relying entirely on far-field measure-
ment techniques. Typically, this scheme will be limited by
the difficulties in fixing the positions of the two atoms rather
than by constraints of the measurement scheme itself, which
in principle allows one to achieve resolution far below the
classical Rayleigh limit of optical microscopy technology.

In addition to the fluorescence spectrum, also the
intensity-intensity correlation function of the light emitted by
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a collection of two- and three-level atom systems subject to
driving fields has been investigated [12,13,19-21]. Most of
these works, however, focused on nonclassical properties of
the emitted field. Thus the question arises: Does the
intensity-intensity correlation function also reveal informa-
tion about the spatial properties of a given system? In [12],
the effect of the interatomic distance on the intensity-
intensity correlation function of the resonance fluorescence
of two atoms is mentioned. However, that analysis of the
intensity-intensity correlation function focuses on the case
when the collective damping rate is exactly equal to the Ein-
stein A coefficient of a single atom. Here, we consider a
more realistic situation without any significant restrictions on
the damping rate.

We present a detailed analysis of the application of the
intensity-intensity correlation functions to the potential mi-
croscopy and atom imaging. We include in our analysis the
dipole-dipole interaction between atoms. In particular, we
demonstrate how the distance information can be obtained
by measuring the intensity-intensity correlation function of
the emitted fluorescence field. It turns out that the power
spectrum of the intensity-intensity correlation function is
well suited to gaining distance information over a wide range
of parameters with high accuracy. Our results can be applied
to physical systems which may be approximated as two-level
systems, where the two energy states are connected by an
electric-dipole-allowed transition. Possible examples include
atoms, molecules, and artificial quantum systems such as
quantum dots.

This paper is organized as follows. First, we give a brief
description of the system and derive expressions for the
intensity-intensity correlation function. Next, we discuss the
dependence of the correlation function on the interatomic
distance based on the numerical results. Finally, based on
these results, we propose a measurement scheme that allows
us to obtain distance information from the correlation func-
tion and its power spectrum.

II. INTENSITY-INTENSITY CORRELATION FUNCTION

Our model system consists of two identical two-level at-
oms, with transition frequencies w, dipole transition mo-
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FIG. 1. (Color online) Two atoms in a standing-wave field with
a distance r;; smaller than half the wavelength \/2 of the driving
field. Two geometries are considered in this paper: The driving field
propagation direction is either (a) parallel or (b) perpendicular to
the interatomic distance vector ry,.

detectors

ment u, and decay rate y. The atoms are assumed to be
located at position r;=(x;,y;,z;)! in a linearly polarized near-
resonant standing-wave laser field [see Fig. 1(a)]. The dis-
tance between them is rj,=[r,| with r;;=r;,—r;. Further, they
are coupled to all the other modes of the electromagnetic
field, which are assumed to be in their vacuum state initially.

In the laboratory frame and under the rotating-wave ap-
proximation, the system evolution is described by the re-
duced atomic density operator p, which obeys the following
master equation [22-25]:

2
dp 1 _ _
—=—[H.pl- 2 v((5.S;p]-[S;.pSTD. (1)
ot lﬁ ij=1 ’

Here ST and S are the atomic raising and lowing operators

that raise and lower the state of atom i (i € {l1,2}). These

operators satisfy the following relations (i # j):

($)°=0, S7S7=S757

TS SIS =88 (2)

The system Hamiltonian is given by H=H,+H ;,+H;, where

2
h
Hy= 56002 (8787 =8;S7), (3)
i-1
Hgq=1815(S7S; + 5357), (4)
52
H, = 52 (QSFe7 L' + H.c.) (5)

i=1

are the free energy, the dipole-dipole interaction, and the
interaction with the driving laser field, respectively. In the
above equations, w; is the frequency of the driving field and
k=kk is its wave vector, which is along the z axis of our
coordinate frame. (), is the driving-field Rabi frequency of
atom i (i € {1,2}). The parameter 7,; is given by

3 (sin(kr,.j)
Yij Y (krij)

2
and contains both the usual spontaneous emission rates y of
the two individual atoms (i=j) and collective cross-damping

cos(kr;;) ~ sin(kr,»j)) 6
(krij)2 (krij)3 | (©)
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terms (i # j). The dipole-dipole interaction potential ), is
given by

3 cos(kryy) sin(kry)  cos(kry,) )
Q=9 - .
2 y( (kry2) ’ (krip)* * (kryp)? )

2

Both the terms proportional to );, and 7, in the master
equation (1) arise from the interaction of the atoms via the
empty modes of the quantized radiation field [9]. From Egs.
(6) and (7), we can see that these two dipole-dipole interac-
tion terms can crucially influence the system dynamics if the
two atoms are very close to each other. For small interatomic
distances (kr;;<<1), Egs. (6) and (7) may be simplified to

_ 3
2 (k)

For large distances (kr;>1), 1,=~0 and ;= 35,
6; is the Kronecker delta symbol.

Supposing that the laser propagation direction is along the
interatomic distance vector, and that the position of the first
atom relative to a standing-wave field node is z;, then the
two Rabi frequencies are given by

O, =Qsin(kz;), Q,=Qsin(kz;, +kzy), )

Yii = Y- (8)

where

where z;,=r|, in our geometry. Further, we suppose that the
transition dipole moments of the two atoms are parallel to
each other and are aligned perpendicular to the distance vec-
tor of the two atoms ry,, e.g., by means of a weak external
field. Note that in other geometries, further contributions to
the master equation may arise [26]. The geometry of the
system is illustrated in Fig. 1(a).

The two-time intensity-intensity correlation function of
the light field detected at point R, at time #; and at a point R,
at time ¢, is defined as [27]

GP(Ry,11;R,, 1) =(ED(R,1) ED(Ry, 1) EV (R, 1)
XEWD(R.1)). (10)
Here, E®) are the negative- and positive-frequency parts of

the electric field operator. The normalized intensity-intensity
correlation function is defined as

G(z)(Rl, 11:Ry, 1)

AR, 1;R1) =
g ( 15115089, 2) G(l)(Rl,tl)G(l)(Rz’tZ),

(1

where
G(l)(Ri,fi) = <E(_)(Risti)E(+)(Ri,ti)> (12)

is the first-order correlation function of the field detected at a
point R; at time #; (i €{1,2}), i.e., the field intensity. The
correlation function G®(Ry,1,;R,,1,) is proportional to the
joint probability of finding one photon at R; at time #; and
another photon at R, at time #,, and yields information about
the photon statistics of the emitted light.

Following the approach in [27], these two kinds of corre-
lation functions can be written in terms of the expectation
values of the atomic transition operators as follows:

2

GI(R,)=UR) X (SH(t")S7(¢")exp(ikR - 1)), (13)

i.j=1
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G(z)(RlJl iRy, 1) = U(R)U(R,)
2

X 2 (STENSHEN S () ST (1))
i,j.kl=1

X explik(R; -1+ R, - r)], (14)

where t'=t-R/c, tga):ti—Ra/c, and U(R;)
=wou? sin” 0/ (2R} me) (i, e{1,2}). Here, @ is the angle
between the observation direction and the atomic dipole
moment u. Note that we do not include retardation effects,
since it has been shown that retardation effects play a sig-
nificant role in the resonant interaction of two identical at-
oms only if the interatomic distance is larger than the
resonant wavelength [28].

Thus, the normalized intensity-intensity correlation
function of the steady state can be written as

g(z)(R],R2;T) = lim g(z)(Rl,t] ,Rz,tl + T)

[lHCXJ

GOR,,t;; Ryt + T
= lim —; R, i ) . (15)
t—® G (R],t]) . G (Rz,[] + T)

In our geometry, under the far-field approximation, we have

RIZRZ’ (16)
f =1 =1, (17)
=P =1). (18)

Therefore the intensity-intensity correlation function can be
simplified to give
2 ~ ~
g(2)(R1’R2;T) = lim 2 kR TRy 1)

£l irjikl=1

(STa))ST (1] + DS} + DS, (1))
2

5.
( 2 (Sh(t1)S,(1])exp(ikR - rmn))

m,n=1
(19)

Thus, we have expressed the correlation function of the elec-
tromagnetic field in terms of the correlation function of
atomic operators. It is well known that the expectation value
of an atomic operator Q can be written as

(Q)=Tr(pQ), (20)

where the trace involves only atomic and laser field degrees
of freedom. Substituting S7(i € {1,2}) into Eq. (20) and using
the master equation (1), we can get a closed set of 15 first-
order differential equations describing the evolution of the
atomic variables. In a matrix notation, this set of equations
can be rewritten as an inhomogeneous equation:

X(H)=MX(#) +1, (21)

where the overdot indicates differentiation with respect to yr.
X(z) is the column vector with elements
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Xi=(8D. X=(S), (22a)
X:= (55, X=(5). (22b)
Xs=(Si87). Xe=(5:5)), (22¢)
X;=(S183).  Xg=(Si5D), (22d)
Xo=(S1(0S3).  X10=(SiS)). (22¢)
X1 =(515780).  Xi,=(5{535)), (22f)
X =(835150).  Xia=(515:5)), (22g)
X15=(8753552). (22h)
The operators in Eq. (22) are defined as
S5(1) = % exp(Fiwy1). (23)

M is a 15X 15 matrix containing the coefficients of the dif-
ferential equations, and I is a constant column vector. The
nonvanishing elements of matrix M and vector I are given in
the Appendix. The dimensionless parameters are defined as

Q QO
Blz_l’ 2:_2’ a:m, (24&)
Y Y Y
QO —
h=—2 A=M. (24b)
Y Y

For nonzero determinant of the matrix M, the steady-state
solution of Eq. (21) is given by
X(%)=-MI. (25)

Then the matrix M can be diagonalized by a complex invert-
ible matrix T. Let q:T"MT, Y=T"'X, and W=T"1, then
the solution of Eq. (21) can be rewritten as

Y,(7) =1lim[Y(r) Jexp(q;;7) — (q_l)ii[l —exp(q;7)]W;.

(26)

In order to calculate the two-time correlation function, we
also need to make use of the quantum regression theorem

[24]. 1t states that for some operator O, if the time evolution
of one-time expectation values can be written as

(O(t+7)= E ai(1(0,(1)), 27

then two-time expectation values can be expressed as

(000Gt + DO = 2 a)(THONO (O (28)
J

With this preparatory knowledge, we can express the steady
state of the first- and second-order correlation functions of
the radiation field as follows:
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GYR, ¥ =X, + Xp cos(kR - rp) +iX, sin(kR - rpo),

(29)
and
G(Z)(Rl,Rz, T)SS = [Xa, + XB COS(klA{l . 1'12)
+iX,, sin(kR; - r1p)][X,
+ X.B COS(kﬁz . l‘12)
+ le Sin(ki{Z . rlz)]
15
+ 2 P, (30)
j=1
Here, X, =X5() +X¢(0), X=X7() +Xg(), and

X,=X7()—Xg(); superscript SS indicates steady-state
results. Further

P;=[A;+B;+(C;+D)cos(kR, - 1}5) +i(C;~ D))
Xsin(kR; - 1) [(Ts; + Te)) + (T7;+ Ty)
Xcos(kR; - 11,) +i(Ty; — Tg))sin(kR, - r1,)],  (31)
where
Aj= (T_l)ﬂX]Z(OO) + (T_l)j4X11(°°) + (T_l)jsxls(w)

+ (q_l)ijjXS(oc)y (32a)

B;=(T™);1X15(%) + (T ;oX13(%) + (T7) 15X 5(0)

+(q7");;WX4(), (32b)

Ci=(T)0X (%) + (T71) 13X 14(%0) + (T71) ;s X 5(0)

+(q7");WX5(), (32¢)

D= (T X12(%) + (T1)4X13() + (T™") j7X5()

+(q7");;WXg(). (32d)
III. NUMERICAL RESULT AND DISTANCE
MEASUREMENT

Using Eq. (30), we can numerically calculate the normal-
ized intensity-intensity correlation function g®(7). The re-
sults show very distinct behavior for different interatomic
distance ranges. Figure 2 shows several examples of the cor-
relation function g?(7) for different interatomic distances,
with the parameters indicated there.

It turns out that the intensity-intensity correlation function
itself cannot easily be interpreted in terms of the actual in-
teratomic distance. Instead, it is more convenient to analyze
the power spectrum of the intensity-intensity correlation
functions. For simplicity, the power spectrum S(v) of
g?(n-1 is studied here. As lim, .g?(n=1, the
constant only gives rise to a & peak contribution at a fre-
quency of zero in the power spectrum  of
g?(7). From Eq. (30), it is easy to evaluate the Fourier trans-
form of g@(7)—1 as
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FIG. 2. Samples of g?(r) for A=0, R,-r;;=R,-r,=0,
kz;=0.17. (a) Small-distance case: z;,=0.03\, 1=207y. (b) Inter-
mediate distance, weak driving field: z;,=0.08\, Q=207. (c) Inter-
mediate distance, strong driving field: z;,=0.08\, Q=300y. (d)
Large-distance case: z,,=0.6\, (1=207y.

s L3 ( =
CNE v+Im(g;;) —iRe(g;)

J
+ iP;F ) (33)
V- Im(CIjj) -1 Re(qjj) .

Here, N =2v’ET[G(1)(R ,)]? is a normalization constant, and
Im(x) and Re(x) denote the imaginary and the real part of x,
respectively. The power spectrum |S(v)| is shown in Figs.
3—-6, with same parameters as in Fig. 2. With the help of
Figs. 3-6, it is clear that the different behaviors of the
intensity-intensity correlation functions are due to different
frequency components dominating the system. These fre-
quency components are related to the position and distance
information of the two atoms. With the help of Eq. (33), we
can use the two atomic position parameters z; and z;, to fit
the measured correlation function and spectrum using well-
developed experimental data analysis techniques. This pro-
cess provides the position and distance information between
the two atoms.

1S(w)!
S~ B W B U oo

0 100 200 300 400
v (Units of )

FIG. 3. (Color online) Power spectrum of the g®(7) sample
shown in Fig. 2(a), the small-distance case: z;,=0.03\, Q=207.
The solid line indicates the position of Q.
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0 10 20 30 40 50
v (Units of ~)

FIG. 4. (Color online) Power spectrum of the ¢@(7) sample
shown in Fig. 2(b), for the case of intermediate distance and weak
driving field: z;,=0.08\, 1=207. The solid line indicates the posi-
tion of (),, the dashed line indicates the position of €}, and the
dotted line indicates the position of (),.

Thus the basic strategy is to measure the intensity-
intensity correlation function of the resonance fluorescence
light field, to evaluate the power spectrum from it, and then
to extract spatial information from it by fitting it numerically.
However, our investigation of the properties of ¢g(7) and
|S(v)| shows that in certain limiting cases, it is possible to
obtain the distance and position information directly from
the power spectrum with satisfactory precision, i.e., without
the fitting of the full spectrum. This will be discussed to-
gether with the measurement procedure in the following.

The first step is to apply a standing-wave laser field to the
two-atom system, which corresponds to a maximum Rabi
frequency () of about 207y for an atom positioned at an anti-
node of the standing wave. The laser propagation direction is
along the connection vector r, of the two atoms. Since we
are measuring in the far-field region such that the interatomic
distance is much smaller than the distance from the atoms to
the detectors, we can always arrange the two photon detec-
tors at positions R; and R, with R;=R, and directions per-
pendicular to the interatomic distance vector (R;Lr,,
R, L r,). Using coincidence measurement techniques, the
intensity-intensity correlation function of the emitted light
field can be measured. Based on the results of the g@(7)
measurement, three different parameter ranges can be distin-
guished.

(a) If g®(7) and its power spectrum are similar to those in
Figs. 2(a) and 3, then the interatomic distance is small (z;,

14
12
10

(=R SR e

0 100 200 300 400
v (Units of )

FIG. 5. (Color online) Power spectrum of the g®(7) sample
shown in Fig. 2(c), for the case of intermediate distance and strong
driving field: z;,=0.08\, Q=3007y. The solid lines indicate the po-
sitions of )+, and ,+(),, the dashed line indicates the posi-
tion of €}, and the dotted line indicates the position of (),. In the
spectrum, the peaks 1, 2, 3, 4, 5, and 6 correspond to frequencies
Q1=Qp, Q1+ Q0, Qr—Q4, Qs—=Qp5, Qr+Qy, and QO +Q,.
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FIG. 6. (Color online) Power spectrum of the g®(7) sample
shown in Fig. 2(d), the large-distance case: z;,=0.6\, (1=20y. The
dashed line indicates the position of ();, and the dotted line
indicates the position of (),.

<\/30). In Figs. 2(a) and 3, the actual interatomic distance
is z;,=0.03\, which corresponds to an interaction energy of
0,=220.096y. The system evolution is dominated by the
dipole-dipole interaction energy ();,, which gives rise to a
single-peak structure in the g'® spectrum. As shown in Fig.
3, the peak center v, is coincident with the dipole-dipole
interaction coefficient (), indicated by a solid line. Thus, a
measurement of the peak position v, allows us to gain an
estimate of ()}, and thus of the interatomic distance via Eq.
(7).

In a measurement, two error sources have to be distin-
guished. The first error source is related to experimental im-
perfections, and corresponds to uncertainties in the measure-
ment of the spectra shown in Figs. 3-6. In the following, for
simplicity, we will cover such uncertainties by an overall
relative experimental uncertainty U“?". The position of the
peak in the spectrum Fig. 3 is v,=220.49y. Assuming an
experimental uncertainty of U*?'=10%, the experimentally
accessible value for ), thus is Q{¥'=(220.49+22.05)7y.
From Eq. (7), Q¥ yields a measured distance of
77¥'=(0.030+0.001)\, which is in very good agreement with
the actual value z;,=0.03\. Note that due to the structure of
Eq. (7), for small distances, the experimental uncertainty of
Zi¥" is only about U*?'/3 [17]. In this example, the absolute
measurement uncertainty for the distance is less than 0.4% of
the wavelength A.

The second source is a systematic error, and is due to the
fact that the peak position v, accessible in experiments does
not exactly coincide with the theoretical interaction energy
Q,. This deviation is generally negligible for small inter-
atomic distances, but will be discussed below in this section.

If we look more closely at the details of the peak in Fig. 3,
it reveals a more complicated structure. In Fig. 7, it can be
seen that the dominating peak is overlaid by a Fano-like
“spike” structure. One way of avoiding such complications is
to adjust the geometry of the system to the setup in Fig. 1(b),
where the driving field propagates perpendicular to the inter-
atomic distance vector of the two atoms. In this configura-
tion, the two atoms experience the same driving field
(Q,=Q,). This symmetry simplifies the power spectrum of
g(z), as shown in Fig. 8. On the other hand, resolving this
structure in an experiment may provide a more accurate mea-
surement of the interatomic distance, as discussed in the next
paragraph.
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1S(v)l
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FIG. 7. (Color online) Detailed spectrum for small interatomic
distances under different alignments (cf. Fig. 8). The two atoms are
aligned along the propagation direction of the driving field, as
shown in Fig. 1(a). In the enlargements, solid vertical line indicates
the actual value of (),, whereas the dashed line indicates the peak
center of the plotted spectrum.

We now turn to a more thorough study of the deviation of
the experimentally accessible peak position v, from the the-
oretical value of (), in the geometry described in Fig. 1(a).
Figure 9 shows this relative deviation U,=(v,~€,)/{,
versus the atomic separation z;, for different Rabi frequen-
cies () of the driving field. Figure 10 shows the deviation U,
versus the Rabi frequency for different positions of the first
atom. It is apparent that as long as (), y<(),, is satisfied, the
peak position v, can directly be identified with (),; the de-
viation U, is much smaller than 1%. If for a specific setup
the experimental uncertainties U*?" are smaller than U, then
the accuracy of the distance measurement can be maximized
by fitting the whole g spectrum numerically, taking the
approximate results of the above scheme as a starting point.
In Figs. 9 and 10, we also find branching points similar to
those found in our previous work [17]. However, it is very
difficult to get accurate analytic relations between the posi-
tions of the branching points and the system parameters of
interest without a numerical fit. Therefore, here we only fo-
cus on the distance information. One can, however, also take
advantage of the “spike” as shown in Fig. 7 instead of avoid-
ing it by switching to a new alignment. A numerical investi-
gation shows that the position v4 of the dip behind this spike
is much closer to (), than the peak position v, found in the
previous part. For example, in Fig. 7, one finds
14=220.079y, such that the deviation from €, is only
0.008%. This is significantly less than the deviation between
v, and {),, which is approximately 0.17%. Thus the system-
atic error U, of this method is very small, and the error of the

1S(v)
S = D W s NN

0 100 200 300 400
v (Units of )

FIG. 8. (Color online) Detailed spectrum for small interatomic
distances under different alignments (cf. Fig. 7). The interatomic
distance vector is perpendicular to the laser propagation direction,
as shown in Fig. 1(b). In the enlargement, solid vertical line indi-
cates the actual value of {),, whereas the dashed line indicates the
peak center of the plotted spectrum.
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FIG. 9. Deviation 8/Q,=(v,~{25)/{), of the peak position v,
from (), for closely spaced atoms in the geometry shown in Fig.
1(a) (A=0, R, -r,=R, r;,=0), and plotted against the interatomic
separation. kz;=0.17, Q=37 (solid), 20y (dotted), 80y (dashed).
Branches correspond to splittings into two peaks.

final result will dominated by the other error sources
summarized in U7,

(b) If the measured ¢ (7) and its power spectrum are
similar to those in Figs. 2(b) and 4, then the interatomic
distance is in the range A/30-A/10, which we call the
“intermediate-distance case.” In this regime, the effects of
the driving field and the dipole-dipole interaction between
the two atoms are comparable to each other. As a result, the
correlation function and its power spectrum are rather com-
plicated. All frequency components related to these two in-
teractions and their combinations show up in the power spec-
trum. One way of avoiding this complication is to increase
the intensity of the driving field, typically such that the maxi-
mum Rabi frequency reaches about 200y. While the driving-
field intensity is increased, one continuously measures the
intensity-intensity correlation function and its power spec-
trum. Eventually, the spectrum looks like Fig. 5, where all
the frequency peaks are well separated, and there are two
doublets which maintain the same doublet splitting o, during
the increase of the field intensity. These doublets can be
identified with the frequencies ;+(, and Q,+(),. For
example, in Fig. 5, the theoretical value for 2€}, is 21.189,
corresponding to an actual value of z;,=0.08\. On the
other hand, the experimentally accessible splitting of the
doublet around (), is 0,=21.637y. Allowing for an experi-
mental uncertainty U“?'=5%, the measured splitting thus is
205¥'=(21.63+1.1)y. Using Eq. (7), the measured inter-
atomic distance evaluates to z{3*'=(0.079+0.0014)\, which
again is in good agreement with the actual value.

(%)
O =~ N W A W

0 50 100 150 200
Q (units of A)

FIG. 10. Deviation 8/Q,=(v,~{15)/€), of the peak position
v, from ()4, for closely spaced atoms in the geometry shown in Fig.
1(a) (A=0, ﬁ| -r|2=ﬁ2~r12=0), and plotted against the driving field
Rabi frequency. z,=0.02\, kz;=0.17 (dotted), 0.25 (solid), 0.4
(dashed). Branches correspond to splittings into two peaks.
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20

§/Q12(%)

S W O W

120
Q (units of )

FIG. 11. Deviation 6= 0,—20, of the doublet splitting o}, from
20}, for the strong-field, intermediate-distance case. r;;=0.08\,
0=m/2, and A=0. The positions of the atoms are kz;=0.1 (solid),
0.27r (dashed), and 0.37 (dotted).

We now turn to the discussion of the systematic error
sources in this case. Figure 11 shows the relative deviation
Uqs=(v,—Q4,)/Q, of the experimentally accessible doublet
splitting o, from the desired value 2{};, versus the driving
field Rabi frequency for different position of the first atom. It
can be seen that this deviation can be kept less than 5%, if
the driving field is strong enough (>(),,). Apart from in-
creasing the intensity of the driving field, the field phase can
also be adjusted such that the atoms come close to a node.
Then, the effective Rabi frequencies (}; and (), increase.
Again, more accurate information can be obtained by a nu-
merical fit of the measured spectrum, starting from the
approximate values obtained via the above scheme.

(c) Finally, if g®(7) and its power spectrum are similar to
those in Figs. 2(d) and 6, it means that the interatomic dis-
tance is much larger than in the previous two cases. Here we
suppose that the two atoms are confined to within one quar-
ter of a wavelength, as larger distances are accessible by
classical measurement schemes, or by the scheme considered
in our previous work [17]. For larger distances, the dipole-
dipole interaction is very small. The system is dominated by
the interaction between the atoms and the laser field. The two
peak visible in Fig. 6 in the spectrum of g correspond to
the Rabi frequencies (); and (), experienced by the two at-
oms. The two peaks can be identified easily by increasing the
driving-field intensity. The interatomic distance ry, can then
be evaluated through the expressions of Eq. (9) for ), and
Q.

Up to this point, we have focused our analysis on a sys-
tem geometry where both detectors are equidistant to the
scattering atom pair and aligned orthogonal to the inter-
atomic distance vector. The two-photon correlation function,
however, is also known to exhibit angular correlation effects
for different detector positions [29]. Results for the intensity-
intensity correlation function for several detection setups are
shown in Fig. 12. It can be seen that the shape of the corre-
lation function does change with the detection geometry. For
example, in Fig. 12(b), curves (i), (ii), and (iv) tend to 1 for
7—0, whereas curves (iii) and (iv) tend to O in this limit.
The corresponding power spectra are shown in Fig. 13. From
this figure it is apparent that the observables crucial to our
distance analysis, namely, the positions of the different peaks
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9@ (r)
N

(ii)

“PN‘H{M\WMWM\Ww ]

0 0
0 051 15 2 25 3 0 051 15 2 25 3
7 (units of v~ 1) 7 (units of v~ 1)

FIG. 12. (Color online) Dependence of the intensity-intensity
correlation function on the geometrical setup of the detectors. (a)
corresponds to the small-distance case, with parameters as in Fig.
2(a), whereas (b) shows the large-distance case as in Fig. 2(d). The
respective curves in the subfigures correspond to different detector
setups: (i) 6,=m/2,6,=7/2, (ii) 6,=0,6,=0, (iii) 6,=7/2,6,=0,
(iv) 0,=m/2,0,=m/4, (v) 6,=m/4,0,=m/4. Here, 6; (i e{1,2})
are the angles between the interatomic distance vector ry, and the
observation directions R; of the two detectors. Note that the curves
have been shifted by integer multiples of 0.5 in the y direction in
order to allow for a comparison. Without this artificial shift, all
curves roughly coincide with the respective curves (i), but with
different high-frequency modulation structure in (a), and different
values for 7—0 in (b).

in the power spectrum, are hardly affected by the detector
setup. This can intuitively be understood from our analysis of
the peak structure in Fig. 5. There we found that the peak
positions depend on characteristic frequencies determined by
the internal dynamics of the two-atom system, which is in-
dependent of the external detector geometry. Thus, one can
expect the peak positions to be unaffected by the detection

:‘é
£
i) \
= (AN \
= A/
& W
L \ t\ ‘ / A
(ii),\/ 0
Il Il Il 1 1 1 1 I
210 215 220 225 2300 5 10 15 20 25 30

v (units of ~) v (units of v)

FIG. 13. (Color online) Power spectra of the intensity-intensity
correlation functions shown in Fig. 12. In (a), the curves have been
shifted by integer multiples of 0.5 in the y direction in order to
allow for a comparison. In (b), no additional shift has been applied.
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system, whereas the peak amplitudes are subject to amplifi-
cation or attenuation due to spatial interference effects. For
example, in Fig. 13(b), the amplitude of the left peak at
around v=67% strongly depends on the detection geometry,
further supported by an overall attenuation of the power
spectrum for certain detector positions. From our numerical
analysis, we find that the detector positions shown in Fig. 1
and used throughout our analysis are well suited for the
whole range of considered distances.

The limitations of remote measurement schemes for very
small distances have been discussed in our previous work
[17]. Fundamental constraints arise from quantum or thermal
uncertainties in the position of the particles. Note, however,
that for harmonic oscillations of the particles around their
equilibrium positions, the classical turning points of the mo-
tion can be measured via the optical far-field properties.
These again allow one to determine the mean interatomic
distance [17]. Further, such schemes are typically limited to
distances for which the dipole-dipole interaction energy does
not exceed the atomic transition frequencies, namely,
O, <wy. From Eq. (8), rip=N/(2m)((3/2)'3(y/Q)"3. In
the optical region, we typically have w,~ 10" Hz, 7y
~10" Hz. Then the dipole-dipole interaction energy (),
<10 Hz, and consequently, we obtain a distance measure-
ment limit of \/550.

IV. SUMMARY

In summary, we discussed the properties of the intensity-
intensity correlation function of the fluorescence field emit-
ted by two nearby atoms placed inside a standing-wave laser
field. In particular, we showed how interatomic distance in-
formation can be obtained by analyzing the power spectrum
of the correlation function. Our scheme allows us to measure
interatomic distances from the classical refraction limit \/2
down to about A/550 using detectors with state-of-the-art
time resolution. For a typical optical wavelength, the range is
thus from several hundred nanometers to a few nanometers.
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APPENDIX

The nonvamshmg elements of vector I are 11—1,81/2
I,=-iB,/2, 13—1,82/2 I,=—iB,/2. The nonvanishing
elements of matrix M are as follows:

M(1,1)=_(1 +iA), M(1,3)=—((1—ib),
M 5 = 1181’ M, 12 =2(a—ib),
Mgy == (1-id), Mpu=-(a+ib),

M(Z,S) =i, M2,11 =2(a+1ib),
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M(3’1)=—(a—ib), Mg =-(1 +iA),
MG =—iBy Mg y=2(a—ib),
My == (a+ib), Mys=—(1-id),
My =iBs, My 3=2(a+ib),
M5 y=—ifi/2, Mo =iB/2,
Mg s ==2, Msg=-(a+ib),
Ms gy =—(a—ib), M3 =—if:/2,

Mea=iBy/2, Mg =-2,

M == (a-ib), Mg =-(a+ib),
Mgy ==iBy2, Mpu=ipy/2,
M5y ==(a+ib), Me=~(a—ib),
Mg7==2, Muy=-iB,
Mg 14 =16, M5 =4a,
M5 =iBy/2, Mgz =—iBi/2,
Mgsy=—(a—ib), Mg =—(a+ib),
Mg ==2, Mg p=ifi,
Mg 15 =—if, Mgs=4a,
M1y =iBy2, Mz =iB/2,
Mg ==2(1+iA), My z=-iB,
Mo y=—iB Mg =-1iB:2,
Mp4y==iB1/2, Mg10)=—2(1 =iA),
M(10,11)=i,31’ M(10,13)=i,32’
M1 5=—iB2/2, Mqui7=—iBi/2,
M(11,10)=iﬂ>1k/2, M(11 1) =" (3 iA),
M43 == (a=ib), My 14=iB,

M25 =iB5/2, Mg =if/2,
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Mjp9)=— iB)/2. M12) == (3+i4),
M4 == (a+ib), M5 =—iB,
Mj36==iB1/2, Mg =—1iB/2,
M3,10) = iBy/2, M3y =-(a—ib),
M35 == (B —=id), M35 =i,

Mj46) = iB112, My =ips/2,

PHYSICAL REVIEW A 74, 043820 (2006)

M40 == if2/2, My 1=~ (a+ib),
My 14== (3 +id), My 5=~ iﬁT’

Mi5.11y=iB2/2, Ms12=—iB:/2,
M55 =iB1/2, Ms i =—iBi/2,

M55 =—4.
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