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Abstract

Summary: Recently, deep learning models, initially developed in the field of natural language processing (NLP),
were applied successfully to analyze protein sequences. A major drawback of these models is their size in terms of
the number of parameters needed to be fitted and the amount of computational resources they require. Recently,
‘distilled’ models using the concept of student and teacher networks have been widely used in NLP. Here, we
adapted this concept to the problem of protein sequence analysis, by developing DistilProtBert, a distilled version of
the successful ProtBert model. Implementing this approach, we reduced the size of the network and the running
time by 50%, and the computational resources needed for pretraining by 98% relative to ProtBert model. Using two
published tasks, we showed that the performance of the distilled model approaches that of the full model. We next
tested the ability of DistilProtBert to distinguish between real and random protein sequences. The task is highly chal-
lenging if the composition is maintained on the level of singlet, doublet and triplet amino acids. Indeed, traditional
machine-learning algorithms have difficulties with this task. Here, we show that DistilProtBert preforms very well on
singlet, doublet and even triplet-shuffled versions of the human proteome, with AUC of 0.92, 0.91 and 0.87, respect-
ively. Finally, we suggest that by examining the small number of false-positive classifications (i.e. shuffled sequen-
ces classified as proteins by DistilProtBert), we may be able to identify de novo potential natural-like proteins based
on random shuffling of amino acid sequences.

Availability and implementation: https://github.com/yarongef/DistilProtBert.

Contact: ron@biocom1.ls.biu.ac.il

1 Introduction

In recent years, the field of natural language processing (NLP) has
rapidly advanced. Mechanisms and learning paradigms such as
attention-based transformers (Vaswani et al., 2017), masked lan-
guage modeling (MLM) (Devlin et al., 2018) and special refinements
of these methods (Lan et al., 2019; Liu et al., 2019) have improved
our understanding of text and our ability to mine it. Transfer learn-
ing and pretraining learning procedures using increasingly larger
and larger datasets have made it possible to create meaningful repre-
sentations of words and sentences. Since these techniques often cre-
ate huge networks, distillation methods have been suggested to
create more compact models, while maintaining accuracy (Hinton
et al., 2015; Jiao et al., 2019; Sanh et al., 2019). Recently, these
NLP techniques have been applied to study protein sequences
(Elnaggar et al., 2021; Ofer et al., 2021). Using recurrent neural net-
works (Alley et al., 2019) and transformer architectures (Brandes
et al., 2022; Rives et al., 2021) to create these representations pro-
vided approaches to improve the performance in various protein
downstream tasks such as secondary structure prediction (Wang
et al., 2021), flexibility prediction and fluorescence prediction as
shown in TAPE benchmark (Rao et al., 2019). Moreover, recent
protein structure prediction algorithms such as AlphaFold (Jumper
et al., 2021), RoseTTAfold (Baek et al., 2021) and trRosetta (Yang

et al., 2020) also utilize deep learning for structure prediction, fur-
ther fueling the rapid development of structural biology. Here, we
show the first application, to the best of our knowledge, of a dis-
tilled model for protein sequence analysis. We note that distilled
models contribute to the success of AlphaFold in protein structure
prediction (Jumper et al., 2021). We present DistilProtBert, a novel
protein attention-based model based on ProtBert (Elnaggar et al.,
2021). By taking advantage of a large pre-training protein dataset, a
teacher network, knowledge distillation mechanism and a standard
GPU cluster, we demonstrate a simpler yet accurate way to represent
proteins. We show that DistilProtBert performs on-par with the full
version of ProtBert on two published benchmarks.

In addition, this model may be used to distinguish between real
and random proteins. The number of different proteins in nature is
huge, estimated to be about 1011. Nevertheless, this is only a minis-
cule fraction of the number of possible sequences that can be created
from an alphabet of 20 amino acids, which is 20N, where N is the
length of the protein, typically several hundred amino acids. The
common wisdom is that most of the random sequences will neither
fold nor have any useful function. In recent years, however, several
works have suggested that the fraction of random proteins that can
fold is not negligible (Monzon et al., 2022; Tretyachenko et al.,
2017). This debate raises an obvious yet fundamental question:
What are the characteristics of a sequence of amino acids that result
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in a protein? Several studies have been devoted to this question from
different viewpoints (see e.g. de Lucrezia et al., 2012; Weidmann
et al., 2021). In this study, we ask whether a deep learning approach
based on NLP could distinguish between real sequences of proteins
and their shuffled random counterparts. Proteins have characteristic
amino acid compositions not only on the single amino acid level,
but also at the level of doublets and triplets, and thus, amino acid
composition could serve as a key to identifying real proteins (Pe’er
et al., 2004). Nevertheless, for a given amino acid composition, dis-
tinguishing between real and random sequences that maintain the
same amino acid composition remains a major challenge. We show
here that DistilProtBert does very well at this challenge and was able
to distinguish between real proteins and their shuffled counterparts
suggesting that real proteins have underlying characteristics that are
not captured by their amino acid composition.

2 Materials and methods

2.1 Data
2.1.1 Pretraining dataset

ProtBert was pretrained on �216 M proteins from the UniRef100
dataset (Suzek et al., 2007). DistilProtBert was pretrained on �43
M proteins from UniRef50 release 2022_02 (Suzek et al., 2007) fil-
tered by length from 20 to 512 amino acids.

2.1.2 Benchmarks datasets

DistilProtBert was evaluated on several benchmark tasks. For sec-
ondary structure prediction (Q3), we used Netsurfp2 (Klausen et al.,
2019), CASP12 (Moult et al., 2018), CB513 (Cuff and Barton,
1999) and TS115 (Yang et al., 2016) datasets and for membrane-
bound versus water soluble prediction (Q2), we used the DeepLoc
dataset (Almagro Armenteros et al., 2017). To distinguish real pro-
tein sequences from random k-let shuffled versions of them, we used
singlet, doublet and triplet non-redundant versions of the human
proteome.

2.2 Pretraining
DistilProtBert was pretrained on �43 M sequences from UniRef50
with length ranging from 20 to 512 amino acids. We pretrained the
model on a MLM task with masking probability of 15%.
Pretraining was done on five v100 32-GB Nvidia GPUs from a DGX
cluster with a local batch size of 16 examples. We used AdamW
optimizer with an initial learning rate of 5e�5 and no weight decay.
The model was trained for three epochs using mixed precision and
dynamic padding. Every epoch run took approximately 4 days,
resulting in total pretraining time of 12 days.

2.3 Knowledge distillation
The weights of DistilProtBert were initialized using the weights learn-
ed from ProtBert. Knowledge from the teacher network (ProtBert)
was distributed toward the student network (DistilProtBert), via the
loss function. As described in Sanh et al. (2019), the loss is comprised
of three equally weighted parts: Lmlm, Lce and Lcos. A softmax tem-
perature of 2 was set during pretraining (Hinton et al., 2015).

2.4 Fine tuning for benchmark tasks
To fine-tune DistilProtBert for secondary structure prediction (Q3),
an all-tokens (amino acid) classification head (linear layer for each
hidden-state output) was added on top of our pretrained model. For
membrane-bound versus water soluble prediction (Q2), a first token
classification head was added on top of our pretrained model. In
this strategy, we utilized the first token from DistilProtBert corre-
sponding to [CLS] token, which attends all the other tokens in the
sequence to capture the best representation for the whole sequence.
Fine-tuning of the model for all benchmark tasks was performed
without any layer freezing and was done with the same hyperpara-
meters as reported by Elnaggar et al. (2021).

2.5 Real versus shuffled protein classification task
The real versus shuffled proteins task was constructed in the follow-
ing manner: singlet, doublet and triplet versions of the human prote-
ome were used as our dataset. Out of 20 577 human proteins (from
UniProt), sequences shorter than 20 amino acids or longer than 512
amino acids were removed, resulting in a set of 12 703 proteins. The
uShuffle algorithm (Jiang et al., 2008) was then used to shuffle these
protein sequences while maintaining their k-let distribution for
k¼1, 2, 3. The very few sequences for which uShuffle failed to cre-
ate a shuffled version were eliminated.

A notorious problem in classification tasks of proteins is that
many proteins are part of a family with several homologs and tend
to be similar to each other, thereby rendering the distinction be-
tween training and test sets meaningless. To address this problem,
we ran all the sequences (real and shuffled) through the h-CD-HIT
algorithm, which is the most rigorous version of CD-HIT. Three
subsequent filter stages of CD-HIT were performed with pairwise
identity cutoffs of 0.9, 0.5 and 0.1, respectively. Note that this filter-
ing resulted in a much smaller number of sequences that maintained
triplet frequency, as it was apparently difficult to shuffle sequences
to deviate sufficiently from their source while maintaining the triplet
composition. All the sets contained pairs of sequences, the real pro-
tein and its shuffled counterpart and the algorithm was tasked with
classifying the real versus the random sequence. We split the sequen-
ces to training and test sets, 80% were set as a training set and the
rest 20% were set aside for test. A 10-fold cross validation was per-
formed for each one of the k-let training sets and the average results
were reported. Then, the performance of our model was evaluated
on the 20% test set that was set aside. The datasets sizes are shown
in Table 1.

DistilProtBert was used as a feature extractor, performing max
pooling (filter size¼16, stride¼16) on each of the token (amino
acid) representations. Afterward, concatenation and zero padding
were performed. We then used a feed-forward neural network to
classify the sequences into the two classes. We trained the network
with the following hyperparameters: batch size 32, RAdam opti-
mizer, learning rate of 0.000001, dropout 0.1 and 100 epochs with
early stopping.

3 Results

The general concept of knowledge distillation is to teach a smaller net-
work, dubbed the student network, to mimic a larger network,
dubbed the teacher network. By training a student network on a
MLM task and narrowing the gap to the teacher network parameter
distribution, it is possible to create a distilled network that maintains
a high level of performance. Bert-based models, such as ProtBert, are
amenable to this procedure, since they are very large and resource
consuming in terms of hardware and running time. Therefore, to effi-
ciently utilize such models, distilled versions are commonly developed
(Jiao et al., 2019; Sanh et al., 2019; Sun et al., 2020).

3.1 Optimization of the model and memory

consumption
Inspired by DistilBert that was designed for NLP tasks (Sanh et al.,
2019) and using ProtBert (Elnaggar et al., 2021) as a teacher net-
work, we created a distilled ProtBert implementation which we
termed ‘DistilProtBert’. While ProtBert contains 420 M parameters,
we were able to reduce the number of DistilProtBert parameters by
almost half, to 230 M. In addition, we were able to pretrain
DistilProtBert on commodity hardware of five v100 Nvidia 32-GB

Table 1. Dataset sizes after each filtering stage

k-let h-CD-HIT Training set Validation set Test set

Singlet 11 698 8424 936 2338

Doublet 11 658 8388 932 2338

Triplet 3688 2664 296 728
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GPUs from a single DGX cluster. This is a 51-fold improvement
from ProtBert pretraining, which required a TPU Pod of 64 nodes
with 512 16-GB TPUs in total. Consequently, fine-tuning and infer-
ence times on downstream tasks were twice as fast as those attained
using ProtBert. Moreover, in DistilProtBert, only short sequences of
512 amino acids in length were used during pretraining, as opposed
sequences of up to 2048 amino acids in length that were used for
ProtBert pretraining.

3.2 Deep learning architecture
The student network, DistilProtBert, and teacher network, ProtBert,
share the same general architecture. They both have 1024 neurons
in each hidden layer, 4096 neurons in each intermediate hidden
layer and 16 attention heads in each one of their hidden layers. Yet,
the number of total hidden layers in DistilProtBert was smaller; in
contrast to 30 hidden layers in ProtBert, only 15 hidden layers were
used, taking each layer alternately.

3.3 Evaluation tasks
We first evaluated DistilProtBert performance on two tasks that
were previously studied using ProtBert (Elnaggar et al., 2021), sec-
ondary structure prediction (Q3) and prediction of membrane-
bound versus water soluble proteins (Q2). The results are shown in
Table 2.

For both tasks, DistilProtBert demonstrated results on-par with
ProtBert-UniRef100, with a maximal reduction of only three points.
Yet, training and inference times were twice as fast when using the
same hyperparameters as in ProtBert’s fine-tuning. Further fine-
tuning may improve results.

We then turned to the challenge of distinguishing real proteins
from their shuffled counterparts. We first tried to address this chal-
lenge by using a bidirectional LSTM network. This model achieved
poor results of 0.71, 0.68 and 0.61 AUC for the singlet, doublet and
triplet human proteome test sets, respectively. We then investigated
the performance of DistilProtBert on this task. Use of this model
resulted in dramatic improvements (Tables 3 and 4), demonstrating
that (i) deep learning models can perform remarkably well in this
difficult task and (ii) the performance of our distilled version
approaches that of the full ProtBert version. Note that the results are
very good both on the cross validation and on the test sets.

4 Discussion

In recent years, it was shown that the use of pretrained transformers
for protein language-based prediction models is very effective. In ac-
cordance with this trend, we developed DistilProtBert, a novel pro-
tein language model. This model provided us with a more efficient
way to create concise protein representations, while maintaining
good performance, and allowed us to pretrain and fine-tune a pro-
tein language model without the need for expensive high-
performance computing systems. Thus, it provides an accessible and
more convenient means to create protein representations.

As we described above, DistilProtBert can be used on commodity
hardware to perform several downstream tasks, including secondary
structure prediction and our classification task of distinguishing real
from shuffled amino acid protein sequences. It enables fine-tuning
and feature extraction in a fast and efficient manner. As access to
such models becomes easier (Wolf et al., 2019) other BERT-like
architectures, for example, TinyBert (Jiao et al., 2019) and
MobileBert (Sun et al., 2020), should be examined.

In addition, we performed a novel classification task between real
proteins and their k-let shuffled versions. The success of the attention-
based models in this task suggests that there is a hidden structure in
real proteins that is not reflected in their k-let amino acid compos-
ition. We showed that standard neural network architectures, such as
LSTM, achieved much lower performance and thus it seems that
attention-based models can capture properties of proteins that are not
found by classical machine learning schemes. In addition to the tech-
nical success, this achievement can teach us that there are characteris-
tics of real proteins that are not reflected in the k-let amino acid
composition. Since our ‘words’ are preserved on the triplet amino acid
level, we may conclude that proteins have long range dependencies be-
tween amino acids that DistilProtBert was able to detect. Elucidating
and understanding these underlying dependencies from the model
would not be a simple endeavor as deep learning schemes are notori-
ously difficult to interpret. However, there are efforts, for example
(Vig et al., 2020), that may be able to facilitate gaining biological
knowledge from deep learning schemes.

Even without fully understanding the defining characteristics of
valid proteins, our model may be useful to identify good starting
points for de novo protein design. This can be done by examining
the small number of false-positive classifications, that is, the shuffled

Table 2. Accuracy results for benchmark tasks

Secondary structure prediction (Q3) Membrane bound versus water soluble (Q2)

Model CASP12 TS115 CB513 DeepLoc

ProtBert 0.75 0.83 0.81 0.89

DistilProtBert 0.72 0.81 0.79 0.86

Note: CASP12 (Moult et al., 2018), TS115 (Yang et al., 2016), CB513 (Cuff and Barton, 1999) and DeepLoc (Almagro Armenteros et al., 2017).

Table 3. Cross validation scores

Dataset Model Accuracy F1 Precision Recall AUC

LSTM 0.71 0.65 0.82 0.54 0.71

Singlet ProtBert 0.92 0.92 0.97 0.88 0.92

DPB 0.91 0.91 0.95 0.87 0.91

LSTM 0.69 0.63 0.77 0.54 0.69

Doublet ProtBert 0.91 0.90 0.96 0.85 0.91

DPB 0.89 0.89 0.93 0.85 0.89

LSTM 0.59 0.57 0.61 0.56 0.59

Triplet ProtBert 0.93 0.93 0.97 0.89 0.93

DPB 0.87 0.86 0.91 0.82 0.87

Note: DPB, DistilProtBert.

Table 4. Test scores

Dataset Model Accuracy F1 Precision Recall AUC

LSTM 0.71 0.66 0.80 0.56 0.71

Singlet ProtBert 0.93 0.93 0.96 0.89 0.93

DPB 0.92 0.92 0.94 0.90 0.92

LSTM 0.68 0.62 0.78 0.51 0.68

Doublet ProtBert 0.92 0.92 0.97 0.87 0.92

DPB 0.91 0.90 0.94 0.87 0.91

LSTM 0.61 0.57 0.64 0.51 0.61

Triplet ProtBert 0.92 0.92 0.98 0.87 0.92

DPB 0.87 0.86 0.89 0.84 0.87

Note: DPB, DistilProtBert.
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amino acid sequences that were classified as natural proteins by
DistilProtBert. It would be interesting to determine, by synthesizing
several of these proteins, if indeed they exhibit protein-like proper-
ties in terms of folding and stability. In addition, it would be inter-
esting to challenge the model to distinguish between real proteins
and sets of spurious proteins, for example, those in the AntiFam
database (Monzon et al., 2022).
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