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Targeted gene mutations have established distinct, yet over-
lapping, developmental roles for receptors of the insulin/IGF
family. IGF-I receptor mediates IGF-I and IGF-II action on
prenatal growth and IGF-I action on postnatal growth. Insulin
receptor mediates prenatal growth in response to IGF-II and
postnatal metabolism in response to insulin. In rodents, un-
like humans, insulin does not participate in embryonic
growth until late gestation. The ability of the insulin receptor
to act as a bona fide IGF-II-dependent growth promoter is
underscored by its rescue of double knockout Igf1r/Igf2r mice.
Thus, IGF-II is a true bifunctional ligand that is able to stim-
ulate both insulin and IGF-I receptor signaling, although with

different potencies. In contrast, the IGF-II/cation-indepen-
dent mannose-6-phosphate receptor regulates IGF-II clear-
ance. The growth retardation of mice lacking IGF-I and/or
insulin receptors is due to reduced cell number, resulting
from decreased proliferation. Evidence from genetically en-
gineered mice does not support the view that insulin and IGF
receptors promote cellular differentiation in vivo or that they
are required for early embryonic development. The pheno-
types of insulin receptor gene mutations in humans and in
mice indicate important differences between the developmen-
tal roles of insulin and its receptor in the two species.
(Endocrine Reviews 22: 818–835, 2001)
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I. Introduction

THE EASE WITH which the murine embryo lends itself
to genetic tampering has resulted in rapid progress in

elucidating the physiological role of gene products through
targeted mutagenesis in embryonic stem cells. During the
past decade, the joint efforts of several laboratories have
firmly established physiological functions for various com-
ponents of the insulin/IGF system. At the same time, natu-
rally occurring mutations of the homologous human genes
have revealed similarities and differences between the roles
of these peptides in the two species. Since murine and human
embryonic development differ in substantial ways, it is not
surprising that the phenotypes associated with mutations in
similar genes may differ. Within the purview of insulin and
IGF action, it is indeed remarkable how conserved the func-
tions of the various genes are. Without the functional insight
afforded by gene knockouts, cross-species comparisons can
be seriously misleading. For example, in mice both IGF-I and
IGF-II contribute to prenatal growth (1, 2), but only IGF-I is
required for postnatal growth (1–3), and Igf2 is not expressed
after birth (4, 5). In contrast, in humans IGF2 is expressed

Abbreviations: DIR, Drosophila IR; Gk, glucokinase; Hgf, hepatic
growth factor; Igf1r, IGF receptor; Ins, insulin; Insl, insulin-like; Ir, in-
sulin receptor; Irs, insulin receptor substrate; IUGR, intrauterine growth
retardation; SMAD, similar to Drosophila melanogaster Mad proteins.

Mouse genetic loci are in lowercase italics, human genetic loci are in
uppercase italics, and protein products are in uppercase Roman.
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throughout life. Nevertheless, the phenotype of a single in-
dividual carrying a functional IGF1 knockout is remarkably
consistent with the null Igf1 phenotype in mice, suggesting
that IGF2 expression cannot compensate for lack of IGF1 in
human postnatal growth. Moreover, different developmen-
tal timing in the two species results in a delayed onset of
insulin action on fuel metabolism in rodents. With these
caveats in mind, it will be easier to appreciate the lessons of
mouse knockouts affecting insulin and IGF signaling.

A. The growing family of insulin-like peptides and
their receptors

The insulin/Igf family of ligands and receptors controls
key aspects of mammalian life, including growth, metabo-
lism, and reproduction (6–8). In the past decade, the daunt-
ing complexity of these functions has become apparent as
more insulin-like peptides have been cloned. There are at
least nine different genes encoding insulin-like peptides: the
two nonallelic Insulin genes (in rodents), Igf1, Igf2, Relaxin,
and four insulin-like peptides: Insl3, 4, 5, and 6 (9–13).

There are at least three separate receptors that interact with
this host of ligands: insulin receptor (14, 15), Igf1 receptor
(16), and Igf2 receptor (17). A fourth member of the family,
Ir-related receptor (18), is as yet orphaned, although its abil-
ity to bind all the various insulin-like peptides has not been
extensively tested. Three of the four receptors (IR, IGF1R, and
IRR) belong to the family of ligand-activated receptor ki-
nases. Indeed, unlike other receptor tyrosine kinases, these
receptors exist at the cell surface as homodimers composed
of two identical �/�-monomers, or as heterodimers com-
posed of two different receptor monomers (e.g., IR��/
IGF1R��, or IR��/IRR��). Upon ligand binding, they undergo
a conformational change, which enables them to bind ATP
and become autophosphorylated (19, 20). Autophosphory-
lation increases the kinase activity of IR-type receptors by 3
orders of magnitude, enabling them to phosphorylate a num-
ber of substrate proteins and engender growth or metabolic
responses (21). It is likely that this receptor family contains
additional members: there is evidence for a separate IGF-II
receptor that regulates placental growth (1, 3, 6, 22), and for
an insulin-like peptide receptor (23).

Unlike IR, IGF1R, and IRR, the product of Igf2r is not a
tyrosine kinase. Instead, it is a monomeric receptor with a
large extracellular domain made up of 15 repeat sequences
and a small region homologous to the collagen-binding do-
main of fibronectin. IGF2R functions also as the cation-
independent mannose-6-phosphate receptor (17). IGF2R
does not have a signaling domain and is thought to be re-
cycled between the plasma membrane and intracellular com-
partments. Interestingly, in adipose cells, IGF2R colocalizes
with the insulin-sensitive compartment known as GLUT4
vesicles (24). Based on the in vivo mutagenesis experiments
described below, it is now clear that IGF-II binding to IGF2R
serves as a mechanism to clear circulating IGF-II, rather than
as a signaling mechanism.

Finally, there are at least six different circulating IGF-
binding proteins (IGFBPs), which regulate IGF bioavailabil-
ity. The interaction between IGFBPs and IGFs is controlled
by two different mechanisms: 1) proteolytic cleavage by a

family of specific serine proteases, which decreases IGF bind-
ing affinity; and 2) binding to the extracellular matrix, which
has been shown to potentiate IGF actions (25, 26). In addition,
there is limited evidence that the cell surface proteoglycan
Glypican-3, mutations of which cause the overgrowth syn-
drome known as Simpson-Golabi-Behmel type I (“bulldog”
syndrome, OMIM 312870), also binds IGF-II and may mod-
ulate its function (27).

II. Null Mutations of Insulin1, Insulin2, and
Insulin Receptor (IR)

The existence of a specific receptor for insulin was first
proposed by Roth and co-workers (28), based on the iden-
tification of saturable, inhibitable insulin binding to liver
plasma membranes. Biochemical studies in the following
decade culminated in the identification of the receptor’s ty-
rosine kinase activity (29). Cloning of the receptor cDNA (14,
15) and gene (30) ushered in molecular investigations of
insulin action, with the identification of insulin receptor mu-
tations in humans with extreme insulin resistance (reviewed
in Ref. 31), the determination of the crystal structure of the
receptor kinase (20, 32), and the development of pharmaco-
logical agents that enhance receptor signaling to treat dia-
betes (33).

The generation of mice bearing insulin receptor mutations
has been instrumental in dissecting the pathogenesis of in-
sulin resistance, diabetes, and obesity (34–43). The metabolic
phenotypes of these mice have been reviewed elsewhere (8).
Mice lacking IR are born at term with slight growth retar-
dation (�10%) (22). With the exception of a marked hypo-
trophy of sc adipose tissue (44), their embryonic develop-
ment is unimpaired. After birth, metabolic control rapidly
deteriorates: glucose levels increase upon feeding, despite
insulin levels approximately 100- to 1,000-fold higher than in
normal littermates (Fig. 1A). �-Cell failure occurs within a
few days, characterized by the disappearance of insulin stor-
age granules within the �-cell cytoplasm (Fig. 1B) and fol-
lowed by death of the animals in diabetic ketoacidosis. This
experiment indicates that Ir is necessary for postnatal, but not
for prenatal, fuel homeostasis.

These findings are confirmed by studies of mice lacking
both nonallelic insulin genes (Ins1 and Ins2). There are two
insulin genes in rodents; Ins1 represents a functional retro-
poson (45). In adult mice, insulin is synthesized from tran-
scripts of both genes, but Ins2 mRNA appears to be translated
more efficiently than Ins1 mRNA (46). However, ablation of
either gene is without consequences, suggesting that recip-
rocal compensation can occur. In contrast, after inactivation
of both genes, mice develop diabetic ketoacidosis and die
within days of birth. Inactivation of the two insulin genes
results in a slight impairment of embryonic growth, with a
15–20% decrease of birth weight (47). These findings suggest
that insulin signals exclusively through IR, since the pheno-
types of the two gene ablations are indistinguishable. How-
ever, the definitive experiment of generating knockout mice
lacking Ins1, Ins2, and Ir has not yet been reported.

The development of diabetes in Ins or Ir null mice in the
early postnatal phase is consistent with the notion that the

Nakae et al. • Insulin and IGF-I Receptors Endocrine Reviews, December 2001, 22(6):818–835 819

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/22/6/818/2424226 by guest on 21 August 2022



functional maturation of a fuel-sensing mechanism in ro-
dents occurs in the perinatal period. This represents an im-
portant developmental difference with humans, in whom
insulin responsiveness is established during the last trimes-
ter of gestation (48). For example, in rodents, enzymes re-
quired for glucose storage and release, as well as lipid syn-
thesis and oxidation, are induced at birth (49–53). Similar to
Ins and Ir knockouts, mutations in other key genes required
for glucose metabolism give rise to early neonatal diabetes,
for example Glucokinase (54–56), Glut2 (57), and Pepck (58), as
well as genes encoding transcription factors required for

insulin gene transcription and/or pancreatic �-cell develop-
ment (reviewed in Ref. 8).

The growth impairment observed in mice lacking Ins1 and
Ins2 indicates that the effect of insulin to promote mouse
embryo growth is paltry compared with that of IGF-I and
IGF-II. This is hardly surprising, as significant insulin secre-
tion in rodents does not begin until late gestation (59, 60). In
fact, while preproinsulin mRNA can be detected by RT-PCR
at a premorphogenetic stage [embryonic d 9 (E9.0)] (61), the
first insulin-producing cells appear at E12.5 (62), and islets do
not become organized until E18.5 (63–65). Insulin secretion
rises about 3-fold between E18.5 and birth (48, 66, 67). It
should be noted that the embryonic patterns of insulin gene
expression are drastically different in humans. During em-
bryonic development, INS transcripts can be first detected at
8 wk of gestation (68, 69). Clusters of �-cells can be observed
at 12–16 wk (70, 71) and become organized into functioning
islets by 25 wk, after which plasma insulin concentrations
increase substantially (72).

The lack of significant growth retardation in Ir-deficient
mice is more surprising, since Ir mediates IGF-II signaling
during gestation (see below). This discrepancy appears to be
due to two major factors: a difference in developmental tim-
ing between humans and rodents, and a 2-fold increase in
Igf1r expression in IR-deficient mice, which enables Igf1r to
partially compensate for lack of IR (22).

A. Developmental phenotype of humans lacking IR

Mutations of IR in humans are phenotypically heteroge-
neous: the severity of the syndrome runs the gamut from
mild insulin resistance (73, 74) to leprechaunism (Refs. 75–82;
reviewed in Ref. 31) (OMIM no. 147670). The latter represents
the severest form of insulin resistance due to IR mutations,
and, in four separate cases, has been shown to be caused by
functional IR knockouts (78, 79, 81, 82). As in mice, lack of IR
in humans is compatible with embryonic development and
term birth. However, the similarities between the two species
are limited (83, 84).

B. Growth retardation is associated with IR mutations
in humans

Most strikingly, humans lacking IR are severely growth
retarded at birth and gain little if any weight thereafter (75–
82, 85). The onset of growth retardation is unclear, but in one
case in which the patient was delivered by cesarean section
at 35 wk gestation, growth retardation was already severe:
the patient weighed 940 g, i.e., less than the expected weight
of a 27-wk fetus (86).

The likeliest explanation of the difference between Ir-
deficient mice and children with leprechaunism is that em-
bryonic growth of humans and rodents follows different
patterns. Rodents are born comparatively earlier than hu-
mans, at a stage corresponding to 26 wk of human gestation.
Not only are rodents born developmentally “earlier” than
humans, their body composition at birth is quite different
(87). During the last trimester of human gestation, corre-
sponding to the first weeks of postnatal life in mice, there is
a sizable increase in adipose mass, which coincides with an

FIG. 1. A, Insulin and glucose levels in mice lacking IR. Plasma
insulin and glucose levels in newborn mice lacking IR are plotted as
a function of age. Mice are born with normal metabolic values. How-
ever, as they begin suckling, insulin and glucose levels increase rap-
idly. During the first 3 postnatal days, insulin secretion remains
elevated. Death occurs when insulin levels drop, between postnatal
d 2.5 (P2.5) and P4.5, depending on the genetic background. B, Elec-
tron microscopy of pancreatic �-cells in newborn mice. This electron
micrograph shows the ultrastructure of a normal pancreatic �-cell
from a P4.5 mouse (top) and an Ir�/� litter mate (bottom). In a normal
�-cell, insulin secretory granules at various stages of maturation can
be seen in the cytoplasm. In contrast, in the �-cell from Ir�/� mice,
there are virtually no insulin secretory granules left. Moreover, the
prominent Golgi stacks indicate that the cell is in an active secretion
mode. Note also the swollen and disorganized mitochondria, sugges-
tive of impaired oxidative phosphorylation.
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increase in insulin production (72). As a result, lipid content
is significantly higher at birth in humans (16% of total body
wt) compared with rodents (2% of total body wt) (87). The
adipose “organ” is exquisitely sensitive to insulin, as dem-
onstrated by the excessive adiposity of fetuses exposed to
high insulin concentrations in utero as a result of maternal
diabetes (88, 89), Beckwith-Wiedemann syndrome (90),
erythroblastosis fetalis (91, 92), or persistent hypoglycemic
hyperinsulinism of infancy (nesidioblastosis) (93). These
data indicate that insulin exerts growth-promoting effects on
the human adipose “organ” during the third trimester of
gestation. Because the increase in the insulin-sensitive adi-
pose compartment occurs postnatally in rodents, the growth
retardation defect in Ins- or Ir-knockout mice is not as severe
as the growth retardation of children with leprechaunism at
birth. Interestingly, IR-deficient mice present with a similar
phenotype of undernourished adipose tissue as children
with leprechaunism (44), suggesting that both lack the tro-
phic actions of insulin on adipose tissue.

Thus, in contrast to mice, insulin is a fetal growth factor in
humans. There have been no reports of null mutations of the
human insulin gene. However, the developmental role of
insulin can be gleaned from conditions of relative hypoin-
sulinemia, e.g., mutations of the glucokinase (94), and PDX1
genes (95), as well as rare cases of transient neonatal diabetes
(96). Mutations of the glucokinase gene provide an especially
intriguing paradigm to gauge the effects of insulin on fetal
growth. Glucokinase is the low-Michaelis-Menten constant
(Km) (7–9 mm) enzyme that phosphorylates glucose in liver
and �-cells. Because it is active at physiological glucose con-
centrations (�5 mm), it acts as a enzymatic link between
plasma glucose levels and insulin secretion. Thus, an increase
in glucose concentrations will result in increased glucose
phosphorylation, a fall of the intracellular ATP:ADP ratio,
closure of ATP-sensitive K channels, Ca�� influx, and insulin
release from storage granules (97). Heterozygous GK muta-
tions result in haploinsufficiency, with a higher threshold for
glucose-dependent insulin release and mild hyperglycemia.
Children heterozygous for a loss-of-function GK allele are
approximately 0.5 kg smaller than unaffected siblings at
birth, suggesting that the decrease in insulin levels caused by
the GK mutation impairs fetal growth (98). Moreover, when
the mother carries a GK mutation and has hyperglycemia
during pregnancy, children who do not inherit the mutation
are moderately macrosomic, as expected in light of the ma-
ternal diabetes, whereas children who inherit the mutation
are of normal size. These findings suggest that the detri-
mental effect of the maternal mutation was balanced out by
the inability of the fetus to properly sense glucose variations
and increase insulin secretion accordingly (98). Similar data
were obtained in mice with a heterozygous Gk mutation (99).

In a similar vein, null mutations of the insulin gene tran-
scription factor PDX1 cause pancreatic agenesis (OMIM no.
260370) and result in severe intrauterine growth retardation
(IUGR) (95, 100). Congenital diabetes, either permanent
(OMIM no. 304790) (101) or transient (OMIM no. 601410) (96,
102), is also associated with severe IUGR. Thus, fetal hypo-
insulinemia is associated with IUGR in humans.

C. Metabolic abnormalities in humans lacking IR

Another important and seemingly paradoxical difference
between IR-deficient mice and humans is that mice are
steadily hyperglycemic, whereas humans develop alternat-
ing postprandial hyperglycemia and fasting hypoglycemia.
However, this is an instance in which the human phenotype
is harder to explain than the murine phenotype. It is not clear
why children with leprechaunism develop fasting hypogly-
cemia. The expectation would be that insulin resistance
would cause unrestrained glucose production with fasting
hyperglycemia, but in small children with limited glycogen
stores, the liver’s ability to generate glucose may be intrin-
sically poor (75, 77, 103, 104). The murine phenotype of
uncontrolled hyperglycemia is easier to explain, because
newborn mice do not fast. Indeed, the presence of “milk
spots” in the stomach is a hallmark of neonatal well-being.
Under these circumstances, there is a constant flow of nu-
trients, and glucose concentrations in the bloodstream
steadily rise.

A second reason for the absence of hypoglycemia in mice
is that the �-cell compensatory ability in the face of extreme
insulin resistance is greater in humans than in mice, and the
increase in insulin levels may cause hypoglycemia through
insulin binding to IGF1R. Thus, whereas the murine pancreas
becomes functionally exhausted within 3–7 d of birth in mice
lacking IR (Fig. 1B), high insulin levels persist in children
with extreme insulin resistance for months or years (re-
viewed in Refs. 31 and 83). The different �-cell compensatory
response in humans and mice is likely to reflect the limited
development of the endocrine pancreas at birth in rodents
(63–65). To support this hypothesis, it should be noted that
children with Rabson-Mendenhall syndrome, a milder vari-
ant of insulin-resistance syndromes due to IR mutations
(OMIM no. 262190) (104–107), generally experience an im-
provement of hypoglycemia in infancy, in association with
declining plasma insulin values (106, 108).

Finally, the absence of hypoglycemia in mice could be due
to species-specific differences in the role of different tissues
in metabolic control. In rodents, liver accounts for a greater
fraction of glucose uptake and storage than in humans. In
contrast, skeletal muscle plays a more important role in glu-
cose homeostasis in humans. In both species, muscle ex-
presses a sizable amount of IGF1R, while liver is virtually
devoid of it. Thus, if insulin at high concentrations binds to
muscle IGF1R and promotes glucose uptake, there is a po-
tential for greater glycemic control in humans than there is
in rodents. Experimental evidence provides support for this
hypothesis. In leprechauns, there is some evidence that IGF-I
can ameliorate glucose homeostasis (109), although other
studies failed to demonstrate an effect (103). IGF-I treatment
of mice lacking IR results in a rapid decrease of glucose
levels, suggesting that IGF-I can indeed stimulate muscle
glucose uptake through its receptor. However, this decrease
is not sufficient to rescue mice from death (110), presumably
because of incomplete rescue by IGF-I of hepatic insulin
action (111–113).

We had originally ascribed the lack of hypoglycemia in Ir
knockout mice to relatively lower insulin levels in newborn
mice compared with humans (34). However, based on a
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much more extensive data set, and based on insulin mea-
surements in 0.5- to 1.5-d-old pups, we now recognize that
insulin levels can indeed be as high in newborn Ir knockout
mice as they are in children with leprechaunism (Fig. 1A).
Thus, this explanation is no longer tenable.

III. Null Mutations of Igf1 and Igf1r

Lack of Igf1 or Igf1r results in intrauterine growth retar-
dation. Nullizygous animals are born with Mendelian fre-
quency, suggesting that Igf1 and Igf1r are not required for
successful completion of gestation. The birth weight of Igf1
null mice is 60% of normal; that of Igf1r nulls is 45% (1, 3, 114).
Survival of Igf1 null mice is strain dependent and is associ-
ated with postnatal growth retardation, so that, by 2 months
of age, the size of Igf1 knockout mice is only 30% of normal
(1, 3, 114). Prenatally, IGF-I mediates growth independently
of GH; postnatally, GH is required for hepatic IGF-I synthesis
and mediates approximately 50% of IGF-I action on growth
(see below) (115). Postnatal development of surviving Igf1
knockout mice has been analyzed in detail. At 2 months of
age, IGF-I-deficient mice show extensive reductions of brain
size and preserved brain morphology, consistent with a role
of IGF-I in axon growth and central nervous system mye-
lination (116). Different cell types within the brain are dif-
ferentially affected by the lack of IGF-I. While axons and
oligodendrocytes are greatly reduced in number, dopami-
nergic, striatal, and motor neurons are unaffected, as are
cerebellar neurons and cholinergic neurons of the forebrain
(116). Interestingly, the latter express high levels of Irr
mRNA, the orphan receptor of the insulin receptor family
(117, 118). These cell-specific differences within the brain are
at odds with observations in other organs, where the de-
crease in size associated with ablation of Igf1 appears to be
due to a generalized decrease in cell number, supporting the
notion that IGF-I acts as a general growth promoter by fa-
voring cell division (6).

Morphological and morphometric analyses of long bones
in mice lacking Igf1 indicate that IGF-I promotes bone de-
velopment by increasing cellular proliferation, without af-
fecting differentiation. Long bones are reduced in size be-
cause of a reduction in cell number due to decreased
proliferation, as indicated by bromodeoxyuridine labeling
indexes. The growth plates are uniformly affected, with re-
ductions in the resting, proliferative, and hypertrophic chon-
droyctes. As a result, the formation of secondary ossification
centers is delayed (115). By combining the Igf1 mutation with
a null Ghr mutation, Lupu and colleagues (115) have been
able to analyze the relative contributions of IGF-I and GH to
bone formation (119). Bone growth is equally affected in Igf1
and Ghr mutants, while combined mutations do not add
significantly (�5%) to the growth impairment caused by
single mutations. These data indicate that the actions of GH
to promote osteogenesis depend on the presence of IGF-I
(115), and that the IGF-I-independent contribution of GH to
bone formation is minimal. The observation that IGF-I plays
a critical role in osteogenesis is supported by studies of a
patient lacking IGF-I, who showed a severe reduction in bone
mineral density that was moderately increased upon recom-
binant human IGF-I administration (120).

In contrast to Igf1 mutants, Igf1r-deficient mice invariably
die within minutes of birth, probably as a result of respira-
tory failure caused by impaired development of the dia-
phragm and intercostal muscles. Mice are born with multiple
abnormalities, including muscular hypoplasia, delayed os-
sification, and thin epidermis (3). Muscle hypoplasia results
from decreased cell number. It is unclear whether muscle
hypoplasia is isometric (proportionate to the generalized
organ hypoplasia) or anisometric (disproportionate to over-
all size decrease). Embryonic bone development is also pro-
foundly affected by the lack of IGF1R, as expected based on
the findings in IGF-I-deficient mice. The appearance of os-
sification centers is delayed by 2 embryonic days in cranial
and facial bones, and between 1–2 d in long bones and trunk.
Skin thickness is reduced as a consequence of a thinned
stratum spinosum and results in a translucent skin in mutant
embryos. These abnormalities are opposite to those observed
in skin of patients with insulin resistance (increased skin
thickness and pigmentation, i.e., acanthosis nigricans), con-
sistent with the hypothesis that increased insulin levels in
these patients lead to insulin binding to IGF1R, thus stim-
ulating keratinocyte proliferation (75, 77, 121). Igf1r knockout
mice also show a significant increase in cell density in the
central nervous system, which is thought to result from a
depletion of intercellular matrix and crowding of neural cells
in the spinal cord and brain stem (3).

Igf1r null mice have also been reported to develop meta-
bolic abnormalities. These include mild hyperglycemia
(�250 mg/dl) and decreased �-cell mass (122), although the
latter was reportedly normal in other studies (123). Since
IGF1R shares many signaling properties with IR (124), these
findings are not altogether surprising. It should be noted,
however, that the hyperglycemia reported by Withers et al.
(122) is unlikely to be a contributory cause of death in Igf1r
null mice, since Ir null mice survive longer with considerably
higher glucose levels (34, 35, 110).

A. IR can substitute for IGF1R to mediate growth

Targeted gene knockouts in mice have been especially
useful to address the vexing question of whether the func-
tions of IR and IGF1R are distinct or overlapping. The phe-
notypes of Ir and Igf1r knockouts are very similar to those of
Ins and Igf1 knockouts, respectively. Moreover, combined
ablation of Igf1 and Igf1r results in the same phenotype as
lack of Igf1r (45% of normal birth weight), suggesting that
IGF-I signals exclusively through IGF1R (3). These data in-
dicate that the ability of the two receptors to compensate for
each other is limited. A notable exception to this paradigm
is the phenotype of mice lacking both Igf1r and Igf2r, which
provides evidence for the ability of IGF-I to signal through
IR (125). It has been shown that mice lacking IGF2R are
rescued from perinatal lethality and undergo near-normal
postnatal development when they carry null mutations of
IGF1R. Genetic evidence indicates that the receptor support-
ing the growth of Igf1r/Igf2r double mutants is IR, since mice
lacking all three genes (Ir, Igf1r, Igf2r) are nonviable 30%
dwarfs (22). Thus, embryonic growth of Igf1r/Igf2r knockout
mice must be sustained through IGF-II binding to IR (Fig. 2),
since this is an existing embryonic growth pathway. The
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impaired IGF-II clearance caused by the Igf2r mutation
causes a rise in IGF-II levels, which likely accounts for the
normal embryonic growth of Igf1r/Igf2r mutant mice. How-
ever, after birth, Igf2 expression is supposedly extinct (126).
Thus, the survival and postnatal growth of these mice can
only be accounted for by IGF-I signaling through IR, al-
though the possibility of persistent postnatal expression of
Igf2 has not been formally ruled out. In one sense, the ability
of IGF-I to activate IR should not be considered surprising,
since circulating IGF-I levels are approximately 1,000-fold
higher than insulin and would theoretically allow for low-
affinity IGF-I binding to IR (127). However, since IGF-I
mostly circulates in a protein-bound form and there are sig-
nificant differences in tissue distribution of Ir and Igf1r tran-
scripts, the rescue of Igf1r/Igf2r knockout mice remains
unexplained.

B. Embryonic growth and heterodimeric (“hybrid”) insulin/
IGF-I receptors

Unlike other receptor tyrosine kinases, which are activated
through a process of ligand-induced dimerization (21), re-
ceptors of the IR subfamily exist as dimers in the unliganded
state and are activated by their respective ligands through a
conformational change that enables the �-subunits to bind
ATP (20, 32, 128). In addition to forming homodimers, IR,
IGF1R, and IRR can engage in the formation of heterodimers
with each other (129–131). It is unclear whether these “hy-
brid” receptors, as they are mostly—if somewhat inappro-
priately—referred to, subserve specific functions, e.g., by re-
cruiting different substrates.

A discussion of the potential role of heterodimeric recep-
tors is beyond the scope of this review. However, a critical
review of mice with targeted null mutations provides some
clues on this issue. It is fair to assume that, if heterodimeric
receptors were required for a specific developmental func-
tion, the latter should be reflected in an overlapping phe-
notype in mice with a single knockout of either Ir, Igf1r, or

Irr. Nevertheless, the phenotypes of the various receptor
knockouts could hardly be more distinct, with diabetes in Ir
knockouts, dwarfism in Igf1r knockouts, and no phenotype
in Irr knockouts. Thus, circumstantial evidence suggests that
heterodimeric receptors do not have a specific developmen-
tal role. Indeed, the only available experimental evidence
speaks against a function of heterodimeric receptors. Ex-
pression of a kinase-inactive Ir transgene in Ir knockout mice
(132) leads to heterodimer formation between IR encoded by
the mutant transgene and endogenous IGF1R, but does not
impair growth of the resulting transgenic/knockout mice
above and beyond the growth retardation induced by the Ir
knockout (Table 1). Thus, it is unlikely that hybrid receptors
are specifically required for the growth-promoting actions of
either IR or IGF1R in embryos. The question of whether
heterodimeric receptors play a metabolic role in the adult
animal remains open. There have been numerous reports
suggesting that the ratio of homodimers to heterodimers is
altered in conditions of insulin resistance (133), although a
consensus is yet to emerge (134).

C. Endocrine vs. autocrine/paracrine actions of IGF-I

The central tenet of the somatomedin hypothesis is that
IGF-I is produced by the liver in response to GH and me-
diates GH actions in peripheral tissues (135). Over the years,
various observations have suggested that this concept rep-
resented an oversimplification of a complex biological prob-
lem, since 1) GH has direct growth effects of its own (136–
139); and 2) IGF-I is produced by multiple tissues and has the
theoretical capability of acting in an autocrine/paracrine
fashion (reviewed in Ref. 140). To address this issue in a
conclusive manner, Lupu et al. (115) have generated mice
lacking both IGF-I and GHR. Double knockout mice are more
growth retarded (17% of normal) than mice lacking either
gene alone (1, 3, 114, 141), indicating that the two genes act
both independently and synergistically to promote growth
(115). While IGF-I promotes both prenatal and postnatal
growth, GH appears to be required exclusively for postnatal
growth, since the growth defect in Ghr-deficient mice only
becomes apparent after postnatal d 20 (115, 141). Based on the
growth curves of the various mutant mice, the partition of

FIG. 2. Interactions among ligands and receptors of the insulin/IGF
family. In this scheme, the ligand/receptor interactions deduced from
single and combined gene knockouts are illustrated. Unlike insulin
and IGF-I, which bind with high affinity (in the low nanomolar range)
to their own receptors and with low affinity (in the high nanomolar
range) to the cognate receptor, IGF-II has the ability to bind to both
receptors with comparably high affinities. It is thought that alterna-
tive splicing of exon 11 confers onto IR the ability to bind IGF-II with
high affinity. Receptors for insulin-like peptides have not yet been
identified. IRR ligand(s) are similarly unknown.

TABLE 1. Embryonic growth in mice expressing heterodimeric IR/
IGF1R: a kinase-inactive IR transgene does not impair growth of
Ir knockout mice

Genotype

WT Igf1r�/� Ir�/� Ir�/�, K1030M

Birth wt (g) 1.2 � 0.1 0.5 � 0.1 1.1 � 0.1 1.1 � 0.1
(P � 0.05)

The birth weights of mutant mice lacking Ir and Igf1r were com-
pared to those of transgenic knockout mice expressing a kinase-
inactive IR transgene (K1030M) in the genetic background of
Ir-deficient mice (Ir�/�, K1030M). If the kinase-inactive transgene
interfered with the endogenous IGF1R by way of hybrid receptors, the
expectation would have been that Ir�/�, K1030M transgenic knock-
out mice would be more growth-impaired than Ir�/� mice. The failure
to see more severe growth retardation than that caused by the Ir
mutation is indirect evidence that hybrid receptors do not play a major
physiological role to promote embryonic growth. Hybrid receptor for-
mation was demonstrated in several tissues, albeit as a minor fraction
(�10–30%, depending on the tissue) of total receptor number.
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growth effects appears as follows: IGF-I-dependent, about
35%; GH-dependent, about 14%; combined GH/IGF-I-
dependent, about 34%; while growth that occurs indepen-
dently of either GH and IGF-I is about 17% (115) (Fig. 3).
Ablation of Ghr impairs hepatic IGF-I synthesis by about
98%, resulting in undetectable serum IGF-I. Synthesis of
IGF-I in other tissues is largely unaffected, suggesting that
GH controls primarily hepatic IGF-I production (115). Con-
ditional Igf1 ablations in liver support the conclusion that
circulating (“endocrine”) IGF-I is hepatic in origin (142, 143).
The conclusion of these experiments is that the endocrine
component of IGF-I action is GH dependent and accounts for
about 50% of total IGF-I-dependent growth, whereas the
autocrine component of IGF-I action is GH independent and
accounts for the remaining approximately 50% of IGF-I ac-
tion (115). These data are in apparent contrast to data show-
ing normal growth in mice lacking hepatic IGF-I as a result
of conditional mutagenesis (142, 143). However, since it is not
simple to measure the biologically active component of cir-
culating IGF-I, it is still possible that residual IGF-I expres-
sion in these mice is sufficient to support growth. The only
generalization possible from these studies is that conditional
knockouts have as many drawbacks as constitutive knock-
outs, due, for example, to the patterns of Cre expression or
the efficiency of recombination (144).

D. Developmental phenotypes of humans lacking IGF-I
or IGF1R

The IGF1 locus has been extensively analyzed in several
groups of children with “idiopathic” congenital growth re-
tardation; however, no mutations have been identified, lead-
ing to the suggestion that IGF-I mutations are not a common
cause of growth retardation in humans (145–147). The debate
has been rekindled by the identification of a single case of
human IGF1 knockout due to a partial deletion of IGF1. This
patient strikingly resembles the phenotype of Igf1-deficient
mice, with severe prenatal and postnatal growth failure
(148). The offspring of consanguineous parents, the patient
was delivered by cesarean section because of poor fetal

growth at 37 wk gestation. At that time, the patient weighed
1.4 kg. He continued to grow poorly throughout infancy and
childhood, and reached a height of 120 cm and a weight of
23 kg at age 15, more than 6 sd below the mean. In addition,
the patient presented with sensorineural deafness and men-
tal retardation. Unlike GH-insensitive (“Laron”) dwarfs, the
IGF-I-deficient patient had normal insulin sensitivity with-
out hypoglycemia (149). Thus, the main finding of Igf1
knockout mice, namely prenatal and postnatal growth re-
tardation, is borne out. There are, however, areas of diver-
gence. For example, the patient appeared to undergo nor-
mal—if somewhat delayed—sexual development, and
placental growth was moderately impaired, in contrast to
Igf1-deficient mice (3, 114, 150). It bears emphasizing, how-
ever, that some of these differences may reflect the inbred
genetic make-up of this individual, who is expected to be
homozygous by descent at about 6% of the genome, based on
the degree of consanguinity between the parents. In this case,
both parents and their siblings had short stature. This finding
was interpreted to suggest that heterozygosity for loss-of-
function alleles of IGF-I results in haploinsufficiency and
impairs growth (148), as has been suggested by Powell-Brax-
ton and colleagues (114)of the null Igf1 allele in mice. This
hypothesis awaits further experimental confirmation.

E. IGF1R mutations in humans with IUGR

There have been sporadic reports of IGF1R mutations in
humans. These mutations appear to be associated with con-
siderable phenotypic heterogeneity. A deletion encompass-
ing IGF1R has been identified in an 11-yr-old girl with a
clinical diagnosis of Silver-Russell syndrome. The patient
presented with prenatal and postnatal growth deficiency
associated with multiple dysmorphic abnormalities, includ-
ing a characteristic facies, bilateral clinodactyly, cafe-au-lait
spots, and mental retardation (151). Molecular analyses of
IGF1R have suggested that mutations of this gene are not a
common cause of IUGR. In a single case, a heterozygous
deletion of chromosome 15q26.1-qter was associated with
monozygosity for IGF1R. The patient presented with IUGR,
microcephaly, micrognathia, renal and pulmonary abnor-
malities, and postnatal growth failure (152). Recently, mo-
lecular scanning of IGF1R in a larger series of IUGR patients
has been reported in a preliminary form. Of 74 IGF1R alleles
analyzed, two missense mutations have been identified in
four chromosomes, two in a compound heterozygote. The
two mutations are expected to affect the function of IGF1R,
since they localize to the receptor’s amino-terminal domain,
a region in which numerous mutations have been identified
in the cognate IR (153–155). Because these observations are
derived from a limited analysis of IGF1R, it is possible that
the actual prevalence of IGF1R mutations in IUGR is higher
than the reported 5% (156).

IV. Opposing Effects of Igf2 and Igf2r Mutations

A. Igf2 and Igf2r are reciprocally imprinted

In mice, Igf2 and Igf2r are parentally imprinted, i.e., they
are expressed only from one of the two alleles: Igf2 is ex-

FIG. 3. Interactions between GH and IGF-I. The development of mice
with combined Igf1 and Ghr mutations has led to a redefinition of the
“somatomedin hypothesis.” Before birth, IGF-I expression is inde-
pendent of GH. Subsequently, hepatic IGF-I synthesis becomes GH
dependent, an event associated with loss of hepatic IGF-I receptors
(139, 140). Tissue synthesis of IGF-I remains mostly GH independent.
Postnatally, IGF-I-dependent growth accounts for about 35% of total,
GH-dependent for about 14%, combined GH/IGF-I-dependent for
about 34%, while the remaining 17% occurs independently of both GH
and IGF-I (115).
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pressed only from the paternal allele, whereas Igf2r is ex-
pressed only from the maternal allele. Accordingly, when
mice inherit an Igf2 mutation from the sire (Igf2�/p), they
are indistinguishable from a homozygous null mutant
(Igf2�/�) (2, 157). Likewise, mice that inherit a maternal
Igf2r mutation (Igf2r�/m) are the functional equivalent of a
complete knockout (Igf2r�/�) (125). The H19 gene is located
downstream of Igf2 and is imprinted in an opposite fashion
(i.e., it is maternally expressed) (158). A deletion of this gene
is associated with relaxation of imprinting and increased
IGF-II levels (158, 159). The role of imprinting in the function
of these genes remains unclear. In humans, loss of IGF2
imprinting is seen in sporadic cases of Beckwith-Wiede-
mann, a genetically heterogeneous overgrowth syndrome
resulting from modification of a cluster of imprinted genes
on chromosome 11p15.5 (OMIM no. 130650) (160). This re-
gion also contains the INS gene. Both in humans and in mice,
there is evidence for parental imprinting of INS (in mice,
Ins2), along with Igf2 and H19, in the yolk sac (161, 162). It is
unclear whether imprinting of INS accounts for differential
expression of insulin mRNA in extrapancreatic tissues, which
may trigger autoimmunity in type 1 diabetes (163). Parental
imprinting of INS has also been linked to parent-of-origin dif-
ferences in the transmission of type 1 diabetes (164), although
other factors probably contribute to this effect (165).

B. Phenotypic consequences of Igf2 and Igf2r ablations

Igf2 mutants are approximately 60% of normal size at birth.
However, their postnatal growth is unaffected, consistent
with a role of Igf2 in embryonic growth and with the lack of
Igf2 expression in adult mice (126, 157, 166). This is in contrast
to Igf1 mutants, postnatal growth of which is as impaired as
their prenatal growth. However, some tissues continue to
express Igf2 after birth, e.g., the choroid plexus. Moreover,

there have been scattered reports of Igf2 mRNA expression
and secretion of mature IGF-II peptide from pancreatic
�-cells (167–171). Since Igf2 is located near Ins2, it is possible
that active Ins2 transcription would alter the chromatin struc-
ture around the Igf2 promoter and cause Igf2 transcription.
Secreted IGF-II could potentially activate �-cell proliferation
through IGF1R, as recently proposed (122, 172). This mech-
anism could play an important role in the response to insulin
resistance.

The phenotype of Igf2 mutant mice is in stark contrast with
that of Igf2r mutants (Table 2). When mice inherit the Igf2r
null allele through the maternal route, they show increased
serum and tissue levels of IGF-II, associated with an approx-
imately 40% increase in size by weight and generalized or-
ganomegaly with heart abnormalities, kinky tails, postaxial
polydactyly, and edema (173, 174). A similar phenotype is
observed in true homozygous knockouts (125). Igf2r-defi-
cient mice usually die perinatally and rarely survive to adult-
hood. The elevation of IGF-II levels in these mice suggests
that Igf2r is important for IGF-II clearance, and that failure to
remove IGF-II from the circulation results in developmental
abnormalities (125, 173, 174). Indirectly, a similar effect is
associated with deletions of the H19 gene, which cause a
relaxation of imprinting at the Igf2 locus and a secondary
increase in IGF-II levels (158, 159).

As described above, the lethal phenotype due to IGF-II-
induced overgrowth can be rescued by a homozygous null
mutation of Igf1r (125). This experiment indicates that IGF-II
signaling through IGF1R is responsible for the developmen-
tal abnormalities found in Igf2r or H19 mutants. In contrast,
in Igf1r/Igf2r mutant mice there are no developmental ab-
normalities. This finding indicates that IGF-II signaling
through IR is sufficient to engender growth, but insufficient
to induce lethal embryonic abnormalities (125).

TABLE 2. Growth retardation phenotypes in mice with null mutations of the insulin/IGF system

Genotype Growth
(% of WT birth weight) Phenotype Reference

Ins1 � Ins2 80–85 Diabetes (47)
Igf1 60 Prenatal and postnatal growth

retardation, infertility
(3, 114)

Igf2 60 IUGR (157)
Ir 90 Diabetes (34, 35)
Igf1r 45 IUGR (3)
Igf2r 140 Perinatal death, organ abnormalities (173, 174)
Irs1 60–80 Prenatal and postnatal growth

retardation, insulin resistance
(172, 181, 182)

Irs2 100 Insulin resistance, �-cell failure,
infertility

(172, 183)

Irs3 100 Normal (186)
Irs4 80 Prenatal and postnatal growth

retardation, insulin resistance
(190)

Igf1 � Igf2 30 IUGR (1)
Igf1 � Igf1r 45 IUGR (3)
Igf1r � Igf2r 100 Normal growth (125)
Igf2 � Igf2r 65–75 IUGR (279)
Igf2 � Igf1r 30 IUGR (1)
Igf2 � Igf1r � Igf2r 30 IUGR (22)
Ir � Igf1r 30 IUGR (22)
Igf2 � Ir � Igf1r 30 IUGR (22)
Igf1 � Ghr 17 Prenatal and postnatal growth

retardation
(115)

These data are compiled from all available publications describing the various mutant mice. WT, wild type.
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V. Ablation of Insulin Receptor Substrates (IRS)

IRS proteins act as mediators of insulin, IGF, and cytokine
signaling in a variety of cell types. The IRS family comprises
five members, including IRS1, -2, -3, -4, and Gab1 (175–179).
The general structure of these proteins consists of two
protein-protein interaction domains, the pleckstrin-homol-
ogy and phosphotyrosine-binding domains, and several ty-
rosine residues within YXXM motifs that are phosphorylated
by growth factor receptors. Phosphorylation increases the
affinity with which these domains bind to other adaptor
molecules, such as the various regulatory subunits of PI3K,
grb-2, syp, nck, crk, 14.3.3, and fyn (180).

Absence of Irs1 in mice gives rise to prenatal and postnatal
growth retardation and insulin resistance. The onset of
growth retardation occurs on about E15.5, and mice are born
at 80% of normal in one report (181), and 40–60% of normal
in another report (182), suggesting that there might be strain-
specific differences in the growth-promoting role of IRS1.
The pattern of growth retardation of IRS1-deficient mice is
comparable to that seen in IGF1-deficient mice (i.e., both
prenatal and postnatal), consistent with a model in which
IRS1 mediates the growth-promoting actions of IGF1R, in
addition to some of the metabolic actions of IR (181, 182).

Mice that lack IRS2 are of normal size but develop hyper-
glycemia as a result of impaired �-cell growth. The extent of
�-cell growth impairment is strain dependent: in one knock-
out strain it results in death from diabetes in male animals
(172), whereas in another strain it results in mild hypergly-
cemia (183). In contrast to the normal size of IRS2-deficient
mice, mice with combined heterozygous Ir and Irs2 muta-
tions are slightly growth retarded, indicating that IRS2 may
mediate postnatal growth in response to IR (37).

IRS3 is the smallest IRS protein and is expressed at high
levels in adipose tissue, where it represents the most abun-
dant IRS isoform (177, 184, 185). However, lack of IRS-3 has
no apparent effect on adipose cell function or metabolism
and growth (186). This finding should not be construed as
suggesting that IRS3 has no role in insulin action. In fact,
combined Irs1 and Irs3 mutations give rise to severe impair-
ment of insulin-dependent glucose uptake in adipose cells, sug-
gesting that the two proteins can substitute for each other in this
cell type (187). Alternatively, it has been proposed that IRS3 and
IRS4 may act as negative modulators of IRS1 and IRS2 function
(188). IRS4 was originally cloned from human kidney cells but
is expressed in several tissues, including pancreatic �-cells
(189). Ablation of Irs4 results in modest growth retardation and
glucose intolerance (190). In contrast, ablation of Gab1 results in
an embryonic lethal phenotype (191) that is inconsistent with a
role in insulin/IGF signaling, since none of these gene ablations
is embryonic lethal. This developmental defect would rather
suggest a role for Gab1 in hepatic growth factor (HGF) signal-
ing, since null mutations of Hgfr are associated with a similar
phenotype (192, 193).

VI. Interactions Among Ligands and Receptors of the
Insulin/IGF Family

To understand the functional correlation among Ins1, Ins2,
Igf1, Igf2 and their receptors, we must once again turn to the

phenotypes of mice with combined gene ablations (Table 2)
(6). As stated earlier, insulin exerts a modest effect on murine
prenatal growth, beginning in late gestation (�E18.5) (22, 47).
In contrast, a combined knockout of Igf1 and Igf2 results in
nonviable 30% dwarfs, consistent with an additive effect of
the two mutations. The “30% phenotype” as Efstratiadis (6)
originally termed it, indicates that the contribution of IGF to
growth is about 70% of total body size, so that additional
growth factors presumably sustain the residual 30%. A more
severe growth retardation (17% of normal) is found in mice
lacking both IGF1 and GHR, suggesting that a significant
component of IGF-independent growth is mediated directly
by GH postnatally (see above) (115). The IGF-deficient phe-
notype is first apparent at about 11.5 in Igf2 knockout mice
(1, 157), and at about E13.5 in Igf1 knockout mice (1, 3, 114),
indicating that IGFs (and insulin) do not contribute to early
embryogenesis in mice, despite numerous suggestions to the
contrary (reviewed in Ref. 194). Indeed, those suggestions
were based on indirect evidence showing that IR and IGF1R
are expressed in preimplantation embryos (195, 196), but it
is possible that they are either inactive or not indispensable
at that stage. These data also indicate that the onset of IGF-II
action precedes that of IGF-I. The size reduction of IGF-less
mice results from a reduced cell number and, in a few in-
stances, reduced cell size (1, 197, 198). It should be empha-
sized that findings in mice with targeted IGF mutations thus
far do not support a direct role of IGFs in cellular differen-
tiation. This is in contrast with in vitro experiments with
cultured cell lines, in which IGF-I has been shown to promote
differentiation of diverse cell types, including preadipocytes
(199), myoblasts (200, 201), and lymphoblasts (202).

The growth retardation of double Igf1/Igf2 knockouts
(30%) is more severe than that of double Igf1/Igf1r knockouts
(45%), but identical to that of Igf2/Igf1r doubles, Ir/Igf1r dou-
bles, and Igf2/Ir/Igf1r triple mutants (1, 22) (Table 2). This
genetic evidence indicates that IGF-I signals only through
IGF1R, while IGF-II signals through both IR and IGF1R. The
relative contribution of Ir and Igf1r to IGF-II-mediated
growth change during embryogenesis. At E15.5, IGF-II bind-
ing to IGF1R accounts for approximately 90% of IGF-II ac-
tion. By E18.5, this contribution has decreased to 60%. Con-
trariwise, the contribution of IR to IGF-II signaling increases
from 10 to 40% (22). It is conceivable, although unproven,
that this change correlates with changes in expression of the
two receptors (203). The fact that IGF1R bears the brunt of
IGF-II-dependent growth in midgestation provides a poten-
tial explanation of why embryos overexpressing IGF-II (e.g.,
Igf2r knockouts) can be rescued by ablation of Igf1r (125). In
fact, the most serious abnormalities in these mice occur in
heart morphogenesis at midgestation (158, 159). Conceiv-
ably, if the main IGF-II signaling receptor (IGF1R) is lacking,
the deleterious effects of IGF-II cannot take place through IR.

A. Alternative splicing of exon 11 modulates the affinity of
IGF-II binding to IR

It is known that IGF-II binds with comparable affinities to
both IR and IGF1R (204). However, recent data have con-
tributed to unravel the molecular determinants of IGF-II
binding to IR. The Ir is expressed as two variably spliced
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isoforms (IR-A and IR-B), which differ by the presence or
absence of a 12-amino acid peptide at the carboxyl terminus
of the extracellular �-subunit encoded by Ir exon 11 (14, 15,
205–209). Frasca et al. (210) reported that IGF-II binds IR-A,
but not IR-B, with similar affinity to that of insulin. Moreover,
IGF-II acts as bifunctional ligand, binding IR-A and IGF1R
with comparable affinities. IR-A is primarily expressed in
fetal cells, with lower expression in metabolically active adult
tissues such as muscle, liver, and adipose (210), consistent
with a primary role in embryonic growth. These data are
supported by the observation that IGF-II can rescue the
growth of embryonic fibroblasts derived from IGF1R-defi-
cient mice through IR (211), and that IGF-II-dependent
growth is impaired in hepatocytes lacking IR (113). These
data indicate that IR is a physiological mediator of IGF-II
action in cultured cells. In summary, converging genetic,
cellular, and molecular evidence indicate that IR serves as a
fetal receptor for IGF-II. The function of IGF-II binding to IR
in the adult organism is unclear. In humans, for example,
IGF-II continues to be produced at high levels after birth.
There have been scattered reports that the alternatively
spliced IR-A occurs more frequently in various disease con-
ditions, including cancer (212) and diabetes (206, 213, 214),
although the latter findings remain controversial (215–219).

B. Odd man out: Irr

IRR is the only known orphan receptor of the Ir family (18).
Despite extensive investigations, its ligand remains un-
known (220–223). It is unclear whether IRR functions as an
independent homodimeric receptor or whether it functions
primarily by engaging in heterodimer formation with IR and
IGF1R (222, 224), similarly to ErbB-2 in the epidermal growth
factor receptor family (225, 226). Irr transcripts are predom-
inantly found in kidney, neural tissues, stomach, and pan-
creatic �-cells (117, 227–233).

Mice lacking IRR are phenotypically normal; double
knockouts of Irr and Ir are phenotypically identical to Ir
knockouts (234). Thus, the function of IRR remains unclear.
It appears that the plot either thickens or thins out, depend-
ing on one’s taste for orphan receptors.

VII. Reproductive Phenotypes of Mutations in
Insulin-Like Peptides and Their Signaling Pathways

There exists a close connection between growth, metabo-
lism, and reproduction. Targeted gene mutations in mice
have confirmed this correlation and revealed unsuspected
roles in the regulation of reproductive behavior by peptides
of the insulin family and their receptors. In an excellent
article, Nef and Parada (7) recently reviewed the role of
insulin-like peptides in reproduction. Some aspects related
more specifically to insulin and IGFs are summarized here.

A. Igf1 mutants

Lack of IGF-I leads to infertility in both males and females.
In males, testosterone (T) levels are reduced to 18% of normal
and are associated with reduced size of testis, epididymus,
and distal regions of the spermatic duct. Infertility appears

to be due to impaired mating behavior, since the ability of
capacitated spermatozoa to fertilize eggs in vitro is normal.
Females show hypoplastic uterus and anovulation, which
cannot be corrected by exogenous gonadotropins (150). Since
the general paradigm is that IGF-I-stimulated growth occurs
through IGF1R, the expectation would be that mice lacking
IGF1R are as infertile as mice lacking IGF-I. Contrary to this
prediction, however, Igf1r-deficient mice (in the Igf1r/Igf2r
double-knockout background) are fertile (125), suggesting
that IGF-I signaling through IR is sufficient to restore repro-
ductive function. These data are consistent with the notion
that IR, rather than IGF1R, mediates the reproductive func-
tions of IGF-I. Indeed, it is well established that subfertility
is a common occurrence in insulin-resistant women (235,
236), and that mutations of IR are associated with anovula-
tion and hyperandrogenism (polycystic ovaries), although
the mechanistic basis for this association remains elusive (84,
153, 237).

B. Brain-specific ablation of Ir impairs LH production

Bruning and colleagues (43) have reported that ablation of
Ir in neurons using a nestin promoter-driven Cre recombi-
nase impairs fertility by decreasing spermatogenesis in males
and ovarian follicle maturation in females. They attributed
these changes to hypothalamic dysregulation of LH produc-
tion, suggesting that hypothalamic IR regulates gonadotro-
pin synthesis.

C. Irs2 and Irs4 mutants

Infertility and subfertility have also been observed in fe-
male mice lacking IRS2 and IRS4, respectively. Lack of IRS2
is associated with hypogonadotrophic hypogonadism,
anovulation, and small ovaries. It is unclear whether, in
addition to a reduced number of gonadotrophs in the pitu-
itary, the Irs2 mutation also causes intrinsic changes in the
ovary (238). It should be emphasized, however, that Irs2
knockout mice generated in a different laboratory do not
have reproductive abnormalities, suggesting that the effect of
the Irs2 mutation is modified by the genetic background
(183). In contrast to the mouse data, an increase in IRS2
expression has been reported in ovarian specimens from
women with insulin resistance (239).

Irs4 ablation is associated with a reduced number of litters
and reduced litter survival, although the significance of the
latter observation remains unclear (190). Since these abnor-
malities are not observed when Irs4 null males are bred with
heterozygous females, it is likely that the Irs4 null females are
subfertile (190). Interestingly, Irs4 mRNA has been detected
in the hypothalamus, consistent with a role of IRS4 in go-
nadotropin production (240).

D. Insl3 mutations cause cryptorchidism

The insulin-like peptide-3 (Insl3) is expressed in Leydig
cells of the testis (241) and theca cells of the ovary (242). Its
expression increases during puberty (242). Homozygous null
Insl3 mice develop bilateral cryptorchidism as a result of
abnormal development of the gubernaculum testis (243, 244).
This abnormality appears to be a primary defect rather than
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secondary to defective androgen production. Interestingly,
prenatal exposure to estrogens inhibits Insl3 expression in
embryonic Leydig cells, thus providing an explanation for
the effect of synthetic estrogens like diethylstilbestrol to
cause cryptorchidism (7). The peculiar phenotype of Insl3
mutant mice has rekindled interest in the identification of a
specific receptor for insulin-like peptides. Preliminary stud-
ies have led to the identification of a single subunit receptor
(23). Its structure has not been determined.

VIII. Insulin-Like Signaling in Caenorhabditis
elegans

The identification of an insulin-like signaling cascade in
the nematode C. elegans has provided novel insight into
mechanisms governing insulin action in mammals (245). Mu-
tations of the insulin/IGF receptor ortholog Daf-2 give rise
to dauer larvae, characterized by increased life span and
reduced metabolic activity (246). In addition to Daf-2 mu-
tations, a similar phenotype is brought about by mutations
of the genes encoding the PI3K, Akt (245, 247–249), and
SMAD protein orthologs (250). Other mutations suppress, to
varying degrees, the effect of Daf-2 mutations: these genes
presumably counteract the effect of insulin signaling and are
therefore of considerable interest for mammalian growth and
metabolism. Two of these genes, Daf-16 and Daf-18, have
been implicated in PI3K signaling (249, 251, 252).

Daf-16 mutations completely suppress the dauer pheno-
type due to Daf-2 mutations (251). The product of the Daf-16
gene is homologous to the mammalian FOXO forkhead tran-
scription factors (253–257). Work in several laboratories has
indicated that FOXO1 is a transcriptional promoter, and that
its activity is inhibited by Akt and other phosphoinositol-
tris-phosphate-dependent kinases through phosphorylation
and nuclear exclusion (258–263). FOXO1 has been proposed
to induce apoptosis (261), inhibit entry into the cell cycle
(264), and stimulate glucose production (265). The dauer phe-
notype can also be caused by mutations in SMAD proteins,
which are part of the TGF� signaling cascade (250). Inter-
estingly, SMAD proteins have recently been shown to po-
tentiate apolipoprotein CIII promoter activity in a HNF4�-
dependent fashion (266). Since apolipoprotein CIII is a
candidate FOXO1 target gene, it is possible that SMAD pro-
teins interact with FOXO1, providing a potential mechanistic
link between the TGF� and insulin/IGF signaling pathways
in both C. elegans and mammals.

Daf-18 encodes a phosphoinositide phosphatase with ho-
mology to the mammalian PTEN tumor suppressor gene
(267, 268). The mammalian ortholog of Daf-18 has been
shown to dephosphorylate PI3K-generated phosphoinositol
(269), providing a potential mechanism to terminate insulin
signaling. Indeed, null mutations of the related gene SHIP-2
in mice cause increased insulin sensitivity and hypoglycemia
(270). Daf-18 rescues the dauer phenotype due to Daf-2 mu-
tations with less efficiency than Daf-16 (268), suggesting that,
in C. elegans, PI3K is but one of the mediators of insulin/IGF
signals, and that these signals converge on Daf-16. Consistent
with these findings, the mammalian ortholog of Daf-16,
FOXO1, is regulated by several related kinases (260, 261, 271).

IX. Insulin Receptor Signaling in Drosophila
melanogaster

The Drosophila insulin receptor homolog (DIR) encodes a
protein of 2,148 amino acids, larger than the human insulin
receptor due to amino- and carboxyl-terminal extensions.
The overall level of identity between DIR and human IR and
IGF1R is 32.5 and 33.3%, respectively. DIR contains a 400-
amino acid carboxyl-terminal extension with four YXXM or
YXXL motifs. The presence of multiple putative SH2 domain-
binding sites in DIR represents a significant difference from
its mammalian homologs and suggests that, unlike verte-
brate IR and IGF1R, DIR forms stable complexes with sig-
naling molecules as part of its signal transduction mecha-
nism (272–275).

Chen et al. (276) used chemical mutagenesis to induce
mutations that lead to a loss of expression or function of DIR.
These mutations cause recessive embryonic, or early larval,
death. Some alleles exhibit heteroallelic complementation to
yield a phenotype of developmental delay, growth retarda-
tion, and infertility. The growth deficiency appears to be due
to a reduction in cell number, suggesting a role for DIR in
regulation of cell proliferation during development (276).
This interesting conclusion is borne out by studies of CHICO,
a Drosophila homolog of vertebrate IRSs (277). CHICO mu-
tants are less than 50% of the size of wild-type flies, due to
a reduction of both cell size and number (278). In mosaic
animals, CHICO-deficient cells grow more slowly than nor-
mal cells and give rise to smaller organs. CHICO mutants
also show a 2-fold increase in lipid levels. The findings in
Drosophila and C. elegans suggest that insulin-like signaling
plays a highly conserved role in evolution to regulate cell
growth and metabolism.

X. Conclusions

Over the past decade, numerous physiological functions of
the insulin/IGF system have been analyzed using genetic
tools. In addition to the wealth of information derived from
gene-targeted mice, chemical mutagenesis in Drosophila and
dauer mutations in C. elegans, the characterization of naturally
occurring human mutations has enabled investigators to use
cross-species comparisons to identify elements in insulin/
IGF signaling. As outlined in this review, there remain gray
areas, especially with respect to the functional overlap be-
tween insulin and IGF signaling and the role of insulin-like
peptides. Thanks in no small measure to the technical ad-
vances in gene manipulation, we are positioned to continue
to make progress.
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