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INVESTIGATION

Distinct and Predictive Histone Lysine Acetylation
Patterns at Promoters, Enhancers, and Gene Bodies

Nisha Rajagopal,*,†,‡ Jason Ernst,§ Pradipta Ray,** Jie Wu,††,‡‡ Michael Zhang,**,§§ Manolis Kellis,‡,***

and Bing Ren*,†††,1

*Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, California 92093-0653, †Bioinformatics and Systems
Biology Program, University of California, San Diego, La Jolla, California 92037, ‡Computer Science and Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, §Department of
Biological Chemistry, University of California, Los Angeles, Los Angeles, California 90095, **Department of Molecular
and Cell Biology, Center for Systems Biology, The University of Texas at Dallas, Richardson, Texas 75080, ††Cold Spring
Harbor Laboratory, 1 Bungtown Rd., Cold Spring Harbor, New York 11724, ‡‡Department of Applied Mathematics and
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100084, China, ***Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, and
†††Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, and Moores Cancer Center, University
of California, San Diego School of Medicine, La Jolla, California 92093

ABSTRACT In eukaryotic cells, histone lysines are frequently acetylated. However, unlike modifications

such as methylations, histone acetylation modifications are often considered redundant. As such, the func-

tional roles of distinct histone acetylations are largely unexplored. We previously developed an algorithm

RFECS to discover the most informative modifications associated with the classification or prediction of

mammalian enhancers. Here, we used this tool to identify the modifications most predictive of promoters,

enhancers, and gene bodies. Unexpectedly, we found that histone acetylation alone performs well in dis-

tinguishing these unique genomic regions. Further, we found the association of characteristic acetylation

patterns with genic regions and association of chromatin state with splicing. Taken together, our work

underscores the diverse functional roles of histone acetylation in gene regulation and provides several

testable hypotheses to dissect these roles.
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In eukaryotes, DNA is packaged into nucleosomes, each consisting of

an octamer of histone proteins that can undergo a large number of

post-translational modifications (Tan et al. 2011). Recent advances in

high-throughput technologies such as ChIP-seq have led to the dis-

coveries that various regulatory sequences are characterized by distinct

patterns of histone modifications, which have increasingly been used

as biochemical signatures for annotation of the genome (Rivera and

Ren 2013). For instance, combinations of H3K4me1 and H3K4me3

(Heintzman et al. 2007) have been exploited for the identification of

enhancers and promoters in mammalian genomes (Won et al. 2008;

Firpi et al. 2010; Fernandez and Miranda-Saavedra 2012; Rajagopal

et al. 2013). Similarly, combination patterns of H3K4me3 and

H3K36me3 were used to uncover a large number of long intergenic

noncoding (linc) genes (Guttman et al. 2009). Several machine-learn-

ing tools have been developed to annotate the histone modification

patterns characteristic of various DNA elements (Hon et al. 2008;

Ernst and Kellis 2012; Rajagopal et al. 2013), but given the large

number of histone modifications known to exist, there remains a need

for more in-depth analysis of histone combination patterns and their

relationships to functional sequences.

Histone acetylations are largely considered markers of activity at

regulatory elements such as promoters and enhancers, but because of

their tendency to co-occur they have been difficult to elucidate the

nonredundant roles of these acetylations (Zentner and Henikoff

2013). Histone acetylations are indirectly targeted in the treatment

of diseases such as cancer and HIV by the use of HDAC (histone

deacetylase) inhibitors (Dinarello et al. 2011). Understanding the

Copyright © 2014 Rajagopal et al.
doi: 10.1534/g3.114.013565
Manuscript received August 1, 2014; accepted for publication September 19, 2014;
published Early Online August 12, 2014.
This is an open-access article distributed under the terms of the Creative
Commons Attribution Unported License (http://creativecommons.org/licenses/
by/3.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.
1Corresponding author: Department of Cellular and Molecular Medicine, Institute
of Genomic Medicine, and Moores Cancer Center, University of California, San
Diego School of Medicine, La Jolla, California 92093. E-mail: biren@ucsd.edu

Volume 4 | November 2014 | 2051

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
mailto:biren@ucsd.edu


specific role of histone acetylations at different genomic elements has

the potential to improve such therapies by increasing the specificity of

targeting. Certain lines of evidence have suggested nonredundant roles

of histone acetylation such as the fact that HDACs as well as histone

acetyl-transferases (HATs) have unique genomic distributions (Wang

et al. 2009; Ram et al. 2011). A previous study found certain acetyla-

tions such as H3K9ac to be present at promoters and H4K16ac along

gene bodies (Wang et al. 2008). However, the extent to which these

acetylations are predictive of particular elements is still unknown.

Although different histone modification patterns have been pre-

viously associated with enhancers, promoters, and gene bodies, the

discovery of co-transcriptional splicing, the finding that pre-mRNA can

be spliced during the process of transcription itself (Listerman et al.

2006; Lynch 2006), suggested that histone modification patterns could

also be indicative of alternative splicing. Subsequently, it was found that

exons are marked by well-positioned nucleosomes and elevated levels of

certain methylations, in particular H3K36me3 (Andersson et al. 2009;

Hon et al. 2009; Kolasinska-Zwierz et al. 2009; Spies et al. 2009).

Further supporting this notion, changes in acetylation levels were found

to affect alternative splicing (Gunderson et al. 2011; Hnilicova et al.

2011; Zhou et al. 2011). Here, we explore this subject on a genome-wide

scale, describing the extent of association of histone modification with

alternative splicing in two distinct mammalian cell types.

In a previous study, we developed a random forest-based method

(RFECS) that could effectively identify enhancers genome-wide and

determine the most informative set of modifications required for this

task (Rajagopal et al. 2013). Here, we expand the application of this

tool to an extended panel of histone acetylation profiles in two distinct

mammalian cell types–human embryonic stem cells, 1H, and fetal

lung fibroblasts, IMR90. Using this approach, we find distinctive pat-

terns of acetylations that are associated with promoters, enhancers,

gene bodies, and splice junctions.

MATERIALS AND METHODS

Datasets and processing

All datasets used, including 24 modifications in 1H and IMR90, var-

ious sequence-specific transcription factors, and DNase-I hypersensi-

tivity sites, were described previously (Rajagopal et al. 2013). In

addition, the histone modification datasets in H9 were generated by

the Ren laboratory and released as part of the Roadmap Epigenome

Project and can be accessed using GSE16256. Data normalization for

histone modifications, determination of binding sites of transcription

factors, training and prediction using RFECS, correlation clustering,

and visualization of chromatin patterns are also as previously de-

scribed (Rajagopal et al. 2013).

Z-score normalization for comparing enhancers
and promoters

We pooled equal numbers of distal p300 binding sites and known

UCSC TSS overlapping DNase-I hypersensitive sites, representing

active enhancers and promoters, respectively. We computed average

histone modification levels, measured as input-adjusted RPKM (reads

per kilobase per million), between21 and +1 kb around each of these

elements. The Z-score normalized profile for each element was calcu-

lated against the mean and SD of the histone modification levels of the

entire set of pooled elements. Hence, deviations of the mean z-score

profile for the TSS class would be positive for TSS-preferred modifi-

cations, whereas it would be negative for p300-preferred modifica-

tions. This would be the exact mirror image of the values of the

mean z-score values for the p300 class.

Genome-wide prediction of promoters

To perform supervised prediction of promoters, we created a training

set comprising a set of UCSC TSS overlapping DNase-I hypersensitive

sites as representative of the active promoter class, and a second class

comprising TSS-distal p300 binding sites as well as randomly selected

non-p300 regions as background. We used input-adjusted RPKM

values of histone modifications (Rajagopal et al. 2013) measured in

100-bp bins between 21 and +1 kb around the training set elements

as the input features for training this classifier. The RFECS classifier

was then used to assign every 100-bp bin in the genome “promoter” or

“nonpromoter” class based on a 50% voting percentage, after which

promoter peaks were called in a genome-wide fashion as described

previously for enhancers (Rajagopal et al. 2013). We validated our

genome-wide promoter predictions by defining gold standard true

positive (TP) and true negative (TN) sets. The former comprises

UCSC and Gencode annotated TSS overlapping DNase-I hypersensi-

tivity sites in the particular cell-type, whereas the latter (TN) com-

prises p300 binding sites, cell-type-specific TFs or DNase-I sites lying

within gene desert regions. The TN set was selected to comprise the

elements most likely to be mistaken for promoters, due to the enrich-

ment of active modifications. Training and prediction were performed

using the RFECS methodology previously applied to prediction of

enhancers.

Computation of variable importance

We used the out-of-bag measure for variable importance (Bylander

2002) to compute importance of either all modifications or just ace-

tylations for various classification or prediction tasks. Because not all

modifications had the same replicates, we permuted replicates of each

histone modification to create several different combinations and

assessed the variable importance for each of these.

RNA-seq data processing

We first mapped the Illumina-generated mRNA fragments (paired

end reads) to the exon trio database TXdb, which we have previously

built (Wu et al. 2011) using Bowtie version 1 (Langmead et al. 2009)

for hits with no more than two mismatches. Our sequence mapping is

based on the human genome (hg19 assembly, Genome Reference

Consortium GRCh37). The fragments are mapped to TXdb to be able

to handle transcriptomic variability that arises from alternative splic-

ing. TXdb represents every known contiguous sequence of exons in

the human transcriptome as exonic trios and duos, such that mapping

to this database allows us to quantify the splicing pattern in terms of

the relative abundance of fragments of the different isoforms in this

region, locally.

We ran the splicing analysis tool SpliceTrap version 0.90.5 with

default parameters, which uses a Bayesian model to estimate inclusion

ratios. SpliceTrap uses an inclusion ratio distribution model (estimated

from high-confidence data) to reduce noise in the RNA-Seq data

without unnecessarily throwing away evidence from real transcrip-

tomic events. Ultimately, it produces inclusion ratio estimates for all

splicing events and classifies all local splicing decisions as constitutively

spliced exon (CS), alternative donor site (AD), alternative acceptor site

(AA), intronic retention (IR), or alternatively spliced exon (CA).

We chose to use SpliceTrap instead of other RNA-Seq analysis

tools due to the fact that the SpliceTrap model is exclusively focused

on optimizing a local, exon-centric splicing model (which is also our

main focus), and that, in our experience, SpliceTrap produces one of

the most robust and consistent estimates of inclusion ratios among the

tools we compared (Wu et al. 2011).

2052 | N. Rajagopal et al.



Splice site usage

We created a measure of splice site usage by using labels associated

with each exon–intron boundary to the various categories of splice

sites—constitutively spliced exon (CS); alternative donor site (AD);

alternative acceptor site (AA); intronic retention (IR); or alternatively

spliced exon (CA). Each assignment is accompanied by an inclusion

value of the exon with respect to the transcript under consideration.

We assigned negative weights to all the cases where inclusion values

represent increased inclusion, such as IR, AA (39 end), AD (59 end),

and we assigned positive weights to the inclusion values that represent

decreased inclusion, such as AA (59 end), AD (39 end), CA, and CS.

The splice site usage value was defined as a weighted mean of the

inclusion values, with the weights being the activity of the transcript

under consideration. That is, splice site usage for a particular exon–

intron boundary is:

SS ¼ 2

X

j2A

X

i2Tj

Incli � FPKMi þ
X

j2B

X

i2Tj

Incli � FPKMi

i is a particular assignment of an exon with respect to a transcript Tj

Incli is the inclusion value of exon–intron boundary in instance i

FPKMi is the RNA-seq FPKM value of the transcript i belonging to

set Tj

A ={IR, AA (39 end), AD(59 end)}

B={AA(59 end), AD(39 end), CA, CS}

If there was no assignment for any of the seven cases due to weak

coverage in that region, then that term was set to 0.

Identification of chromatin modification patterns at
exon–intron boundaries

Using SpliceTrap (Wu et al. 2011), we obtained annotations for

286,368 exon–intron boundaries in 1H and 246,657 such boundaries

in IMR90, of which 232,919 boundaries had annotations in both cell

types. In each cell type, we randomly selected a subset of 50,000 sites

(�25%) for unsupervised classification because larger number of sites

required many more rounds of selection of the number of clusters

to filter out the outliers. We performed fast k-means++ algorithm

(Arthur and Vassilvitskii 2007) at the exon–intron boundaries using

RPKM-normalized histone modification levels in 100-bp bins between

22 and +2 kb around the boundary as features, and we determined

the number of clusters using the minimum value of the Davies-Bouldin

measure (Davies 1979). We tested different randomly selected subsets

of the data to ensure the results were robust. Further confirmation of

the distinctiveness of each of these states was obtained by constructing

RFECS classifiers for each cluster against all exon–intron boundaries

not assigned to that cluster. We were able to show 100% out-of-bag

classification accuracy in 1H and more than 95% in IMR90 for each

cluster as compared with all others. We used these classifiers to assign

all the boundaries that had not been used in the clustering to assign

them to the appropriate state.

Significance calculations for transitions of chromatin
state at exon–intron boundaries between 1H and IMR90

For computing the significance of the transition from cluster i in 1H to

cluster j in IMR90, we used a hyper-geometric distribution. Thus, we

modeled the probability by using the following analogies to the stan-

dard hyper-geometric distribution framework:

total exon–intron boundaries, N = total population

exon–intron boundaries belonging to cluster i in 1H, m = elements

having desired characteristic

exon–intron boundaries belonging to cluster j in IMR90, n = ele-

ments drawn without replacement from the population exon–

intron boundaries common to cluster i in 1H and cluster j in

IMR90, x = number of elements drawn from the total population

with the desired characteristic

In Matlab, the p-value of transition from cluster i in 1H to cluster j

in IMR90 was calculated as:

p-value ¼ 12 hygecdfðx;N; n;mÞ

ðhypergeometric  distributionÞ

RESULTS

Differential histone acetylation patterns at promoters
and enhancers

We previously observed that H3K4me1 and H3K4me3 are the most

distinctive marks between promoters and enhancers among a limited

set of five histone modifications (Heintzman et al. 2007). To further

define the marks that distinguish these two regulatory elements in

genome-wide maps of 24 histone modifications (Rajagopal et al.

2013), we compared active TSSs (TSSs overlapping DNase-I HS sites)

with an equal number of enhancers defined by TSS-distal p300 bind-

ing. After normalization (Materials and Methods), we observe that the

mean histone modification profile of either class separates clearly into

TSS-preferred and enhancer-preferred groups (Figure 1A, positive vs.

negative axes). We confirmed that the deviation of most of the histone

modifications from a set of elements with randomly shuffled labels is

statistically significant for total normalized read counts within 21 to

+1 kb of the element (Figure 1A; p-value ,1025 using Wilcoxon test,

except for bars marked by black dots). In both 1H and IMR90 cells, we

consistently found that H3K4me1, H2BK20ac, and H2BK120ac are

significantly enhancer-preferred, whereas H3K4me3, H3K4me2,

H3K9ac, H3K56ac, H4K5ac, and H3K27ac are TSS-preferred (Figure

1B). The histone modification profiles in bin sizes of 100 bp between

21 and +1 kb along these elements are also observed to be different

from the random set (Supporting Information, Figure S1, A and B,

blue vs. red).

To assess the importance of each modification in classifying

promoters and enhancers, we constructed classifiers using each mark

individually. Each classifier was composed of a 20-dimensional vector

that was the profile of the histone modification in 100-bp bins

between 21 and +1 kb around the element. H3K4me3, followed by

H3K4me2 and H3K9ac, showed the highest classification accuracy in

both 1H and IMR90 (Figure 1B, blue, red). Nearly all modifications

showed a classification accuracy of at least 55% (in 1H) and 75% (in

IMR90), which is above the classification accuracy of 50% expected at

chance (we verified that classification accuracy on randomly shuffling

labels was found to be �50%). Clearly, the most significantly TSS-

preferred modifications are H3K4me3, H3K4me2, and H3K9ac. For

enhancers, H3K4me1 is the most distinctive, followed by H2BK20ac.

In addition, we also observed cell-type-specific contributions. To ver-

ify if the modifications specific to 1H are due to the distinct biology of

stem cells, we repeated our analysis in H9 human embryonic stem

cells and observed trends resembling 1H (Figure 1B, green vs. blue).

We next classified p300 binding sites and TSSs using all 24 marks.

Interestingly, H3K4me3 alone achieved the same average accuracy as

all 24 modifications in both 1H (�94%) and IMR90 (�95%) . Next,

we examined whether histone acetylation alone could classify these

two elements (Figure 1C). The classification accuracy using all 15
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Figure 1 Classification of distal enhancers and promoters. (A) Preference of various histone modifications for either enhancer or promoter using
a Z-score normalized score of histone modification levels measured as input-subtracted RPKM (reads per kilobase per million) in 1H (blue bars) and
IMR90 (red bars).Modifications with preference for promoters, measured as enrichment on the positive y-axis, in both 1H and IMR90, are shown
indicated in red text color on the x-axis label while preference for enhancers or enrichment on the negative y-axis in both cell-types is indicated in
blue text color. (B) Classification accuracy achieved using each of the 24 histone modifications individually to separate enhancers from promoters
using RFECS in three distinct cell-lines: 1H (blue line), IMR90 (red line), and H9 (green line). H9 is another embryonic stem cell line that was used in
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acetylations is within 1% of that achieved using all 24 marks. Clearly,

acetylations are quite distinctive between the enhancers and promoters.

To identify the specific histone acetylation marks contributing

most to the accurate classification of promoters and enhancers, we com-

puted the out-of-bag variable importance (Bylander 2002; Rajagopal

et al. 2013) for each acetylation. For both 1H and IMR90, the top

acetylation mark was H3K9ac (Figure 1D, Figure S1C), achieving 85%

and 89% classification accuracy, respectively (Figure 1, C and D). The

next mark in ordering of variable importance of 1H was H2BK120ac,

whereas in the case of IMR90 several marks including H2BK20ac

shared the same position (Figure 1D, Figure S1C). However, correla-

tion clustering indicates that H2BK20ac and H2BK120ac are highly

correlated in both 1H and IMR90 (Figure 1, E and F), suggesting that

these are redundant modifications. Hence, we selected the top two marks

as H3K9ac and H2BK120ac and found that this combination achieved

a classification accuracy of within 1% of using all 15 acetylations in

IMR90, whereas in 1H, this fell short by �3%. Including the next

mark in the ordering of 1H, H3K14ac improved this accuracy by

�2% (Figure 1C).

In summary, we observed that using acetylation marks alone we

could accurately separate these promoters from enhancers nearly as

well as using all 24 modifications. Our results indicate differential

enrichment of specific acetylations at enhancers and TSS. In par-

ticular, H3K9ac, H2BK120ac, and H3K14ac appear to be most in-

formative in combination, of which H2BK120ac is enhancer-preferred

whereas the other two are TSS-preferred (Figure 1, A and B).

Histone acetylation patterns accurately predict
enhancers and promoters

Our analysis suggests that histone acetylation patterns are distinct at

promoters and enhancers (Figure 1, C and D). Next, we wondered if

these acetylations could predict promoters and enhancers genome-

wide. As a first step, we applied the RFECS methodology, previously

used to predict enhancers (Rajagopal et al. 2013), to the prediction of

promoters genome-wide (Materials and Methods).

Using all 24 histone modifications, our approach can accurately

predict promoters with �92% true-positive (TP) rate and �1.6% false-

positive (FP) rate in 1H, whereas in IMR90 we observed even better

performance (TP �95%, FP �0.3%) (Figure 2, A and B). Using the

out-of-bag variable measure, we identified H3K4me3 as the most

informative mark required to predict promoters, followed by H3K4me2

and H3K4me1 (Figure S2, A and B). In terms of the area under the

curve (AUC), this minimal set performs comparably with the set of all

24 modifications in both 1H and IMR90 (AUCmin/AUCall = 0.99)

(Figure 2A, red vs. blue). While in 1H, this set is comparable with

using just H3K4me3 (Figure 2A, black vs. red); in IMR90, the addition

of the two marks leads to an improvement of �10% in TP rate as

compared with H3K4me3 (Figure 2B, black vs. red).

Next, to assess if acetylation can accurately predict promoters,

we repeated our analysis on all 15 histone acetylation marks. For

IMR90, overall performance was comparable with using all 24

modifications (AUCac/AUCall =0.99) (Figure 2B, green vs. blue);

for 1H, the TP rate was the same for FP rates beyond 1.3% (Figure

2A, green vs. blue). To determine which acetylations are the most

informative and whether these are robust across cell types, we

computed out-of-bag variable importance for acetylations (Figure

2, C and D). H3K9ac is clearly the most informative, whereas the

next few marks that are comparable across the two cell types ap-

pear to be H2BK120ac, H2AK5ac, and H3K18ac. Several other

H2BK-ac also occur among the top ranks in IMR90 (Figure 2D)

but are highly correlated with H2BK120ac (Figure 1E).

We then made predictions using just H3K9ac, the top two marks

in variable importance for 1H and IMR90, and also the predicted most

informative set of four acetylations. In 1H, there is a significant dif-

ference in the ROC (receiver operating characteristic) curve between

H3K9ac and the top two marks, H3K9ac and H2BK120ac, and an

equivalent increase on including the next two marks, H2AK5ac and

H3K18ac (�8% increase in TP rate for values of FP. 1%) (Figure 2E,

black vs. green vs. red). Even though the performance is not as accu-

rate as using all 15 acetylations, including more marks appears to

contribute incrementally to the curves, such as using the top six marks

(,2% change in TP for FP . 1%) (Figure 2E, magenta vs. red). In

IMR90, there is a significant improvement from using the top two

modifications as compared with using H3K9ac alone, with difference

in TP ranging between 5% and 20% at the same FP (Figure 2F, black

vs. cyan). Beyond this, improvements appear to be more incremental

(,2%), such as in using the predicted minimal set of four modifica-

tions (Figure 2F, red dotted) or even on including the top eight marks

(Figure 2F, magenta).

Applying the RFECS algorithm (Rajagopal et al. 2013) to

enhancers, we compared validation and misclassification rates of pre-

diction using just acetylations with that using all 24 marks or the

minimal set of H3K4me1, H3K4me2 (or H3K27ac), and H3K4me3.

In 1H, the validation rate computed based on overlap with known

true positives (Rajagopal et al. 2013) using just acetylations appears

to be comparable to the set of three marks, H3K4me1, H3K4me3,

and H3K27ac (Figure S2C), whereas the misclassification rate appears

to be within 1% of that using all 24 modifications (Figure S2E). In

IMR90, the validation rate using just acetylations is within 3% of that

using all 24 modifications (Figure S2D, green vs. blue) and a misclas-

sification rate that is within 1% using all 24 modifications (Figure S2F,

green vs. blue).

Hence, enhancers can also be accurately predicted using just

histone acetylation patterns. We computed variable importance for

the prediction of genome-wide enhancers using acetylations and dis-

covered H3K9ac, H2BK120/20ac, and H3K14/23ac as the minimal set

of acetylations for the prediction of enhancers and confirmed this by

comparisons of validation and misclassification rates with performance

using all acetylations (data not shown).

In summary, we found acetylations alone to predict genome-wide

enhancers as well as promoters quite accurately, indicating that acet-

ylations are not only distinct between the two elements but also pre-

dictive. The most informative acetylations in the prediction of promoters

were H3K9ac, H2BK120ac, H3K18ac, and H2AK5ac, whereas in the

case of enhancers this set was composed of H3K9ac, H2BK120/20ac,

and H3K14/23ac.

this case to see if 1H-specific trends were in fact embryonic stem cell–specific. Modifications with the topmost classification accuracy in both 1H
and IMR90 are shown in either red or blue text color, depending on whether they have preference for promoters or enhancers in both cell types.
(C) Comparison of classification accuracy of acetylations with that of all 24 modifications. (D) Ordering of histone acetylations by their out-of-bag
variable importance in classification of enhancers against promoters in 1H. Correlation clustering of histone acetylations at promoters and
enhancers in (E) IMR90 and (F) 1H. Acetylations that show similar patterns of co-occurrence in both cell types are indicated in red text color
along the axes.
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Minimal set of modifications to identify active genes

Several histone modifications have been identified as being enriched in

the body of active genes (Barski et al. 2007). However, the minimum

number of modifications required to achieve an accurate prediction of

the active gene body is still an unsolved problem. To this end, we

identified active RefSeq genes in the 1H and IMR90 genomes based

on the overlap of their TSS with DNase-I HS sites and RNA-seq above

log-value of 2 FPKM. Further, we only considered genic regions lying

2.5 kb away from an annotated TSS. As a true negative set, we identified

an equal number of intergenic regions as all those regions not lying

within any annotated UCSC, GENCODE, or Refseq gene. We con-

structed a random forest-based classifier to distinguish these two sets

using all 24 histone modifications and observed high sensitivity and

specificity at the point of maximum accuracy in both 1H (sensitivity =

89.56%, specificity = 94.54%, AUC = 0.97) and IMR90 (sensitivity =

96.34%, 12specificity = 97.09%, AUC = 0.99) (Figure 3, A and B).

Figure 2 Genome-wide prediction of promoters. Receiver operating characteristic (ROC) curves for prediction of promoters in (A) 1H and (B)
IMR90 using all 24 modifications (blue), H3K4me3 (black), H3K4me1/2/3 (red), or all 15 acetylations (green). Out-of-bag variable importance for
acetylations in making genome-wide prediction of promoters in (C) 1H and (D) IMR90. Modification names indicated in red are the ones that show
top-most variable importance in both cell types and are considered candidates for selection in the minimal set. ROC curves for prediction of
promoters using various minimal combinations of acetylations in (E) 1H and (F) IMR90, as compared with the prediction using all 15 acetylations
(in blue).
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In both 1H and IMR90, the top two informative marks are

H3K36me3 and H3K79me1, which rank well above all other marks

(Figure 3, C and D). By AUC analysis, the performance of these two

marks alone is equivalent to that of all 24 marks in IMR90

(AUCK36me3,K79me1/AUCall = 100%), although it is somewhat lower

in 1H (AUCK36me3,K79me1/AUCall = 96%) (Figure 3, A and B, green).

We found that the two marks ranked next that were common to both

cell types were H3K27me3 and H3K9me3 (Figure 3, C and D). These

modifications may be important because of their relative depletion in

genic regions and enrichment in larger intergenic regions (Figure 4D).

By including these marks, our classifier achieved almost the same

accuracy as all 24 marks in 1H (1H: AUCtop 4/AUCall = 99%) (Figure

3A, magenta vs. blue). Thus, we conclude that the minimal set of

modifications required to predict genes within 1% accuracy of the

set of all modifications is between 2 and 4, with H3K36me3 and

H3K79me1 being the most informative modifications.

Acetylations at the gene body

Next, to assess if gene body acetylation can distinguish genic from

nongenic regions, we constructed a supervised classifier using only

histone acetylations. Supporting this notion, acetylations show an ROC

curve that is well above the line of no discrimination in both 1H and

IMR90 (Figure 3, A and B). However, the performance of acetylations

is lower (1H:AUCac/AUCall = 0.85,IMR90: AUCac/AUCall =0.92) than

that achieved using all 24 marks or even the top four nonacetylation

marks (Figure 3, A and B, green vs. blue). For instance, in IMR90, the

sensitivity and specificity are 81.24% and 84.94%, respectively, as com-

pared with 95.27% and 97.5% for all 24 marks, at default parameters.

Given the lower proportion of genic regions predicted with

acetylations, we asked if this was because of the lower fractions of

gene bodies recovered by acetylations or the existence of distinct

categories of genes that are either completely acetylated or not, defined

based on their predictability using just acetylations. To this end, we

examined the distribution of fractions of genes recovered by either

case and that using all 24 marks leads to 90–100% recovery of most

genes, whereas the fractions recovered by just acetylations appear to

be more evenly distributed (Figure S3, A and B). The partial recovery

of certain genes using acetylations may indicate a bias toward certain

elements within the gene. Because previous studies have found asso-

ciations of acetylations with the splicing of certain genes (Gunderson

et al. 2011), we tested the hypothesis that acetylations might have

a preference for exonic regions or exon–intron boundaries and found

this to be true in both 1H and IMR90 (File S1, Figure S3).

Although acetylations clearly show a bias toward exonic bound-

aries, a sizeable fraction of genes (12.7% in 1H; 16.11% in IMR90) that

can be recovered up to .90% using acetylations alone still exists

(Figure S3, A and B). Distal regulatory elements lying within intronic

regions are enriched in acetylations. Because we wanted to see if the

gene bodies have a distinct acetylation pattern independent of such

intronic enhancers, we selected only those genic regions that are at

least 2.5 kb away from a known DNase-I HS or an exon–intron

boundary. Now, we calculated the classification rate of these filtered

genic vs. intergenic regions using all 24 modifications and just acety-

lations (Figure 4A, Figure S4A). It can be seen that the recovery using

just acetylations is still well above the line of no discrimination (sig-

nificance stats), with a maximum classification accuracy of �70% in
1H and �80% in IMR90 (Figure S4A, Figure 4A).

Because gene body acetylations appeared to be quite discriminative

in the case of IMR90, we further examined which acetylations are most

enriched within the gene body. H2AK5ac, H3K23ac, H3K14ac, H4K5ac,

and H2BK5ac were found to be among the top acetylations in order of

variable importance (Figure 4B), and also showed enrichment in

Figure 3 Classification of genic from
intergenic regions. ROC curves for
classification of genic regions in (A)
1H and (B) IMR90 using various combi-
nations of modifications. Out-of-bag
variable importance of all modifica-
tions in separating genic from inter-
genic regions in (C) 1H and (D) IMR90.
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a majority of genic regions on normalization to intergenic background

(Figure 4C). We selected long genes, such as TEAD1 (Figure 4D),

CHRM2 (Figure 4E), and CALD1 (Figure 4F), that could be classified

to more than 90% against an intergenic background. It can be seen that

several modifications such as H2AK5ac, H3K14ac, H3K23ac, and

H2BK5ac seem to cover a large proportion of the gene as compared

with the neighboring intergenic region. Although some of this may be

accounted for by the presence of punctate regulatory elements, there are

also regions that show diffuse enrichment of the aforementioned acety-

lations, emphasized in Figure 4E in the black boxes.

In 1H, similar analysis yielded a different set of acetylations that

were seen to be among the most enriched at gene bodies, with

H3K27ac being the top-most in terms of variable importance (Figure

S4B). On visualizing the enrichment of various histone modifications

at genic regions vs. intergenic ones, it does appear that H3K27ac has

a ubiquitous but low presence (Figure S4C). The enrichment of several

acetylations within the gene body can also be at the active gene PTPRJ,

which is in sharp contrast to a neighboring intergenic block with

H3K9me3 enrichment (Figure S4D).

Finally, we examined if acetylations have any functional signifi-

cance in gene bodies. Gene expression levels were slightly higher at

acetylated genes (Figure S4, E and F), showing a low but significant

Pearson correlation coefficient of 0.2 in 1H and 0.14 in IMR90. Fur-

ther, we examined if the genes with higher acetylation had specific

Figure 4 Acetylations within the gene
body distal to exon–intron boundaries
and DNAse-I hypersensitive sites in
IMR90. (A) ROC curves showing classi-
fication of distal genic regions using all
24 modifications (blue) or only 15 ace-
tylations (green). (B) Out-of-bag vari-
able importance of acetylations in
classification of distal genic regions
against intergenic regions. (C) Heat-
map showing enrichment of acetyla-
tions in genic regions as compared
with intergenic ones using a Z-score
normalized measure. Only certain ace-
tylations show enrichment in a majority
of genic regions as compared with
intergenic ones, as indicated by the
black box, and emphasized by red text
color. These modifications are also
shown in red in (B) and can be seen
to be among the top-most marks for
variable importance in separation of
genic from intergenic regions. UCSC
genome browser snapshot of genes
(D) TEAD1, (E) CHRM2, and (F) CALD1,
showing enrichment of acetylations as
compared with neighboring intergenic
regions.
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associations with functional annotations. In 1H as well as IMR90,

mRNA processing and RNA binding were among the significantly

enriched terms (Table 1). In addition, each cell-type showed different

categories that were enriched such as that of genes involved in regu-

lation of intracellular protein transport in IMR90 (Table S2) or genes

involved in mRNA splicing in 1H (Table S1).

Histone modification signatures at
exon–intron boundaries

Previous observations of co-transcriptional splicing suggest that spe-

cific chromatin signatures may be associated with splicing (Kolasinska-

Zwierz et al. 2009). As a preliminary investigation, we chose to analyze

the predictive power of the histone modifications under study in

predicting exon–intron boundaries from the genic background. Using

histone modification profiles (in 100-bp bins) between 22 and +2 kb

around the exon–intron boundaries, we were able to classify all known

boundaries from genic background with an accuracy of 87% in 1H

(AUCall = 0.94) or 85.5% in IMR90 (AUCall = 0.93). We then in-

vestigated the contribution of each histone modification under study

to the prediction. On computing variable importance for each of the

histone modifications with respect to the aforementioned classifica-

tion, we found H3K36me3 followed by H3K79me1 to be the most

informative and H3K36me3 alone could classify the boundaries

within 3% of the accuracy achieved using all 24 modifications

(AUCk36me3/AUCall �96%).

To further investigate the association of histone modifications at

exon–introns with function, we identified various splicing events from

paired-end RNA-seq in both 1H and IMR90 (Xie et al. 2013) using

SpliceTrap (Wu et al. 2011). The algorithm classified each local splic-

ing decision as being one of constitutively spliced exon (CS), alternative

donor site (AD), alternative acceptor site (AA), intronic retention (IR),

or alternatively spliced exon (CA) with respect to its flanking exons.

Based on the diversity of isoforms of a particular gene, this can cause

one exon to be part of multiple alternative splicing events. In each such

splicing event, we may characterize the splicing decision in terms of the

inclusion ratio, defined as the ratio of quantified expression level of the

inclusion isoform divided by the sum of quantified expression levels of

both inclusion and exon-skipped isoforms. Further, each exon can also

be quantified in terms of the exonic activity measured as FPKM (frag-

ments per kilobase per million mapped reads). We aim to use these

two quantifications at the exonic level to tease out correlations between

histone modification signals and splicing activity.

Because there is a wide diversity of splicing activity in the

transcriptome, the multiple signals associated with an exon–intron

boundary may lead to the observation of a convoluted histone modi-

fication signal. As a first step toward deconvoluting such putative

chromatin modification signals, we discovered all possible chromatin

modification patterns at exon–intron junctions using a fast k-means++

algorithm (Arthur and Vassilvitskii 2007) (seeMaterials and Methods).

Six distinct clusters are observed in 1H (Figure 5A), with varying

levels of acetylations as well as other gene body marks such as

H3K36me3, H3K79me1, and H4K20me1. Each of these clusters were

characterized in terms of their distinctiveness from the genic back-

ground by classifying the exons assigned to the cluster against the

genic background using either all 24 modifications or just acetylations

(File S1, Figure S5, A and C). Overall, state 2 is unclassifiable against

background using just acetylations, indicating that the weak acetyla-

tion signature is comparable with the gene body, whereas other states

were found to be either overenriched (states 1, 5, 6) or underenriched

(states 3, 4) for acetylations as compared with the rest of the gene (File

S1, Figure S5, A and C). It is worth noting that only those states with

enrichment of acetylations appear to have presence of H3K79me1 as

well.

In IMR90, however, we observed four distinct chromatin modi-

fication patterns (Figure 5B). In common with 1H, there is an “en-

hancer-like” cluster, cluster 1 (cluster 1 in 1H), and “promoter-like”

cluster, cluster 2 (cluster 5 and 6, 1H), based on enrichment of

H3K4me1 and me3, respectively. As in 1H, these two are significantly

enriched in acetylations with respect to genic background, whereas

state 4 is significantly depleted (File S1, Figure S5, B and D).

The learned histone modification states in 1H cells are ranked in

decreasing order of exonic activity based on calculations of statistical

significance of the difference of mean RNA-seq FPKM (fragments per

kilobase per million) levels between clusters using a Student’s t-test

(Figure 5A, panel 2). In 1H, there appears to be a positive correlation

with the level of H3K36me3, which is apparent as clusters 2 . 3 . 4

that show significantly decreasing trends of activity also have corre-

spondingly decreasing H3K36me3 (spearman correlation for clusters

1 to 4 = 0.59; p-value , 2.2·102308). However, “TSS”-like signatures

(clusters 5 and 6) appear to be even more highly active, irrespective of

H3K36me3 enrichment. The same trend may be observed in IMR90,

where cluster 3 with the lowest enrichment of H3K36me3 also has the

lowest activity (spearman correlation for clusters 1, 3, and 4 = 0.47;

p-value, 2.2·102308), and “TSS-like” state 2 has the maximum exonic

activity (Figure 5B, panel 2).

In summary, H3K36me3 can accurately classify most exon–intron

junctions from genic background. We identified multiple distinct

chromatin states at both 1H and IMR90 that are associated with

varying levels of exonic activity. We found that there was considerable

variation in the levels of acetylations at exon–intron boundaries, many

of which were either highly enriched or highly depleted in acetylations

with respect to the rest of the gene.

Chromatin modification patterns are predictive of
splice-site usage

As described in the section above, an exon can be part of multiple

different splicing events such as constitutively spliced exon (CS),

alternative donor site (AD), alternative acceptor site (AA), intronic

retention (IR), or alternatively spliced exon (CA) with respect to its

flanking exons. A single exon–intron junction can have multiple

assignments of inclusion values based on the transcript under consid-

eration. Hence, we further developed a metric to characterize the

overall splice site usage for every exon–intron boundary based on an

expression-weighted average of its inclusion ratio in all transcripts

(Materials and Methods).

Chromatin modification clusters are ranked in decreasing order of

retention or increasing order of splice site usage in 1H using a Wil-

coxon test with a p-value cutoff of 1025 (Figure 5A, panel 3). A clear

trend is observed where the greater the enrichment of acetylations, the

stronger the tendency for retention, with clusters 6, 5, and 1 having

the maximum tendency for retention (Figure 5A, panel 3). In IMR90

as well, the highly acetylated clusters 2 and 1 showed significantly

higher retention of the boundary (Figure 5B, panel 3, ranked I and

II based on a p-value cutoff of 1025).

n Table 1 GO terms for acetylation-rich genes in 1H and IMR90

GO Term Description 1H p-value IMR90 p-value

GO:0006397 mRNA processing 5.90E209 7.19E204
GO:0010467 gene expression 4.79E205 4.79E205
GO:0003723 RNA binding 3.21E204 1.03E205
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We asked to what extent we could predict retention of exon–intron

junctions based on chromatin modifications as input features. We

defined the constitutive class of exon–intron boundaries as those that

have the maximum possible value of inclusion ratio, 0.999, in all

transcripts of which they are a part. We defined two categories of

alternatively spliced exon–intron boundaries based on their contribu-

tion to splice-site usage: group I class of boundaries comprising IR,

AD (59 end), and AA (39 end) contribute negatively to splice-site

usage, whereas group II class of boundaries comprising CA con-

tributes positively to splice-site usage, as defined above. Using all

24 modifications, we obtained a maximal classification accuracy of

�70% and AUC of 0.75 for group I exon–intron boundaries in

IMR90 (Figure S6B, black). Although this is clearly greater than

expected at random, we asked if we could further improve the clas-

sification accuracy by taking into consideration other factors. For

instance, exon–intron boundaries within close proximity of each other

may share the same chromatin signature, which would cause difficulty

in classification. To verify this, we filtered any retained exon–intron

boundary within different distances of the constitutive exon–intron

boundaries and found a steady improvement in accuracy of classifi-

cation with filtering distance (Figure S6B, black to red). Now, if we

consider filtering the group I elements for any constitutive exon–

intron boundaries, we actually observed a worsening of the performance

(Figure S6B, black vs. dotted blue). We obtained the best possible

accuracy of classification with an AUC of 0.84 and maximal accuracy

of 77.1% by using a filtering distance of 10 kb for determining the set

of distal constitutive exon–intron boundaries in IMR90 (Figure 6A,

blue). In 1H, we observed the same trend (data not shown) and

obtained a maximal accuracy of 76.5% and AUC of 0.84 for classifi-

cation of group I exon–intron junctions against distal constitutive

ones (Figure 6B, blue).

Histone lysine acetylations had been observed to be enriched at

clusters with greater degree of retention (Figure 5, A and B). To

further explore the relative importance of histone lysine acetylations,

we classified the group I exon–intron junctions against the distal

constitutive ones and obtained a comparable classification accuracy

as using all 24 modifications (Figure 6, A and B, blue vs. red, 1H:

AUCac/AUCall = 0.96, IMR90: AUCac/AUCall = 0.98). Previous studies

had shown H3K36me3 to be distinctive between alternatively spliced

exons and constitutively spliced ones (Hon et al. 2009). As compared

with acetylations, H3K36me3 was able to achieve a much lower ac-

curacy of classification (Figure 6, A and B, blue vs. red, 1H: AUCk36/

AUCall = 0.88, IMR90: AUCk36/AUCall = 0.94), indicating the stronger

association of group I alternatively spliced exons with acetylation

signatures, rather than H3K36me3.

On classification of group II alternatively spliced exons against

a constitutive background, we achieved a maximal accuracy of �66%

and AUC of 0.71 in IMR90 (Figure S6B, black). We considered the

case of classifying distal alternative vs. constitutive ones and found

a steady improvement of classification accuracy on increasing filtering

distance for removing nonretained exon–intron boundaries in the

vicinity of the group II alternative class (Figure S6B, solid blue to

red). At best, we achieved a maximal accuracy of 80% and AUC of

0.88 for classifying distal group II alternative exon–intron boundaries

against the constitutive background in IMR90 (Figure 6C, blue). In
1H, we achieved a similarly high level of accuracy of performance with

a maximal accuracy of 78% and AUC of 0.87 (Figure 6D, blue). In the

case of group II junctions, H3K36me3 was more effective than histone

lysine acetylations in classifying alternative boundaries against consti-

tutive ones (Figure 6, C and D, green vs. red), although neither ace-

tylations nor H3K36me3 could achieve comparable performance as

that using 24 modifications (1H: AUCk36/AUCall = 0.9, IMR90:

AUCk36/AUCall = 0.89).

Patterns in both cell types were also associated with specific splice

variants to see if there were significant associations with these (Figure S6,

C and D). Alternative donor sites or 59 splice sites were enriched in the

promoter-like clusters in both cell types as compared with any other

state. However, surprisingly, all other splice variants also have a greater

Figure 5 Chromatin modification patterns at
exon–intron junctions in 1H and IMR90. (A) Six
distinct chromatin modification patterns at
exon–intron junctions with corresponding lev-
els of exonic activity (panel 2) and splice site
retention (panel 3). (B) Four distinct chromatin
modification patterns at exon–intron junc-
tions with corresponding levels of exonic ac-
tivity (panel 2) and splice site retention (panel
3). Ranks associated with each of these
parameters are shown for the clusters, in 1H
as well as in IMR90, based on significant dif-
ferences in either exonic activity or splice site
retention between the clusters, measured us-
ing a Wilcoxon test.
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tendency to occur proximal to such promoter-like signatures. PLEKH3

is a gene that is predicted by SpliceTrap to have a series of retained

exon–intron boundaries in 1H that are constitutively spliced in IMR90.

This gene can be seen to have chromatin state changes associated with

alternative splicing and retention (Figure S7A). The reverse can be seen

in the gene VIM where certain exons that are constitutive in 1H are

retained in IMR90 (Figure S7B). In both cases, the set of exons un-

dergoing various types of retention, excluding alternative 59 site usage,

are indicated by a black box and can be seen to be covered by the

expansion of H3K4me3 signal in the cell type with alternate usage.

Another observation to note was that state 4 in 1H appeared to be

preferential for exons with both ends constitutively spliced, whereas

states 1, 5, and 6 show preference for other events such as alternative

acceptor sites or intronic retention (Figure 5A, Figure S6D).

In conclusion, using chromatin modification information, we were

able to achieve accuracy as high as 80% for the classification of

alternatively spliced exon–intron junctions from a constitutively spliced

background. We observed improvement in classification accuracy on

considering a constitutive background distal to any retained exon in

case of group I exons and by considering an alternative class distal to

constitutive exons in case of group II exons. This suggests the effect of

proximal chromatin signature on neighboring exons. Retained exon–

intron boundaries are highly enriched for histone lysine acetylations,

especially intronic retention, alternative 39 end usage, and alternative 59

end usage. “Enhancer-like” and “promoter-like” chromatin states that

appear to be associated with splice site retention are common to both

cell types, of which the latter is the most strongly associated with

a variety of splice site variants, not just alternative 59 sites.

Dynamics of chromatin modification states at
splice sites

Certain chromatin modification clusters in 1H appear to be analogous

to ones in IMR90 based on the patterns of modifications, such as the

“enhancer-like” state 1 (1H) with state 1 (IMR90), and the “promoter-

like” state 5 and state 6 (1H) with state 2 (IMR90) (Figure 5, A and B).

However, the other clusters are not so easily comparable in terms of

chromatin modifications. In this regard, we examined if particular

states in 1H have a tendency to correspond to ones in IMR90 based

on the number of exon–intron junctions that are common to the

states in the two cell types. We computed the p-value of transitions

between the six states in 1H to the four states in IMR90 using a hyper-

geometric distribution (Materials and Methods) and significant tran-

sitions, based on a p-value , 2.2·102308, are enumerated in Table 2.

It appears that the chromatin state transitions are in keeping with the

overall ranking in terms of splice site usage. For instance, state 2 in 1H

and state 4 in IMR90 show significant transitions even though their

chromatin modification patterns do not appear to be the same. How-

ever, both these clusters are ranked immediately after the “promoter-

like” and “enhancer-like” states in terms of their splice site usage. Such

a trend is in keeping with the fact that the change in splice site usage

across the two cell types is relatively small. For instance, if we assume

any exon junction with splice site usage ,0.9 to be called alternative,

then only 1.92% of the total exons undergo any change at all in their

splice site usage between 1H and IMR90.

We observed that we could obtain a considerably higher accuracy

of classification of group II alternatively spliced exons in 1H if we

Figure 6 Associations of chromatin modifica-
tion patterns with splicing. (A–D) ROC curves
for the classification of alternatively spliced
exon–intron junctions against constitutively
spliced ones using all 24 modifications (blue),
15 acetylations (red), or H3K36me3 (green)
for classification of (A, B) group I exon–intron
junctions comprising intronic retention (IR),
alternative 59 end usage (AD), and alternative
39 end usage (AA) in (A) IMR90 and (B) 1H.
Group II exon–intron junctions comprising al-
ternatively spliced exon (CA) in (C) IMR90 and
(D) 1H. Negative logarithm of the p-value of
enrichment of alternatively spliced exons ex-
clusive to 1H (blue) or IMR90 (red) in (E) IMR90
and (F) 1H.
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considered a negative set that was composed of constitutive exons in

both 1H and IMR90, rather than just 1H with an improvement in

maximal accuracy of approximately 4% (Figure 6D, magenta vs. blue).

However, there is not much difference in accuracy of classification on

using this constitutive background in IMR90 (Figure 6C, magenta vs.

blue). This suggests that certain constitutive exons in 1H may be “pre-

marked” for alternative splicing in IMR90. To validate this, we created

two sets of junctions based on splice site usage—one that is alterna-

tively spliced in 1H but not IMR90 and another that is alternatively

spliced in IMR90 but not 1H (Figure 6F,blue vs. red). Both the acet-

ylation-rich clusters 1 and 6 in 1H (Figure 5A) are significantly

enriched for cell-type-specific retained junctions whether it is in 1H

or IMR90 (Figure 6F). However, in IMR90, the corresponding acety-

lation-rich clusters 1 and 2 are not significantly enriched for 1H-

exclusive retention events (Figure 6E). Hence, it may be that the states

in 1H are pre-marked for alternative splicing in IMR90 because they

are undifferentiated cells that contain the tendency for alternative

splicing in future differentiated cells as well. Because IMR90 is a fully

differentiated cell type, it does not show similar tendencies.

Overall, it appears that only a small proportion (,2%) of exons

undergo alternative splicing changes between 1H and IMR90. The

chromatin modification patterns at exon–intron boundaries changes

across 1H and IMR90 in such a manner to correspond to the splice

site usage corresponding to the cluster, rather than the actual enrich-

ment of various modifications. Also, constitutive exon–intron bound-

aries in 1H may be pre-marked by an alternative splice site signature

for use in later differentiated cell types such as IMR90.

DISCUSSION
Chromatin modifications distinguishing promoters and enhancers

have previously been identified as H3K4me1 and H3K4me3 (Heintz-

man et al. 2007). Besides these two, we find that several additional

histone modifications, especially histone acetylations, can also re-

liably distinguish these regulatory elements. In particular, H3K9ac,

H3K23ac, and H3K14ac are promoter-preferred, whereas H2BK120ac

and H2BK20ac are enhancer-preferred. Overall, histone acetylation

is not only distinctive between the two regulatory elements but also

informative enough to predict promoters and enhancers genome-

wide. These observations potentially lead to several hypotheses re-

garding differences in mechanisms of functioning of these two

regulatory elements. H2BK120 has been shown to have a ubiquitination

modification that is present at active promoters and exclusive of

H2BK120ac (Gatta et al. 2011). This exclusivity may explain the pres-

ence of H2BK120ac at enhancers, and may suggest the lack of

H2BK120Ub at these elements. Understanding the dynamics of the

H2BK120 acetylase, KAT3 (Gatta et al. 2011), and the H2BK120

ubiquitin ligase, RNF20 (Hwang et al. 2003; Zhu et al. 2005), may

lead to further understanding of differences between enhancers and

promoters.

In addition to enhancers and promoters, acetylations were

found to be quite informative in delineating gene bodies. It was

previously observed that certain acetylations showed elevated

levels at the promoter region as well as the transcribed regions

of active genes in CD4+ T-cells (Wang et al. 2008). We wanted to

investigate if specific patterns of acetylations were distinctive of the

gene body alone by investigating the predictive power of these

acetylations in 1H and IMR90 cell types. We found extensive en-

richment of H2AK5ac, H2BK120ac, H3K14ac, and H3K23ac along

gene bodies, and acetylations alone can achieve 80% accuracy in

predicting gene bodies. Some studies have shown PCAF to be

regulating H3K14ac (Lau et al. 2000), also known to be part of

an elongation-competent form of RNA-polymerase II (Cho et al.

1998). This factor may be involved in the maintenance of gene

body acetylations in IMR90. Tip60 and HDAC6 have also been

characterized as being within gene bodies (Wang et al. 2009), the

former of which is known to acetylate H2AK5 (Jeong et al. 2011).

Hence, given the patterns of acetylations within gene bodies and

prediction of genes enriched in these, there is a potential to gen-

erate hypotheses regarding the combinatorial localization of HATs

and HDACs within specific genes.

Acetylations within the gene body are especially enriched near

exon–intron junctions of retained exons. We described two groups of

such exon–intron junctions—one that comprised events contributing

to negative splice site usage such as intronic retention (IR), alternative

39 end (AA), and alternative 59 end (AD) usage, and another that

contributed to positive splice site usage comprising alternatively

spliced exons (CA). We found that both these groups showed signif-

icant association with proximal chromatin state but had differential

associations with histone lysine acetylations. Histone lysine acetyla-

tions were found to be highly discriminative in classifying group I

exons against a set of distal constitutive exon. However, H3K36me3

depletion appeared to be more distinctive of the class of group II

exons. We observed improvement in classification accuracy on con-

sidering a constitutive background distal to any retained exon in case

of group I exons and by considering an alternative class distal to

constitutive exons in case of group II exons. Possibly, the chromatin

signature of these group I exons may be more permissive for allowing

constitutive splicing in neighboring exons, whereas the chromatin

signature of group II exons may not be as permissive for allowing

constitutive splicing and may be more strictly restricted to distal group

II exons. In case of constitutive and alternative exons within close

proximity to each other, factors other than the chromatin state may

play an important role in regulating the splicing. One of these could be

the effect of distal regulatory elements interacting with the splice-site

junctions (Mercer et al. 2013). The role of such elements in splicing

can be further studied using a chromosomal conformation captures

technique such as 4C (Zhao et al. 2006). It was also observed that

many acetylation-rich, constitutive exons in 1H are alternatively

spliced in IMR90. Such a hypothesis may be further tested by includ-

ing detailed splicing and chromatin formation across many human

cell lines, both from early and late lineages.

Hence, we observed patterns of histone acetylations that are

specific to promoters, enhancers, and genic regions. Such observations

are in keeping with many previous studies regarding the localization

of chromatin modifiers at these elements and suggest further test-

able hypotheses regarding the combinatorial enrichment of potential

chromatin modifiers at these regions, which could lead to a better un-

derstanding of the mechanism of functioning of enhancers, promoters,

and genes.

n Table 2 Significant chromatin state transitions at exon–intron
junctions between 1H and IMR90

Cluster
IMR90

Cluster 1
IMR90

Cluster 2
IMR90

Cluster 3
IMR90

Cluster 4

1H cluster 1 Yes No No Yes
1H cluster 2 No No No Yes
1H cluster 3 No No Yes No
1H cluster 4 Yes No Yes No
1H cluster 5 Yes Yes No No
1H cluster 6 No Yes No No
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