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Distinct BOLD variability changes 
in the default mode and salience 
networks in Alzheimer’s disease 
spectrum and associations with 
cognitive decline
Liwen Zhang1,2,3,4, Xi-Nian Zuo  5, Kwun Kei Ng2,4, Joanna Su Xian Chong2,4, 
Hee Youn Shim1,4, Marcus Qin Wen Ong2,4, Yng Miin Loke4, 
Boon Linn Choo4, Eddie Jun Yi Chong1,3, Zi Xuen Wong1,3, Saima Hilal  1,3, 
Narayanaswamy Venketasubramanian6, Boon Yeow Tan7, Christopher Li-Hsian Chen1,3 & 

Juan Helen Zhou2,4,8*

Optimal levels of intrinsic Blood-Oxygenation-Level-Dependent (BOLD) signal variability (variability 
hereafter) are important for normative brain functioning. However, it remains largely unknown 
how network-specific and frequency-specific variability changes along the Alzheimer’s disease (AD) 
spectrum and relates to cognitive decline. We hypothesized that cognitive impairment was related 
to distinct BOLD variability alterations in two brain networks with reciprocal relationship, i.e., the 
AD-specific default mode network (DMN) and the salience network (SN). We examined variability of 
resting-state fMRI data at two characteristic slow frequency-bands of slow4 (0.027–0.073 Hz) and 
slow5 (0.01–0.027 Hz) in 96 AD, 98 amnestic mild cognitive impairment (aMCI), and 48 age-matched 
healthy controls (HC) using two commonly used pre-processing pipelines. Cognition was measured with 
a neuropsychological assessment battery. Using both global signal regression (GSR) and independent 
component analysis (ICA), results generally showed a reciprocal DMN-SN variability balance in aMCI (vs. 
AD and/or HC), although there were distinct frequency-specific variability patterns in association with 
different pre-processing approaches. Importantly, lower slow4 posterior-DMN variability correlated 
with poorer baseline cognition/smaller hippocampus and predicted faster cognitive decline in all 

patients using both GSR and ICA. Altogether, our findings suggest that reciprocal DMN-SN variability 
balance in aMCI might represent an early signature in neurodegeneration and cognitive decline along 
the AD spectrum.

Alzheimer’s disease (AD) is the major cause of dementia, and increasing attention has been focused on early 
disease detection/prevention. �erefore, studying brain changes along the AD disease continuum is impor-
tant, i.e., from normal aging to the prodromal stage (amnestic mild cognitive impairment, aMCI) and �nally to 
dementia stage. Using resting-state functional connectivity methods1–5 that quanti�es the temporal synchrony 
between brain regions, both AD and aMCI have been found to target large-scale networks, including reduced 
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default mode network (DMN) connectivity and increased salience network (SN)6–8 connectivity, as well as aber-
rant connectivity between networks9 in AD, and disturbed connectivity in aMCI, especially in relation to the 
DMN10–12. However, resting-state functional connectivity cannot provide information about the temporal varia-
bility of blood oxygen-level-dependent (BOLD) signal amplitude. Notably, the human brain features inherently 
moment-to-moment signal variation, which is not just neural noise but functional and adaptive2,13. Nonetheless, 
the resting-state BOLD signal variability (variability herea�er) pattern along the AD disease continuum remains 
largely unclear.

Although still under discussion, variability has been suggested to re�ect the complexity and information 
capacity of the neural systems14 and possibly correlates with balance between dynamical integration and seg-
regation in brain areas/networks (i.e. metastability)15, which contributes to optimal brain functioning. Indeed, 
in healthy young individuals (whose brains are assumed to be optimal), variability has been associated with 
response speed and transition from �xation to cognitive-demanding tasks16–18. In a most recent study, increased 
variability in the SN including the insula and decreased variability in most of the other brain regions have been 
found across life span19. Moreover, generally reduced variability has been found in healthy elderly compared with 
healthy young individuals20, and also in neuropsychiatric disorders (e.g., traumatic brain injury, psychosis and 
bipolar disorder)21–23. �ese results suggest that variability could be a promising and e�ective measure to re�ect 
disturbed brain functioning.

Despite its potential in revealing network complexity/metastability, variability has been understudied in AD 
and aMCI, and the results were inconsistent. Compared with healthy individuals, AD has shown reduced var-
iability especially in the posterior DMN24–26, increased variability in di�erent areas across studies such as the 
parahippocampal gyrus/hippocampus, superior frontal gyrus, temporal gyrus, supplementary motor area and 
postcentral gyrus24,26, or no altered variability27. In aMCI, a recent meta-analysis of 12 resting-state fMRI studies 
reported altered variability in widespread areas compared with healthy individuals, such as decreased variabil-
ity in areas that belong to the DMN and the SN, as well as increased variability in the visual network and the 
hippocampus28.

Moreover, few studies have investigated the frequency-dependent variability pattern in AD or aMCI. Within 
the commonly investigated low-frequency band (0.009–0.08 Hz) especially in resting-state studies2, slow4 (0.027–
0.073 Hz) and slow5 (0.01–0.027 Hz) explain primary slow oscillations in grey matter hemodynamic signals, and 
have strongest oscillations in the basal ganglia and anterior DMN respectively in healthy young individuals29, 
which possibly contributes to di�erent neural processing30. Previous work mostly measured frequency-speci�c 
variability using amplitude of low-frequency �uctuations (ALFF) and/or fractional ALFF (fALFF) indices; the 
�ndings in AD were limited and inconsistent. Brie�y, Veldsman and colleagues found that AD had increased 
slow4 variability in the DMN/visual network and slow 5 variability in the precentral/postcentral gyrus, while 
decreased slow4 variability in the temporal pole25. Nevertheless, another study reported increased slow4/5 var-
iability in the temporal regions as well as increased slow5 and reduced slow4 variability in the basal ganglia in 
AD compared with controls24. Additionally, there were lower level of variability in the posterior DMN at both 
slow4 and slow5 in aMCI than that in healthy elderly31. �ese inconsistent results might imply that a new index 
for variability is needed.

While previous studies have provided important preliminary results of variability alterations in patients with 
cognitive impairment, their limitations in frequency-dependent investigation, di�erent pre-processing pipelines, 
variability calculation methods, a lack of direct comparison between AD and aMCI, and relatively small sample 
size preclude them from reaching a convincing conclusion. Moreover, to our best knowledge, there has been no 
study on how frequency-speci�c variability relates to cognitive decline over time in AD spectrum.

In view of these gaps, we aimed to investigate frequency-dependent BOLD variability during resting-state in 
a large sample of AD, aMCI, and age-matched healthy controls (HC) and evaluated their relationships with cog-
nitive impairment and decline. Given previous inconsistent results using ALFF/fALFF24,25,31, we employed a new 
variability index de�ned as standard deviation (SD) of the BOLD signal16,17,20,21. �is SD-based variability index 
is a direct measure of BOLD signal �uctuation and has not been examined in AD/MCI. Importantly, we aimed to 
reveal consistent BOLD variability patterns using two commonly used fMRI pre-processing approaches, includ-
ing global signal regression (GSR) and independent component analysis (ICA). Based on previous evidence of 
divergent DMN-SN network disruptions in AD7,8 and aMCI32, we hypothesized that compared with age-matched 
controls, AD group would show lower DMN variability and higher SN variability while aMCI group would show 
similar trend with lesser extent. We also sought to test if such variability changes would be related to neurodegen-
eration and cognitive performance at baseline and cognitive decline over time.

Results
Comparisons of variability patterns between AD, aMCI, and HC at slow5. With GSR, there was 
a main e�ect of group mainly in the SN/subcortical areas (i.e., insula, rolandic operculum, amygdala, putamen), 
medial temporal lobe (hippocampus and parahippocampal gyrus), visual network (VN) (i.e. lingual gyrus/fusi-
form gyrus), dorsal attention network (i.e. postcentral gyrus), as well as the DMN (angular gyrus) (Supplementary 
Table 1).

Pair-wise comparisons showed that there was increased variability in the posterior DMN/VN (precuneus, 
angular gyrus, cuneus, middle and superior occipital gyrus) in aMCI compared with HC (Fig. 1A, top panel). 
Similarly, aMCI mainly had higher variability in the posterior DMN/VN compared with AD (Fig. 1B, top panel), 
including the lingual gyrus, fusiform gyrus, angular gyrus, precuneus, cuneus, superior, middle and inferior 
occipital gyrus. In contrast, decreased variability was found in the SN in aMCI compared with both HC (Fig. 1C, 
top panel) and AD (Fig. 1D, top panel). Additionally, aMCI showed lower variability in the amygdala/hip-
pocampus as well as the putamen compared with AD, and reduced variability in the parahippocampal gyrus and 
putamen compared with HC (Supplementary Table 1).
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A�er ICA-based denoising, there was a main e�ect of group mainly in the posterior DMN including the 
precuneus/posterior cingulate cortex and VN (cuneus), and the SN (insula) (Supplementary Table 1). Group 
comparisons replicated the GSR �ndings that aMCI had higher variability in the posterior DMN compared with 
AD (precuneus; Fig. 1B, bottom panel) and HC (angular gyrus; Fig. 1A, bottom panel), as well as lower SN var-
iability compared with HC (insula; Fig. 1C, bottom panel), although the latter did not survive the cluster-level 

Figure 1. Divergent slow5 hemodynamic variability changes in the default mode and the salience networks 
in aMCI and AD. Using both GSR and ICA-based denoising methods, aMCI showed higher variability in the 
default mode network compared with HC (A, top panel) and AD (B, top panel), and lower variability in the 
salience network (INS) compared with HC (C, top panel). Speci�c to data denoising approaches, ICA-based 
denoising revealed lower variability in the default mode network (PCUN) in AD compared with HC (E, bottom 
panel), while GSR method showed lower variability in the salience network (INS) in aMCI compared with AD 
(D, top panel). Results were obtained at p < 0.05 family wise error (FWE) correction on the cluster level, with 
a previous height threshold of p < 0.001, superimposing on the MNI brain template. We also reported results 
with a less stringent cluster-level threshold of p < 0.05 (uncorrected, k > 40), with a previous height threshold 
of p < 0.001 (for the insula at aMCI < HC [C, bottom panel] with ICA-based denoising). Same slices were 
displayed to ease comparison between GSR approach and ICA-based denoising. Colour bar represents T value. 
Abbreviations: AD = Alzheimer’s disease; aMCI = Amnestic mild cognitive impairment; ANG = Angular 
gyrus; CUN = Cuneus; GSR = Global signal regression; HC = Healthy controls; ICA = Independent component 
analysis; INS = Insula; PCUN = Precuneus; ROL = Rolandic operculum; SOG = Superior occipital gyrus. 
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FWE correction. Moreover, AD showed lower variability in the posterior DMN (i.e., precuneus/cuneus) than HC, 
which was absent using GSR approach (Fig. 1E).

Comparisons of variability patterns between AD, aMCI, and HC at slow4. With GSR, there was 
a main e�ect of group in the DMN including the precuneus and the angular gyrus, the SN including the insula, 
as well as the VN including the middle occipital gyrus and cuneus (Supplementary Table 2). Group comparisons 
revealed that aMCI had higher variability in the posterior DMN extending into the VN compared with both HC 
(Fig. 2A, top panel) and AD (Fig. 2C, top panel), whereas aMCI showed lower variability in the SN including the 
right insula (Fig. 2B, top panel). In parallel, there was lower variability in the anterior DMN (medial part of the 
superior frontal gyrus) in AD compared with aMCI (Supplementary Table 2).

ICA-based denoising method replicated the GSR-based �nding that AD had lower variability than aMCI in 
the posterior DMN (angular gyrus) with the same FWE-corrected p < 0.05 cluster threshold, along with a smaller 
precuneus cluster at p < 0.05 uncorrected level (Fig. 2C, bottom panel, Supplementary Table 2). In contrast to 
the GSR results, there was higher SN variability (insula) in aMCI compared with HC (Fig. 2A, bottom panel). 
Furthermore, AD had lower variability in the posterior DMN (precuneus/angular gyrus) compared with HC 
(Fig. 2D, bottom panel), where aMCI displayed an intermediate level of DMN variability (precuneus) between 
AD and HC (Supplementary Fig. 1; HC > aMCI > AD).

Given that not only similar, but distinct slow4 results were found between GSR and ICA-based approach, we 
explored the possible explanations via examining the associations between the global signal time series and the 
voxel-level slow4 time series within each of the three groups and compared them using two-sample t-tests. We 
found that global signal presented di�erential associations with the DMN and SN time series at slow4 across 
groups (Supplementary results; Supplementary Fig. S2), which potentially explain the inconsistent results of 
slow4 using GSR and ICA approaches.

Moreover, we found distinct variability patterns of SD in the whole frequency band (Supplementary Table 3, 
Fig. 3), which did not overlap with those regions identi�ed in slow4 and slow5. �is indicated that the observed 
variability di�erences at slow4 and slow5 between groups were not due to di�erences of SD in the whole band.

In addition, controlling for motion and presence of signi�cant cerebrovascular disease (CeVD) revealed com-
parable results at both slow5 (Supplementary Figs. S3 and S5) and slow4 (Supplementary Figs. S4 and S6).

Correlation analyses of variability with baseline cognition, hippocampal volume and cogni-
tive decline. At slow4, lower variability in the posterior DMN was associated with worse global cognition 
and smaller hippocampal volume at baseline in all patients for both ICA-based denoising (Fig. 4A,B), and GSR 
approach (Supplementary Table 4).

Figure 2. Divergent slow4 hemodynamic variability changes in the default mode and the salience networks 
in aMCI and AD. Compared with HC, GSR approach revealed higher variability in the default mode network 
(A, top panel) while lower variability in the salience network (B, top panel) in aMCI. However, a�er ICA-
based denoising, there was higher variability in the salience network in aMCI than in HC (A, bottom panel). 
Moreover, AD showed lower variability in the default mode network (PCUN, ANG) compared with HC a�er 
ICA-based denoising (D, bottom panel), which was absent for the GSR approach (D, top panel). Across both 
data denoising methods, AD showed lower variability in the default mode network compared with aMCI 
(C). Results were obtained at p < 0.05 family wise error (FWE) correction on the cluster level, with a previous 
height threshold of p < 0.001, superimposing on the MNI brain template. Same slices were displayed to ease 
comparison between GSR approach and ICA-based denoising. Colour bar represents T value. Abbreviations: 
AD = Alzheimer’s disease; aMCI = Amnestic mild cognitive impairment; ANG = Angular gyrus; 
GSR = Global signal regression; HC = Healthy controls; ICA = Independent component analysis; INS = Insula; 
MOG = Middle occipital gyrus; PCUN = Precuneus. 
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At slow5, lower variability in the posterior DMN and higher variability in the SN were related to worse global 
cognition and smaller hippocampal volume respectively with GSR approach (Supplementary Table 3), which was 
absent a�er ICA-based denoising.

Regarding the correlation between variability and cognitive decline over a 2-year follow-up, lower variability 
in the posterior DMN at slow4 was associated with faster cognitive decline, which was consistent between the 
ICA-based denoising (Fig. 4C) and GSR approach (Supplementary Table 3).

Discussion
BOLD signal variability is important for optimal brain functioning. To our best knowledge, our study is the �rst 
and the largest study so far to investigate the frequency-dependent patterns of resting state BOLD signal variabil-
ity (SD) and their associations with cognitive impairment/decline in AD and aMCI, repeating with two separate 

Figure 3. Whole band hemodynamic variability comparisons between AD, aMCI, and HC with GSR and 
ICA-based denoising. To ease results comparison between whole band and sub-frequency band (i.e., slow4 and 
slow5), same slices from results of slow5 (see Fig. 1) and slow4 (Fig. 2) were also displayed. Across contrasts, 
largely non-overlapping results were shown between whole band and slow4/slow5, using both GSR and ICA-
based denoising methods. Speci�cally, using GSR approach, aMCI showed higher variability mainly in the 
DorsAttn and subcortical regions compared with AD (A, top panel), while lower variability in the cerebellum 
(B, top panel) and VN (E, top panel) compared with AD or HC. Moreover, AD showed increased variability 
in the anterior DMN (C, top panel) and reduced variability in the VN and subcortical regions (D, top panel) 
compared with HC. ICA-based data denoising replicated lower VN variability in aMCI compared with HC 
(E, bottom panel), higher variability in the anterior DMN (C, bottom panel) while lower VN variability (D, 
bottom panel) in AD compared with HC. Speci�c to data-denoising approach, ICA-based denoising revealed 
higher variability in the ECN (C, bottom panel) while lower variability in the posterior DMN/VN (D, bottom 
panel) in AD compared with HC. Results were obtained at p < 0.05 family wise error (FWE) correction on the 
cluster level, with a previous height threshold of p < 0.001, superimposing on the MNI brain template. We also 
reported results with a less stringent cluster-level threshold of p < 0.05 (uncorrected, k > 40), with a previous 
height threshold of p < 0.001 (for the PCUN at aMCI > AD with GSR [A, top panel] and the SOG and DLPFC 
at aMCI <AD [B, bottom panel] with ICA-based denoising). Colour bar represents T value. Abbreviations: 
ACC = Anterior cingulate cortex; AD = Alzheimer’s disease; aMCI = Amnestic mild cognitive impairment; 
CUN = Cuneus; DLPFC = Dorsolateral prefrontal cortex; DMN = Default mode network; DorsAttn = Dorsal 
attention network; ECN = Executive control network; GSR = Global signal regression; HC = Healthy controls; 
ICA = Independent component analysis; IPL = Inferior parietal lobule; LING = Lingual gyrus; MCC = Mid-
cingulate cortex; MOG = Middle occipital gyrus; MPFC = Medial prefrontal cortex; MTG = Middle temporal 
gyrus; PCUN = Precuneus; PostCG = Postcentral gyrus; PreCG = Precentral gyrus; SMA = Supplementary 
motor area; SOG = Superior occipital gyrus; THA = �alamus; VN = Visual network. (Color should be used for 
this �gure in print; 2-column �tting image).
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data denoising approaches. Brie�y, we found that both GSR and ICA-based denoising approaches converged 
to show a reciprocal balance of frequency-speci�c variability changes in the DMN and SN in aMCI compared 
with AD and/or HC. Importantly, for both data denoising methods, lower posterior DMN variability at slow4 
related to poorer global cognition and smaller hippocampus at baseline, and faster cognitive decline over 2-year 
follow-up. Our �ndings on divergent DMN-SN frequency-speci�c variability changes may represent an impor-
tant mechanism underlying brain functioning deterioration in early AD.

Consistent with previous �ndings of disrupted DMN network in aMCI10–12, altered DMN variability was 
observed in the present study. We found increased DMN variability in aMCI with GSR at both slow4 and slow5, 
while a recent meta-analysis of variability in aMCI reported decreased DMN variability28. �is discrepancy may 
be explained by several di�erences, including the di�erences in sample size (103 aMCI in the present study vs. 26 
aMCI on average in the meta-analysis study), methods of variability calculation (SD of the BOLD signal in the 
present study vs. ALFF in the meta-analysis study) and whether di�erent frequency bands were tested separately 
etc. “Further studies are needed to re�ne factors” that could better account for the complex variability pattern at 
di�erent frequency bands in aMCI. �e DMN has been suggested to be associated with internal processing of self 
at rest, such as self-re�ection, retrieving memory, or thinking of one’s future33. �erefore, it might be speculated 
that the DMN is a key network showing early disruption in aMCI in terms of aberrant hyper-activity, a�ecting 
self-related processing in aMCI.

In contrast, we found lower SN variability in aMCI compared with AD and/or HC at both slow4 and slow5 
with GSR, which is in line with previous variability studies in aMCI with GSR, ICA or neither28. With the insula 
as a key node, it has been suggested that the SN plays an important role in salience processing, including detecting 
salient information and directing attention toward or away from internal processing in concert with the DMN34. 
It would be interesting for future studies to combine resting-state and task-based fMRI data to test whether the 
observed lower SN variability and increased DMN variability in aMCI (compared with AD/HC) are associated 
with each other and how these network dynamics contribute to attention, memory and self-related processing 
in aMCI.

Importantly, we replicated the observed DMN-SN balance at slow5 via a separate ICA-based denoising. 
However, we observed a tendency of DMN-SN balance at slow4 in the opposite direction following ICA-based 
denoising. Speci�cally, although direct comparison between aMCI and HC did not show signi�cant group dif-
ference at slow4 (Supplementary Table 2), we found that ICA-denoising revealed lower DMN variability (cluster 
from the comparison between HC and AD, Supplementary Fig. S1), and higher SN variability in aMCI compared 
with HC. Nonetheless, both GSR and ICA results suggest a divergent variability changes between the DMN and 
SN.

�ere was lower variability in the posterior DMN in AD compared with HC at both slow4 and slow5 only a�er 
ICA-based denoising, replicating some previous �ndings24,26, but not others25,27. Most of the previous studies in 
AD did not perform GSR or ICA-based denoising. Only one study used primary component analysis to regress 
out signals of no interest and found no di�erence between AD and HC, but su�ered from small sample size of 
AD patients (n = 10)27.

It should be noted that currently there is no gold standard on fMRI pre-processing methods, and previous 
evidence has indeed shown that whether use GSR or other denoising methods could result in di�erent results35. 
Our discrepant results in AD compared with HC between GSR approach and ICA-based denoising can be pos-
sibly explained by the weaker associations of global signal with the DMN time series in AD compared with HC 
(Supplementary Fig. S2A), and therefore regressing out global signal (GSR approach) may result in reduced group 
di�erences in variability between AD and HC. Similarly, we speculate that the opposite SN variability between the 
two data pre-processing methods at slow4 in aMCI compared with HC was due to a stronger association between 
global signal and SN time series in aMCI (Supplementary Fig. S2B). Nevertheless, both approaches converge to 
suggest a dynamical DMN-SN balance. Notably, anti-correlated pattern of functional connectivity between the 

Figure 4. Slow4 DMN hemodynamic variability was associated with baseline global cognition, hippocampal 
volume and cognitive decline. A�er ICA-based denoising, lower variability in the posterior DMN was 
associated with poorer baseline global cognition (A) and smaller hippocampal volume (B) at slow4. 
Furthermore, over a 2-year follow-up, lower posterior DMN variability was associated with faster cognitive 
decline at slow4 in all patients (C). GSR approach showed similar correlation patterns as described in the text. 
ANG = angular gyrus; GSR = Global signal regression; ICA = Independent component PCUN = Precuneus. 
*Correlations surviving multiple comparisons correction. (2-column �tting image).
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DMN and SN has been found in AD and behavioural variant frontotemporal dementia7,8. �e divergent variabil-
ity patterns between the DMN and SN in aMCI as observed in the present study further support the reciprocal 
relationships between these two networks. �is may suggest that DMN-SN balance in variability plays an impor-
tant role at the prodromal AD stage.

Our �ndings of divergent DMN-SN variability changes at aMCI stage may re�ect compensatory processes. 
Brie�y, segregation and integration balance between brain areas has been proposed to achieve optimal brain func-
tioning15. Indeed, brain networks balance has been found at initial healthy ageing stage, with reduced resting-state 
functional connectivity within brain networks (reduced integration) and decreased functional connectivity 
between brain networks (increased segregation), but then followed by reductions in both as ageing proceeded36. 
�e authors suggested that the initial balance between brain networks segregation and integration represented 
a compensatory e�ort during ageing process. In line with the balance perspective, we found balanced/divergent 
DMN-SN variability patterns in aMCI compared with AD/HC. Importantly, following both GSR and ICA-based 
denoising, the lower posterior DMN variability at slow4 was not only associated with poorer cognition and 
smaller hippocampal volume at baseline, but also faster cognitive decline. For GSR only, reduced posterior DMN 
variability at slow5 was also associated with worse baseline global cognition, and smaller hippocampal volume 
was related to higher SN variability. We speculated that the reciprocal balance between the DMN and SN in 
aMCI may represent an e�ort to obtain balance between networks, serving as a compensatory mechanism to 
avoid further cognitive deterioration. Indeed, compensational mechanisms have been found in aMCI, such as 
enhanced functional connectivity, e�ective connectivity between networks, or increased activity compared with 
controls37–39.

Taken together, the observed divergent DMN-SN variability pattern in aMCI may play an essential role in 
gaining balance between networks to maintain cognitive functioning. �is may represent a compensational pat-
tern against cognitive decline and disease progression in aMCI. Because of the close link between variability 
and other brain measures such as functional connectivity19,40, multimodal studies are encouraged to elaborate 
how BOLD variability interact with other brain structural and functional abnormalities or lead to downstream 
neurodegeneration in early AD and how to intervene to allow aMCI individuals to maintain cognitive ability and 
possibly slow down disease progression.

One important strength of this study was assessing variability separately at slow4 and slow5. 
Frequency-dependent variability alterations in region-speci�c brain areas have been reported at slow4 and slow5 
in di�erent disorders41–46. �ese results suggest both disease- and frequency-dependent disruptions of variability 
patterns. �ere has only been one study that investigates frequency-dependent variability in aMCI patients, using 
ALFF and fALFF31. �e authors demonstrated an interaction of variability between frequency bands (slow4 and 
slow5) and group (aMCI vs. HC) in the angular gyrus and small clusters in the occipital and parietal lobule, which 
was due to group di�erences at slow5 only. However, this study su�ered from small sample size (n = 24), lack of 
GSR/ICA-based denoising, and did not �nd any variability-cognition associations.

Di�erently, using BOLD signal SD, we found both overlapping and distinct patterns of variability changes 
between slow4 and slow5 in aMCI. �is is in line with previous �ndings that there are both frequency-general 
(e.g., presence of typical resting-state networks such as the DMN)47 and frequency-speci�c features (e.g., spatial 
extent, homogeneity, variability and functional connectivity strength)48 across slow4 and slow5. Taken together 
with the common and unique correlation patterns of variability with cognition/cognitive decline and hippocam-
pal volume between slow4 and slow5, we propose that slow4 and slow5 may have both mutual and di�erential 
contributions to the cognitive pro�le and network-speci�c neurodegeneration along the AD spectrum. Moreover, 
comparing results between GSR and ICA-based denoising showed more overlapping patterns for slow5 than 
slow4. �is might imply that slow4 (higher frequency) is more vulnerable to data pre-processing approaches. 
Notably, our exploration in the whole band showed largely non-overlapping variability patterns in comparison 
with slow4 and slow5 (Supplementary Table 3, Fig. 3), necessitating investigation into sub-frequency bands. 
Future longitudinal studies are encouraged to further elaborate the e�ects of di�erent frequency bands and di�er-
ent data pre-processing approaches including more advanced approaches to remove physiological noise49, which 
may provide complimentary information.

�e present study had some limitations. Firstly, our study was cross-sectional. Longitudinal studies would be 
interesting to track the variability changes along disease progression by comparing with their normal trajectories 
across the human life span50,51. Secondly, how frequency and network speci�c variability relates to disease mark-
ers (e.g., amyloid and tau) remain unclear. Future multimodal neuroimaging methods would be of help to test 
potential interaction e�ects between variability and disease markers. Finally, it would be interesting to investigate 
whether and how regional BOLD variability patterns relate to functional connectivity between regions and their 
possible joint contribution to disease deterioration.

Conclusion
To conclude, we observed reciprocal DMN-SN variability balance in aMCI compared with AD/HC, possibly 
representing functional compensation in aMCI before brain functional network breakdown and clinical pro-
gression to AD. Further support stemmed from the correlation �ndings that lower posterior DMN variability at 
slow4 was associated with poorer cognition and smaller hippocampal volume at baseline, and predicted faster 
cognitive decline over time in cognitively impaired patients (i.e., AD and aMCI combined). Our �ndings showed 
that slow4 and slow5 BOLD variability presented both overlapping and di�erential patterns of spatial changes 
and correlations with hippocampal volume and cognition in AD spectrum. Moreover, despite of the converging 
�ndings between GSR and ICA approaches, we found discrepancy between the two methods especially at slow4, 
which might be due to the di�erential associations between global signal and BOLD signals in the DMN and SN 
regions across groups. �e present �ndings underscore the importance of frequency-speci�c investigation of 
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BOLD variability, and might facilitate future intervention design in early AD based on the relationship between 
DMN/SN network breakdown and cognitive decline.

Methods
Participants. We studied 124 AD, 103 aMCI, and 49 HC from an ongoing project, recruited from memory 
clinics in the National University Hospital, Saint Luke’s Hospital and nearby communities52,53. Diagnoses were 
made by psychologists, neurologists, and research personnel at weekly consensus meetings based on clinical 
observation, lab tests (e.g., blood test), neuroimaging scans and neuropsychological assessments. Accordingly, 
participants ful�lling the criteria of National Institute of Neurological and Communicative Diseases and Stroke-
Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA)54 were identified as AD. aMCI 
patients were identi�ed if participants had both subjective cognitive complaint and objective impairment in at 
least the memory domain (see Clinical and neuropsychological assessments), but not demented and remained func-
tionally independent. Finally, HC were also included who showed no objective cognitive impairment based on the 
neuropsychological assessments, scored ≥ 26 on the Mini–Mental State Examination (MMSE) (see Clinical and 
neuropsychological assessments), and had no signi�cant CeVD (see Supplement for de�nition of signi�cant CeVD). 
A�er image QC (see data pre-processing), 28 AD, 5 aMCI and one HC were excluded. In summary, 96 AD, 98 aMCI 
and 48 HC were included in the �nal analyses. �e excluded AD patients were older and more severely impaired 
compared with the included AD, without group di�erences in sex, handedness, ethnicity and education years 
(Supplementary Table 5). Participants’ demographic and neuropsychological assessment performance (clinical 
scores and global cognition) are described in Table 1 (see Supplement for participants inclusion/exclusion criteria).

�e study was approved by the SingHealth Institutional Review Board and the National Healthcare Group 
Domain-Speci�c Review Board, in accordance with the Declaration of Helsinki. Written informed consents were 
provided by all participants.

Clinical and neuropsychological assessments. �e Montreal Cognitive Assessment, MMSE, Clinical 
Dementia Rating and a locally validated neuropsychological assessment battery were administered to all par-
ticipants by trained psychologists or clinicians55. �e assessment battery consists of tests assessing two memory 
domains, namely verbal memory and visual memory, and �ve non-memory domains, namely executive func-
tion, attention, language, visuomotor speed and visuoconstruction. A standardized global cognition z score was 
obtained following previous publication52, with higher z score indicated better cognition.

Image acquisition. �e fMRI scanning was performed in a 3 T Siemens Magnetom Tim Trio scanner using 
a 32-channel head coil at Clinical Imaging Research Centre, National University of Singapore. A whole-brain 
T1-weighted anatomical image was acquired, using magnetization prepared rapid gradient recalled echo 
(MPRAGE) sequence (192 sagittal slices, TR = 2300 ms, TE = 1.9 ms, TI = 900 ms, �ip angle = 9°, FOV = 256 × 
256 mm2, slice thickness = 1 mm, voxel size = 1 × 1 × 1 mm3). For the T2*-weighted resting-state functional 
scanning, data were collected in the axial plane with an interleaved collection with participants’ eyes closed (48 
slices, duration = 5.01 min, TR = 2300 ms, TE = 25 ms, �ip angle = 90°, FOV = 192 × 192 mm2, slice thickness = 
3 mm, voxel size = 3 × 3 × 3 mm3).

HC (n = 48) aMCI (n = 98) AD (n = 96) F/χ2 pa

Age, yrs 72.04 (4.07)e 72.39 (7.24)e 74.43 (7.13) 3.04 0.05

Male/Female 21/27 52/46 37/59 4.19 0.12

Handedness, R/L 45/3 95/3 94/2 1.77 0.41

Ethnicity, C/non-C 43/5 81/17 74/22 3.44 0.18

Education, yrs 10.08 (4.78) 6.88 (4.91)c 4.92 (4.93)c,d 17.93 <0.001*

Global cognitionb 0.00 (1.00) −3.29 (2.41)c −7.47 (3.13)c,d 151.27 <0.001*

Global cognitive declineb −0.07 (0.48) −0.05 (1.20) −1.81 (2.20)c,d 23.20 <0.001*

CDR-SOB 0.14 (0.35)d,e 0.90 (0.90)e 6.70 (2.73) 321.85 <0.001*

MMSE 27.46 (1.90) 23.91 (3.74)c 16.10 (4.40)c,d 179.85 <0.001*

MoCA 24.38 (2.50) 19.15 (4.66)c 11.13 (4.67)c,d 170.51 <0.001*

CeVD status, Y/N 0/48 52/46c 46/50c 41.28 <0.001*

Ischemic heart disease, Y/N 2/46 9/89 8/88 1.17 0.56

Hypertension, Y/N 26/22 68/30 74/22c 7.92 0.019*

Table 1. Demographic and neuropsychological features of participants. Values represent mean (s.d). Groups 
were compared on the listed variables with ANOVAs or chi-square tests where appropriate, with a threshold of 
p < 0.05 (two-tailed, *). ap values from the ANOVA between all three groups. bGlobal cognition value represents 
standardized z-score of global cognition (one AD did not have global cognition data), and global cognitive 
decline was de�ned as the di�erence between baseline and year 2 (year 2 minus baseline; longitudinal cognition 
was not available for 43 AD, 25 aMCI and 16 HC). Signi�cance of post-hoc pairwise comparisons (p < 0.05) was 
indicated if group mean was lower compared with or distribution di�erent from HC (c), MCI (d) or AD (e). 
AD = Alzheimer’s disease; aMCI = Amnestic mild cognitive impairment; C/non-C = Chinese/non-Chinese; 
CDR-Global = Clinical Dementia Rating Scale Global Score; CDR-SOB = Clinical Dementia Rating Scale Sum 
of Boxes; CeVD = Cerebrovascular disease; HC = Healthy controls; MMSE = Mini-Mental State Examination; 
MoCA = Montreal Cognitive Assessment; R/L = Right/le�; Y/N = Yes/No.
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Data analysis. Data pre-processing. fMRI data were pre-processed with a standard pipeline using the 
FMRIB So�ware Library (FSL)56 and Analysis of Functional NeuroImages so�ware (AFNI)57 as described pre-
viously36,53. Brie�y, pre-processing of the structural images included reducing nonlinear image noise (SUSAN), 
extracting brain tissue (skull stripping, BET), normalizing to the Montreal Neurological Institute (MNI) 152 
standard space (FLIRT/FNIRT) and segmenting into grey matter (GM), white matter (WM) and cerebrospinal 
�uid (CSF). Pre-processing steps for the functional resting-state data included excluding the �rst �ve volumes 
for magnetic �eld stabilization, motion correction, despiking and grand-mean scaling, spatial smoothing with 
a 3D 6-mm full-width/half-maximum (FWHM) Gaussian kernel, temporal band-pass �ltering (whole band: 
0–0.25 Hz; standard low frequency range: 0.009–0.1 Hz) and detrending, co-registering to the anatomical image 
(BBR) and subsequently to the MNI 152 standard space (FNIRT), and �nally regressing out nuisance signals 
from CSF, WM, whole-brain global signal and six motion parameters. Additionally, two separate sub-bands 
were extracted from the standard low frequency range (0.009–0.1 Hz) following previous literature41,58, including 
slow4 (0.027–0.073 Hz) and slow5 (0.01–0.027 Hz). Participants with excessive head motion (maximum abso-
lute motion >4 mm) and poor image quality (e.g., incomplete scan, failed pre-processing QC) were excluded. 
�ere were larger head motion (maximum absolute) in AD (mean ± s.d. = 1.75 ± 1.25) compared with aMCI 
(mean ± s.d. = 1.38 ± 1.07) and HC (mean ± s.d. = 1.24 ± 1.15) (ps < 0.05), without statistically signi�cant dif-
ference between the latter two (p = 0.50). We therefore further controlled for motion in our statistical analyses.

Moreover, due to the controversy over GSR35,59 (e.g., whether it induces spurious anti-correlations between 
regions, whether it regresses out not only noise but also signal), we also applied another pre-processing pipeline 
for the functional resting-state data using ICA-based denoising, which was commonly used in previous studies 
of BOLD variability17,60. Brie�y, (1) the same standard pre-processing steps as the GSR approach were �rst per-
formed, including excluding the �rst �ve volumes, correcting for motion, spatial smoothing with a 3D 6-mm 
FWHM Gaussian kernel, grand-mean scaling, co-registering to the anatomical image (BBR) and subsequently to 
the MNI 152 standard space (FNIRT). (2) Single-session ICA was conducted per participant to decompose data 
into independent components, with a high pass �lter cut-o� of 0.01 Hz and automatic dimensionality estimation 
(FSL/MELODIC)61. (3) FSL-FIX62,63 was applied to automatically identify ICA components as noise or signal, 
using our data-speci�c trained-weights (see next paragraph for details). 4) Finally, the identi�ed noise compo-
nents were removed from the resting-state data to obtain the denoised data for subsequent analyses.

Regarding the study-speci�c training, we randomly selected 10 participants from each of the three groups 
(n = 30 in total) as the training subjects. For each participant, the resulting ICA components were manually 
classi�ed into signal/noise as agreed between two raters (L.Z. and K.K.N) following criteria described in pre-
vious work64, which included (1) motion-related components (e.g., ring e�ect, sudden time series spikes or 
low frequency signal dri�), (2) vein-related components (e.g., signal from the sagittal sinus), (3) components 
in relation to non-grey matter (e.g, cerebrospinal �uid, white matter), 4) components with high frequency and 
high power, and 5) MRI-related components and components with sparsity (i.e., non-discernible spatial pattern 
alternating between negative and positive values). We used relatively conservative rejection criteria to keep sig-
nals of interest as much as possible as suggested previously64. �is resulted in the highest balance ratio of 89.3% 
between true-positive rate (TPR, rate of identifying signal components correctly) and true-negative rate (TNR, 
rate of identifying noise components correctly) at the threshold of 20, following the recommended formula: 
(3*TPR + TNR)/462,63.

Variability analysis of resting-state data. Resting-state fMRI data were analysed using the Statistical Parametric 
Mapping (SPM12, v.6470, www.�l.ion.ucl.ac.uk/spm) and Matlab 7.11.0 (R2010b; the Math Works Inc., Natick, 
MA). We focused on slow4 and slow5 because these two bands have been suggested to have functional mean-
ings instead of random noise or nuisance signals from white matter activity or physiological processes (e.g., 
respiration)2,65. An index of variability was calculated based on a method reported previously21. Brie�y, at each 
voxel, the SD of the BOLD signal was �rst calculated in the whole band (0–0.25 Hz) and sub-bands, i.e., slow4 
(0.027–0.073 Hz) and slow5 (0.01–0.027 Hz), separately. Fractional SD (fSD) in each sub-band was then obtained 
by dividing the SD of the sub-band by the SD in the whole band, representing sub-band speci�c contribution rel-
ative to the total BOLD signal variability. Finally, voxel-wise fSD maps were converted into z-score maps (z-fSD) 
by standardizing fSDs spatially across the whole brain in slow4 and slow5 separately, resulting in two z-fSD maps 
for each participant.

To examine whole-brain group di�erences in variability between HC, aMCI and AD, z-fSD maps at slow4 and 
slow5 were entered into separate one-way ANCOVAs, with group as the independent variable, and age, sex, edu-
cation and total grey matter volume (GMV; see supplementary methods) as covariates of no interest. Main e�ect 
of group was tested, followed by pair-wise comparisons between any of the two groups.

To exclude potential confounding e�ects from di�erence in the whole band, a one-way ANCOVA was con-
ducted to compare z-score maps of SD in the whole band between AD, aMCI and HC, controlling for age, sex, 
education, and GMV. Further validations have been done by taking maximum absolute motion or presence of 
signi�cant CeVD as additional nuisance variables.

For all analyses, statistical threshold was set at a voxel-de�ning threshold of p < 0.001, followed by a p < 0.05 
FWE corrected at the cluster level. Moreover, to facilitate comparison between the GSR approach and ICA-based 
denoising, we also reported results at a lower threshold surviving a voxel-level threshold of p < 0.001 and a 
cluster-level threshold of p < 0.05 (uncorrected) and k ≥ 40.

Correlation analysis. We performed correlation analyses of the variability with 1) global cognition at baseline; 
and 2) bilateral hippocampal volume at baseline (see supplementary methods).
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Furthermore, we examined whether the variability related to global cognition decline over time, de�ned as the 
di�erence between baseline and year 2 (year 2 minus baseline).

For all correlation analyses, we focused on the brain clusters showing group di�erences between aMCI and 
HC or between AD and HC (including clusters surviving the voxel-level threshold consistently using both GSR 
and ICA-based denoising) (n = 3 for slow4, and n = 6 for slow5 for both data denoising methods). Correlation 
analyses were performed in all patients a�er controlling for age, sex, education years and total GMV. �e cor-
relation analyses were performed within each frequency band separately, applying Bonferroni correction for 
the number of clusters of interest per frequency band. Variability estimates of the clusters were extracted using 
MarsBaR (http://marsbar.sourceforge.net). Statistical signi�cance was set at p < 0.05 (two-tailed).
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