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ABSTRACT

Objective: We examined the utility of distinguishing between patients with frontotemporal lobar
degeneration (FTLD) and Alzheimer disease (AD) using quantitative cerebral blood flow (CBF) im-
aging with arterial spin labeled (ASL) perfusion MRI.

Methods: Forty-two patients with FTLD and 18 patients with AD, defined by autopsy or CSF-
derived biomarkers for AD, and 23 matched controls were imaged with a continuous ASL method
to quantify CBF maps covering the entire brain.

Results: Patients with FTLD and AD showed distinct patterns of hypoperfusion and hyperperfu-
sion. Compared with controls, patients with FTLD showed significant hypoperfusion in regions of
the frontal lobe bilaterally, and hyperperfusion in posterior cingulate and medial parietal/precu-
neus regions. Compared with controls, patients with AD showed significant hypoperfusion in the
medial parietal/precuneus and lateral parietal cortex, and hyperperfusion in regions of the frontal
lobe. Direct comparison of patient groups showed significant inferior, medial, and dorsolateral
frontal hypoperfusion in FTLD, and significant hypoperfusion in bilateral lateral temporal-parietal
and medial parietal/precuneus regions in AD.

Conclusions: Doubly dissociated areas of hypoperfusion in FTLD and AD are consistent with ar-
eas of significant histopathologic burden in these groups. ASL is a potentially useful biomarker for
distinguishing patients with these neurodegenerative diseases. Neurology® 2010;75:881–888

GLOSSARY
A�42 � �-amyloid1-42; AD � Alzheimer disease; ASL � arterial spin labeling; bvFTD � behavioral-variant frontotemporal
dementia; cASL � continuous arterial spin labeling; CBS � corticobasal syndrome; CBF � cerebral blood flow; dACC � dorsal
anterior cingulate cortex; dlPFC � dorsolateral prefrontal cortex; FDR � false detection rate; FTLD � frontotemporal lobar
degeneration; GM � gray matter; iFC � inferior frontal cortex; MCI � mild cognitive impairment; MNI � Montreal Neurological
Institute; mTC � middle temporal cortex; OFC � orbital frontal cortex; PC � parietal cortex; PCA � principal component
analysis; PCC � posterior cingulate cortex; PPA � primary progressive aphasia; PRC � precuneus; PVE � partial volume
effect; t-tau � total tau; TE � echo time; TI � inversion time; TR � repetition time; WM � white matter.

Frontotemporal lobar degeneration (FTLD) is the most common cause of progressive cognitive
decline in young-onset dementia. Because Alzheimer disease (AD) accounts for 30% of cases pre-
senting with a clinical diagnosis of primary progressive aphasia (PPA) or behavioral-variant fronto-
temporal dementia (bvFTD),1,2 it is important to distinguish between FTLD and AD so that
appropriate treatments can be initiated. This distinction is difficult on clinical grounds alone, be-
cause AD can mimic PPA and bvFTD,1,2 and FTLD can present with a memory disorder.3

Structural MRI has been used to help distinguish between autopsy-defined FTLD and
AD,4,5 but structural atrophy often emerges in more advanced disease stages. Variability in
absolute brain volume increases in aging, so absolute measurements of cortical volume can be
difficult to interpret.5,6 In contrast, measures of regional brain function may provide greater
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sensitivity to degenerative disease. PET is fre-
quently used for this purpose,7 but this in-
volves exposure to ionizing radiation and is
not widely available.

Another biomarker of regional brain func-
tion is cerebral blood flow (CBF), which is
usually tightly coupled to brain metabolism.8

Arterial spin labeling (ASL) perfusion MRI al-
lows noninvasive quantification of CBF. In
this study, we used histopathology or vali-
dated CSF biomarkers for AD as the gold
standard for defining group membership. We
compared perfusion profiles in patients with
FTLD and AD relative to controls and to
each other. We used a continuous ASL tech-
nique9 at 3 T to increase sensitivity compared
with prior studies.10

METHODS Standard protocol approvals, registra-
tions, and patient consents. All protocols were approved by
the University of Pennsylvania Institutional Review Board, and
informed consent was obtained from all patients and designated
representatives.

Subjects. Patients were recruited from the Department of Neurol-
ogy at University of Pennsylvania School of Medicine. All patients
were evaluated prospectively by neurologists with expertise in pro-
gressive neurodegenerative syndromes (M.G. and W.H.). Clinical
diagnosis was based on published criteria.11,12 Seventy-three patients
were initially identified with a clinical spectrum disorder consistent
with FTLD, including a disorder of social comportment and per-
sonality (bvFTD), PPA, or corticobasal syndrome (CBS), or with
clinically probable AD. The diagnosis of each patient was confirmed
through a consensus mechanism. Autopsy information became
available in 6 patients (4 FTLD, 2 AD), using methods summarized
previously,13 whereas others underwent CSF evaluation for levels of
AD biomarkers (total tau [t-tau] and �-amyloid1-42 [A�42], n �

67). Using a reference set of patients with autopsy diagnosis and
genetically mediated disease, patients in the current study were con-

sidered to have CSF biomarkers consistent with AD if the CSF
t-tau–to–A�42 ratio was greater than 1.45, as empirically deter-
mined.13 The remainder were considered to have a non-AD CSF
profile, in keeping with FTLD in the current clinical context. After
preliminary image analysis for brain coverage, 12 patients with
FTLD and 1 patient with AD were excluded from analyses reported
below, resulting in cohorts of 42 patients with FTLD (bvFTD �

25, PPA � 15, CBS � 2) and 18 patients with AD (bvFTD � 1,
PPA � 11, CBS � 5). Because we aimed to determine the ASL
pattern associated with underlying pathology, we analyzed patients
according to pathology rather than clinical phenotypes. We also
recruited 30 cognitively healthy seniors; 7 controls were excluded
because of suboptimal brain coverage, resulting in a control cohort
of 23. Demographic characteristics of patients and controls are sum-
marized in table 1. Statistical analysis was performed using SPSS
12.0 (SPSS, Inc., Chicago, IL) unless otherwise specified. Chi-
square tests and 1-way analysis of variance were used to evaluate
demographic features.

Imaging assessment and analysis. High-resolution struc-
tural MRI and quantitative ASL perfusion MRI were obtained
from patients with AD or FTLD and from age-matched controls
using a Siemens Trio 3-T whole-body magnetic resonance scan-
ner (Siemens AG, Erlangen, Germany) with a product transmit/
receive head coil. Structural imaging was performed with a
T1-weighted 3-dimensional magnetization-prepared rapid ac-
quisition gradient echo sequence with repetition time (TR)/
inversion time (TI)/echo time (TE) � 1,620/950/3
milliseconds, flip angle � 30°, matrix � 192 � 256 � 160, and
voxel size � 0.98 � 0.98 � 1 mm3. Forty resting label/control
image pairs were acquired using an amplitude-modulated con-
tinuous ASL (cASL) perfusion MRI sequence14 with labeling
time � 2 seconds, postlabeling delay � 1,500 milliseconds, field
of view � 22 cm, matrix � 64 � 64 � 16, flip angle � 90°,
TR � 3 seconds, TE � 17 milliseconds, slice thickness � 6 mm,
and interslice space � 1.5 mm.

In-house software15 based on MATLAB (The MathWorks,
Natick, MA) and SPM5 (Wellcome Department of Cognitive
Neurology, London, UK) were used for imaging analysis. Data
from several patients were excluded from analysis because the
prescribed slice coverage did not include the entire hippocampus
and medial temporal cortex. CBF maps with poor quality after
the following processing were also excluded if there was extensive
head motion at most of the time points (�70%). Empirical cut-
offs for excessive head motion were translation �4 mm, rotation
�4°, between control and label translation �1 mm, and be-
tween control and label rotation �1°. MRI images of each ses-
sion were realigned to the mean control image to correct for head
movement and were spatially smoothed with a 3-dimensional
isotropic gaussian kernel with full-width at half-maximum of 5
mm. Estimated head motion time courses were orthogonalized
to periodically alternating labeling and control of the ASL para-
digm. The cleaned motion time courses were then filtered out
from the realigned ASL data using linear regression to remove
residual head motion effects. Spatial-temporal noise reduction
was then performed using principal component analysis
(PCA).16 The nonzero eigenvalue associated eigenvectors and
their time courses were extracted by applying PCA along the
spatial dimension of ASL data to avoid the computational prob-
lem of applying PCA along the temporal dimension.17 Each im-
age was projected into these eigenvectors to obtain the
corresponding representation coefficients. The following criteria
were used to discard the noise-related eigenvectors and the corre-
sponding representing coefficients to further denoise the raw

Table 1 Mean (�SD) clinical characteristics of patients and controls

Frontotemporal lobar
degeneration (n � 42)

Alzheimer disease
(n � 18) Healthy seniors

Age, y 61.00 � 8.47 61.94 � 8.29 63.87 � 8.00

Education, y 15.17 � 2.79 16.72 � 3.10 15.22 � 2.35

Disease duration,a mo 46.40 � 32.54 32.17 � 16.83 NA

MMSE (max � 30) 23.46 � 7.53 22.12 � 6.73 28.85 � 0.95

CSF biomarker levels

Total tau, pg/mL 271.10 � 375.21 546.75 � 244.07 NA

p-tau181, pg/mL 69.35 � 39.68 164.43 � 103.89

A�42, pg/mL 350.76 � 108.36 154.82 � 50.25

Total tau/A�42 ratio 0.69 � 0.38 3.85 � 2.14

Abbreviations: A�42 � �-amyloid1-42; MMSE � Mini-Mental State Examination; NA � not
applicable.
a Disease duration was determined at the time of imaging by both subjective report and
collateral history of symptom onset provided by a caregiver.
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ASL data: 1) any eigenvectors whose time courses were corre-
lated with the zigzagged label-control paradigm were reserved,
and 2) minor components of the remaining eigenvectors were
discarded if they accounted for less than 1% of the total variance
of the data before PCA denoising. Quantitative CBF image se-
ries were then calculated using a modified 2-compartment cASL
perfusion model9,14 with a simple-subtraction method. The time
courses of the relative head motion between adjacent tag-control
images were filtered out from the CBF image series to remove
the residual motion effects. Temporal smoothing was then ap-
plied to improve the temporal signal-to-noise ratio at each voxel.
The remaining CBF images were averaged to produce a mean
CBF map for each subject. Structural images were normalized to
a local template generated from the patients with AD, patients
with FTLD, and age-matched controls. An exponentiated Lie
algebra algorithm (DARTEL)18 was applied to derive a local ap-
pearance template directly from the data set along with transfor-
mations from the template to each image.

To correct the partial volume effects (PVEs) introduced by
the large voxel size used in ASL MRI, each individual subject’s
structural image was segmented into gray matter (GM), white
matter (WM), and CSF based on the customized local template.
The corresponding GM, WM, and CSF probability maps
were then registered and subsampled to the native ASL MRI
space. The resampled GM probability maps were thresholded at
0.3 to locate the GM voxels for the following PVE correction.
Assuming a global ratio of 0.4 between WM perfusion and GM
perfusion based on a previous PET study,19 PVEs on GM CBF
were corrected using the method proposed by Du et al.10 with
the following equation: Icorr � Iuncorr/(PGM � 0.4 � PWM),
where Icorr and Iuncorr are the corrected and uncorrected intensi-
ties, and PGM and PWM are the tissue probabilities obtained by
segmenting the structural images as described above. Because
CBF signal in ASL MRI is derived from the ratio of �M to M0,
PVE correction was also applied to the M0 images. We used a
theoretical model based on the Bloch equations20 to estimate
tissue signal based on the acquisition parameters TR/TE and the
relaxation rates (T1, T2) of each different tissue: Mtissue � � �

exp(�TE/T2) � (1 � exp(�TR/T1)), where � is the water con-
tent in the tissue and was chosen to be 0.82, 0.72, and 1 for GM,
WM, and CSF.21 T1/T2 at 3 T for GM, WM, and CSF was
chosen to be 1,110/60, 1,600/80, and 4,136/1,442 millisec-
onds.22 We denoted the observed M0 intensity in WM by
MGMun � PGM � MGM � PWM � MWM � PCSF � MCSF.
Using the theoretical model, both MWM and MCSF can be
represented as linear functions of MGM, and the above equation
can be then re-expressed as MGMun � ratio � MGM, where
ratio � PGM � rW2G � PWM � rC2G � PCSF, rW2G � MWM/
MGM, and rC2G � MCSF/MGM can be easily derived from the
theoretical model. The PVE correction equation was then ex-
tended as Icorr � Iuncorr/(PGM � 0.4 � PWM) � ratio, and was
used in this study.

The transformation derived from the structural image-based
spatial normalization was used to normalize the CBF maps into
the template space. The volume changes caused by the transfor-
mation were corrected using the modulation option in the
DARTEL package to adjust CBF signal in areas that were com-
pressed or expanded during image normalization.18,23 The peak
of each suprathreshold cluster was identified. The local template
was mapped into Montreal Neurological Institute (MNI) space,
and the same transformation was used to transfer the coordinates
of these peaks into MNI space.

Two-sample t tests were used in SPM5 to examine the differ-
ence in absolute perfusion between patients (AD and FTLD)

and controls using the spatially normalized CBF maps. Global
CBF values, disease duration, and age at onset were included in
the model as nuisance covariates. Imaging results were thresh-
olded at a false detection rate (FDR) of 0.05.24 For maps that did
not survive FDR correction, we used an uncorrected threshold of
p � 0.005 with a cluster threshold of 40 voxels, corresponding to
3 times the smoothing kernel.

RESULTS CBF difference between patients with
FTLD and controls. Figure 1A shows the CBF differ-
ence between patients with FTLD and controls, and
the coordinates of the peaks showing the local maxi-
mum CBF differences are summarized in table 2.
Significantly reduced absolute CBF in FTLD com-
pared with healthy aging was found in dorsolateral
prefrontal cortex (dlPFC) bilaterally and right infe-
rior frontal cortex (iFC), including orbital frontal
cortex (OFC) and insula. We also observed areas of
increased absolute perfusion in FTLD in medial pa-
rietal cortex(PC)/precuneus (PRC) and posterior
cingulate cortex (PCC). A similar CBF pattern was
seen in the subgroup of 4 patients with autopsy-
confirmed FTLD (figure e-1 and table e-1 on the
Neurology® Web site at www.neurology.org).

CBF difference between patients with AD and con-
trols. Figure 1B shows the differences in absolute CBF
between patients with AD and healthy seniors, and the
coordinates of the peak locations are summarized in ta-
ble 2. At a FDR-corrected significance level of p � 0.05,
hypoperfusion in AD was demonstrated in medial PC/
PRC, left lateral PC, and left middle temporal cortex
(mTC) and inferior temporal cortex. Significant hyper-
perfusion was found in right dorsal ACC (dACC), right
dlPFC, and right insula. We observed a similar pattern
of changed perfusion in patients with autopsy-
confirmed AD (figure e-2 and table e-2).

CBF difference between patients with FTLD and pa-
tients with AD. Figure 2 shows the results of a direct
comparison of perfusion in patients with FTLD and
AD, and the coordinates of the peaks are listed in
table 3. At an FDR-corrected significance level of
p � 0.05, lower CBF in FTLD than in AD was
found in medial iFC including OFC, left lateral iFC,
dACC, and left dlPFC. Significantly lower CBF in
AD than in FTLD was found in PCC, medial PC/
PRC, left lateral PC, and left mTC and superior tem-
poral cortex.

DISCUSSION Quantitative perfusion obtained
with cASL MRI in patients with autopsy or CSF bi-
omarkers revealed doubly dissociated patterns of hy-
poperfusion in AD and FTLD. Significantly reduced
frontal CBF was seen in FTLD, and significant
temporal-parietal hypoperfusion was found in AD.
Moreover, we observed distinct areas of significant
hyperperfusion in FTLD and AD. These observa-
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tions underline the potential usefulness of ASL in
distinguishing between FTLD and AD.

Direct comparisons of ASL with 15O-PET show
that MRI and PET methods for measuring CBF are

highly comparable.25 Moreover, an MRI-based blood
flow technique like ASL is more widely available than
PET because it can be obtained with standard clini-
cal MRI equipment, ASL is less expensive, and ASL

Figure 1 Statistical parametric map of significant cerebral blood flow differences between patients
and controls

(A) Patients with frontotemporal lobar degeneration (FTLD). The significance level used for thresholding the maps in A was
p � 0.005 (t �2.66, uncorrected). Green � hypoperfusion and purple � hyperperfusion in FTLD. (B) Patients with Alzheimer
disease (AD). The significance level used for thresholding the maps in B was p � 0.05 (t �3.4, with false discovery rate
correction). Turquoise � hypoperfusion and red � hyperperfusion in AD.
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avoids exposure to ionizing radiation. Importantly,
CBF techniques seem to validly reflect neuronal glu-
cose metabolism as measured by FDG-PET because
FDG-PET and 15O-PET yield similar results in
healthy seniors and in patients with neurodegenera-
tive conditions.26 Using ASL to measure CBF, we
found significantly reduced perfusion in inferior,
dorsolateral, medial, and insular regions of the fron-
tal lobe in FTLD. These areas correspond to regions
of known disease in FTLD, based on regional au-
topsy findings.4 A similar anatomical distribution of
hypoperfusion was seen in the subgroup of patients
with FTLD with autopsy-confirmed disease. One
previous study of FTLD with ASL demonstrated su-
perior frontal hypoperfusion,10 partially correspond-
ing to our findings. The discrepancies between this
study and our findings may have been due in part to
partial coverage of the brain and use of a less sensitive
pulsed ASL sequence in prior work. The regions of
hypoperfusion in both studies correspond to areas
of significant atrophy in structural MRI studies of

FTLD.4,5 In the present study, we used 2 approaches
to correct for morphometric effects on regional CBF.
The PVE correction adjusted for the partial volume
of white matter in gray matter voxels10 and the
Jacobian-based spatial-transformation correction ad-
justed for the compression or expansion of brain re-
gions due to normalization to the local template.18

The latter step was reported in a study that found
more significant hyperperfusion in hippocampus in
patients with mild AD after correction.23 However,
similar effects but with a slightly reduced significance
level were obtained if the second Jacobian-based cor-
rection was not applied. Accordingly, the observed
hypoperfusion likely reflects functional changes be-
yond those that can be attributed to atrophy alone.
Furthermore, PVE cannot easily explain the observed
regions of hyperperfusion.

Patients with FTLD showed significant hyperperfu-
sion in parietal cortex and precuneus. These areas tend
to show significant disease only late in the course of
FTLD, whereas the patients participating in this study
were relatively early in their disease course. Hyperperfu-
sion may be possible because of preserved connectivity
in unaffected intrinsic connectivity networks in
FTLD.27 The significance of observed hyperperfusion
remains to be established. One possibility is that there is
a dissociation between vascular perfusion measured by
ASL and neuronal metabolic consumption of substrate.
Partial perfusion-metabolic uncoupling can occur if
there is a change in vascular diameter or a mitochon-
drial disorder of neuronal metabolism, but neither is
associated with FTLD. Another possibility is related to
the concept of “reserve” or “compensation” in neurode-
generative conditions like FTLD.28 From this perspec-
tive, neuronal integrity in these areas is beginning to be
stressed by the incipient accumulation of abnormal
neuronal histopathologic inclusions, and up-regulation
of regional cortical activity may attempt to compensate
in part for these early challenges to regional neuronal
functioning. A related account implicates increased ac-
tivity in response to partial deafferentation as a result of
disease in frontal areas that compromises projections to
these hyperperfused regions. This would be consistent
with imaging observations of diffusion tensor imaging
defects in WM projections in FTLD.29 It is difficult to
assess these hypotheses because direct tissue evidence of
modest disease burden in hyperperfused areas is difficult
to obtain. Indirect evidence can be acquired in future
work that assesses the fate of CBF in hyperperfused ar-
eas in longitudinal ASL observations.

Areas of significant hypoperfusion in AD in-
volved a different anatomical distribution than areas
showing significantly reduced CBF in FTLD. Pa-
tients with AD thus showed significant hypoperfu-
sion in posterior brain regions, including parietal,

Table 2 Regional hypoperfusion and hyperperfusion in patients with FTLD
and AD relative to healthy seniors

Coordinates

Anatomical locus x y z t Score
Uncorrected peak
p valuea

Frontotemporal lobar
degeneration

Hypoperfusion

Left dlPFC �46 28 30 4.27 3.5e–5

Left dlPFC �41 54 10 3.35 7.0e–4

Right dlPFC 50 10 30 3.18 1.2e–3

Right dlPFC 40 56 8 3.17 1.2e–3

Right iFC 22 19 �19 3.61 3.1e–4

Right iFC 36 60 �8 3.33 7.5e–4

Hyperperfusion

Medial PC/PRC �3 �48 45 4.38 2.4e–5

PCC �8 �58 40 4.25 3.8e–5

Alzheimer disease

Hypoperfusion

Medial PC/PRC �2 �60 38 6.29b 1.4e–7

Left lateral PC �46 �70 34 5.72b 8.2e–7

Left mTC/iTC �60 �44 �20 4.69b 1.9e–5

Hyperperfusion

Right dACC 8 �1 38 5.97b 3.9e–7

Right dlPFC 33 �10 42 4.12b 1.1e–4

Right insula 36 �12 6 3.93b 1.9e–4

Abbreviations: AD � Alzheimer disease; dACC � dorsal anterior cingulate cortex; dlPFC �

dorsolateral prefrontal cortex; FTLD � frontotemporal lobar dementia; iFC � inferior fron-
tal cortex; iTC � inferior temporal cortex; mTC � middle temporal cortex; PC � parietal
cortex; PCC � posterior cingulate cortex; PRC � precuneus.
a All contrasts significant at p � 0.005 uncorrected for multiple comparisons.
b Contrast survived false detection rate–corrected multiple comparisons at p � 0.05.
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temporal, and precuneus regions. This corresponds
to areas of significant histopathologic burden in
autopsy-confirmed AD,30 and hypoperfusion was ob-
served in these areas in autopsy-confirmed cases of
AD. Previous ASL studies of AD have shown a simi-
lar anatomical pattern of hypoperfusion.10,31-34 We
did not observe medial temporal hypoperfusion, as
reported in some of this work. Cross-sectional stud-
ies thus have suggested that patients with very mild
AD and mild cognitive impairment (MCI) may have
hippocampal hyperperfusion.32,33 This would be con-
sistent with other work showing increased medial
temporal activation during performance of memory-
related tasks in MCI35 and hippocampal neuronal
hypertrophy in asymptomatic AD.36 One longitudi-
nal study related hippocampal activation to subse-
quent cognitive decline in AD.37 There may have
been some averaging across cases with hypoperfusion
and hyperperfusion of the medial temporal region in
our series. Moreover, because some patients classified
as AD in our series had clinical features more consis-
tent with bvFTD or PPA, there may have been little
change in medial temporal perfusion early in the
course of disease. Additional work is needed in larger
groups of patients to establish more precisely the fate
of medial temporal perfusion in mild AD.

We also observed areas of significant cortical hy-
perperfusion in AD. This included areas of the fron-

tal lobe and lateral temporal lobe, regions where
disease emerges later in the course of AD than the
medial temporal lobe.30 Cortical hyperperfusion has
been described in several previous studies.32,33 This
may be related in part to a similar mechanism impli-
cated in the neuronal hypertrophy observed in the
anterior cingulate of asymptomatic AD.36 We also
cannot rule out the contribution of partial deafferen-
tation due to degraded WM projections from dis-
eased areas.38,39

We observed a double dissociation between AD
and FTLD, emphasizing the potential usefulness of
ASL as a diagnostic modality. PET studies have re-
peatedly demonstrated frontal hypometabolism in
bvFTD and parietal hypometabolism in AD, as we
observed, although comparative studies such as ours
are rare. Moreover, one recent PET study described
parietal-occipital hypermetabolism in bvFTD and
frontotemporal hypermetabolism in AD when ad-
justing for global glucose metabolism,40 consistent
with our findings using ASL.

Several limitations in our study should be kept in
mind. Regional perfusion patterns may depend in
part on disease duration, and the slightly longer dis-
ease duration in FTLD may have confounded our
analysis. CSF AD biomarkers were used as surrogate
markers of pathology rather than true neuropatho-
logic analysis for many patients. Despite the high

Figure 2 Statistical parametric map of significant cerebral blood flow differences between patients with
FTLD and AD

The significance level used for thresholding the statistical parametric map is p � 0.05 (t �3.2, with false discovery rate
correction). Yellow indicates significantly reduced perfusion in Alzheimer disease (AD) compared with frontotemporal lobar
degeneration (FTLD); blue indicates significantly reduced perfusion in FTLD compared with AD.
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sensitivity and specificity of CSF AD biomarkers,
there is currently no biomarker that positively identi-
fies FTLD pathology, and patients may have been
misclassified by CSF biomarkers alone. A definitive
study is needed in the future to determine the useful-
ness of ASL as a biomarker using pathologically con-
firmed cases of AD and FTLD. With these caveats in
mind, the double dissociation between AD and
FTLD that we observed is consistent with the hy-
pothesis that simultaneous analysis of susceptible and
resistant brain regions can improve the differential
diagnosis of underlying pathology in AD and FTLD
clinical syndromes.
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