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Distinct co-expression networks 
using multi-omic data reveal novel 
interventional targets in HPV-
positive and negative head-and-
neck squamous cell cancer
Raquel L. Costa  1,2, Mariana Boroni2 & Marcelo A. Soares 1,3

The human papillomavirus (HPV) is present in a significant fraction of head-and-neck squamous cell 
cancer (HNSCC). The main goal of this study was to identify distinct co-expression patterns between 
HPV+ and HPV− HNSCC and to provide insights into potential regulatory mechanisms/effects within 
the analyzed networks. We selected cases deposited in The Cancer Genome Atlas database comprising 
data of gene expression, methylation profiles and mutational patterns, in addition to clinical 
information. The intersection among differentially expressed and differentially methylated genes 
showed the negative correlations between the levels of methylation and expression, suggesting that 
these genes have their expression levels regulated by methylation alteration patterns in their promoter. 
Weighted correlation network analysis was used to identify co-expression modules and a systematic 
approach was applied to refine them and identify key regulatory elements integrating results from 
the other omics. Three distinct co-expression modules were associated with HPV status and molecular 

signatures. Validation using independent studies reporting biological experimental data converged 
for the most significant genes in all modules. This study provides insights into complex genetic and 
epigenetic particularities in the development and progression of HNSCC according to HPV status, and 
contribute to unveiling specific genes/pathways as novel therapeutic targets in HNSCC.

Head-and-neck squamous cell carcinoma (HNSCC) is a heterogeneous malignancy which accounts for approxi-
mately 300,000 deaths each year worldwide1,2. Smoking, alcohol, and infections by high-risk human papillomavi-
rus (HPV) are among the main risk factors for the development of the disease. �e incidence of HPV-associated 
HNSCC is around 25% of the reported cases worldwide, with an even higher proportion of oropharyngeal cancer, 
and a predominance of infection by HPV-16 among those cases3–6.

�e development and progression of HNSCC occur by molecular deregulation events in many levels, includ-
ing the accumulation of somatic mutations and changes in methylation pro�les. Both those events result in di�er-
ences in gene expression levels and downstream signaling pathways. In general, patients diagnosed with HPV+ 
HNSCC have a better prognosis (regardless of the treatment strategies) compared with the patients without HPV 
(HPV−) in the same anatomical site7–9. Although the molecular mechanisms involved in those di�erence are 
not fully understood, mutations in the TP53 gene are massively more detected in HPV− compared to HPV+ 
tumors10–12.

With the advancement of high-throughput technologies, such as next-generation sequencing (NGS), e�orts 
have been made to identify molecular characteristics that di�erentiate the pro�les of HPV+ and HPV− HNSCC. 
Studies involving gene expression pro�les have identi�ed potential marker genes within each context. Masterson 
et al.13 identi�ed markers of early-stage HPV+ oropharyngeal squamous cell carcinomas. Wood et al.14 identi�ed 
distinct immune signatures in tumor-in�ltrating lymphocytes (TILs), more speci�cally in B-cells, related to the 
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adaptive immune response against HPV in those tumors. Gene expression involving microarray technology in 
HPV+ versus HPV− HNSCC has also been studied15,16. Other studies considered di�erences in methylation pro-
�les. Esposti et al.17, for example, identi�ed novel epigenetic signatures of HPV infection in HNSCC independent 
of the anatomical site. Studies involving more than one omic are increasing in the recent literature. Seiwert et al.18 
used mutation and copy-number variation data to �nd unique mutations and aberrations in HPV+ HNSCC. 
Characterization of HNSCC subgroups using copy number alteration and transcriptome data were used in some 
studies19,20. �e Cancer Genome Atlas (TCGA) consortium conducted a large study containing multi-platform 
and di�erent types of tumors, including HNSCC. In 2015 the consortium carried out a comprehensive charac-
terization of HNSCC samples including the identi�cation of their HPV status12. In gene interaction networks, 
multi-layer integration is essential in the construction and functional understanding of the connections between 
genes at multiple levels21. With advances in research such as the TCGA mentioned above and other multi-omic 
repositories, it becomes possible to analyze a diversity of tumors through di�erent platforms and technologies22.

In the present study, we have used HNSCC multi-omic data from the TCGA to explore the differences 
between gene co-expression networks of HPV+ and HPV− disease pro�les. We �rst collected genes with signi�-
cant di�erences in promoter methylation and gene expression pro�les for each stage of the disease (Di�erentially 
Methylated Genes – DMG – and Di�erentially Expressed Genes – DEG –, respectively). �e intersection among 
DMG and DEG showed the negative correlations between the levels of methylation and expression, suggesting 
that these genes have their expression levels regulated by methylation alteration patterns in their promoter. Based 
on global gene expression patterns, we applied Weighted Correlation Network Analysis (WGCNA) to identify 
gene modules associated with HPV status, followed by a computational strategy pipeline designed by us to re�ne 
the modules and build the networks for speci�c HPV pro�les. In our results, the networks signi�cantly associated 
with HPV statuses showed di�erent connection patterns and brought new insights into mechanisms associated 
with HPV+ HNSCC. To our knowledge, this is the �rst study to conduct a gene network reconstruction via the 
integration of multi-omic sets for HPV+ and HPV− HNSCC.

Results
Gene expression profiles are influenced by methylation status in HPV+ and HPV− HNSCC.  
�e datasets studied were preprocessed and analyzed using the �owchart represented in Fig. 1. �e preprocessing 
TCGA dataset for RNA-Seq level-3 resulted in 20,502 analyzed genes. For DNA methylation level-3, the data-
set resulted in 14,861 analyzed genes. Two hundred and twenty-three DEG and 359 DMG were selected when 
comparing HPV+ and HPV− tumor samples (Supplementary Table 1). For methylation, only probes corre-
sponding to the TSS200 annotation, following the strategy described in subsection Omics datasets and preprocess-
ing were considered. Genes were selected using the limma package23 with restrictive parameters (FDR-adjusted 
p-value ≤ 0.01, absolute-logFC ≥ 4 and absolute-logFC ≥ 2 for expression and methylation levels, respectively) 
and evaluated for di�erences of HNSCC with HPV+ versus HPV− pro�les within each disease stage (I–IV; 
Supplementary Fig. 1A) Among the studied genes, only a few remained di�erentially selected in most or all dis-
ease stages. Only six DEG were selected in all disease stages, while no DMG was common across disease stages.

�e overlapping between DMG and DEG resulted in 14 genes which were doubly di�erential (Supplementary 
Fig. 1B). For this selection, a Pearson’s correlation (PC) was carried out between the expression and the methyl-
ation values (Fig. 2A–L). �e PNLDC1 and CNTN1 genes were excluded from subsequent analysis due to their 
similar correlation pro�les in both HPV+ and HPV− samples and both were di�erentially selected only in early 
stages, for which a limited number of samples was available for analysis. For all 12 genes evaluated, we found 
PC values < 0, showing a negative correlation between the two parameters. For seven genes (58.3%), the PC 
obtained for HPV+ HNSCC were higher than for HPV−. Our results are consistent with the knowledge of 
methylated promoter regions negatively regulating gene expression levels. In HPV+ cases, the SYCP2, MEI1, 
UGT8, ZFR2 and SOX30 genes were overexpressed when compared to the HPV− cases, an observation that 
was coupled with a decreased promoter methylation pro�le in the former (Fig. 2A–E). Conversely, the FLRT3, 
PITX2 and SPRR2G genes were underexpressed in HPV+ cases compared to the HPV− cases (Fig. 2G–I). In 
those cases, a stronger negative correlation was seen in the HPV+ cases. On the other hand, the GJB6 gene also 
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Figure 1. Flow diagram of the methodology applied to this study. �e representation includes dataset 
preparation (dashed boxes), processes and analysis (middle and right panels, solid boxes).
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exhibited underexpression in HPV+ cases, but a stronger negative correlation (rho = −0.73) in the HPV− cases. 
As expected, for those four latter genes, a consistent stronger promoter methylation was observed in the HPV+ 
cases (Fig. 2G–J).

Gene modules were significantly associated with HPV status. In parellel to identifying DEG 
between HPV+ and HPV− HNSCC with high statistical con�dence, we have also constructed gene co-expression 
networks using the WGCNA approach. �is method calculates correlations among genes across samples and 
applies a power function to determine the connection strengths between genes resulting in a scale-free net-
work24,25. Due to computational time, we used the 8,000 most variant genes regarding the median absolute devi-
ation in expression pro�les, which resulted in seven identi�ed modules (Supplementary Fig. 2). �e minimum 
module size was 20 and the pickSo��reshold was 4 (Supplementary Fig. 3). �e modules are referred to by their 
color labels in a hierarchical cluster dendrogram (Supplementary Fig. 2).

Figure 2. Negative correlation between gene expression and promoter methylation levels of genes doubly 
selected (A–L). For each gene, a scatter plot shows the correlation among methylation (x-axis) and expression 
levels (y-axis) for each pro�le (yellow circles for HPV− and green triangles for HPV+ samples). In each inset, 
the expression (upper panels) and the methylation levels (lower panels) are compared for each tumor stage (I to 
IV), using the same color codes for HPV+ and HPV− statuses.
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Figure 3 depicts the correlations of the module eigengenes with the traits including ‘HPV status’, ‘staging’, 
‘age’, ‘gender’, ‘alcohol’, ‘smoked’, and ‘anatomical site’. �ree modules were found signi�cantly associated with 
the HPV status (absolute correlation ≥0.25 and p-value ≤ 0.001), Blue, Yellow and Grey. �e module member-
ship (MM) versus gene signi�cance (GS) plot for these modules and the borderline module Brown are shown in 
Supplementary Fig. 4. Despite candidate genes with no distinct module assignment were grouped in the Grey 
module, we have decided to include this module to subsequent analysis of the networks due to its signi�cant 
association with HPV status. �erefore, the Blue, Yellow and Grey modules were further studied. We also com-
puted the hierarchical clustering of the expression and methylation data of the samples concerning HPV status or 
disease staging using the ‘�ashcluster’ function of WGCNA, but no clear clustering was observed (Supplementary 
Fig. 5).

The Blue, Yellow and Grey gene modules result in distinct networks according to HPV status.  
In general, the modules built by WGCNA contain a large number of genes when global expression data are used. 
As a consequence, some genes can be randomly associated with a speci�c phenotype. �us, it is fundamental to 
identify relevant genes in the network, also known as hub genes, which are more likely to represent robust mark-
ers of speci�c phenotypes. In our approach, we used the previously selected DEG to guide the choice of hubs. For 
each selected module, we divided the samples by HPV status. We then computed the correlations in each status 
using all genes in each module (Spearman’s rank correlation coe�cient). �e genes selected in each module by 
HPV status were considered when these genes were DEG or when they were highly correlated with DEG. We 
applied a correlation threshold of ≥0.65 and applied a p-value threshold of ≤0.01 for both HPV− and HPV+ 
networks. In addition, we characterized the transcription factor genes (TF), doubly DEG/DMG, singly DMG and 
signi�cantly mutated genes that engage in known protein-protein interactions (PPI) with present genes in each 
network (Fig. 4). Of the 12 double DEG/DMG genes considered for analysis (see above), eight appeared in one of 
the three modules kept for further analysis.

�e networks were di�erentially connected according to HPV status (Table 1). All three Blue, Yellow and Grey 
modules had more densely connected networks in the HPV+ compared to HPV− cases, as measured both by the 
number of nodes and of edges (Table 1). In the HPV+ Blue network, the SYCP2 (synaptonemal complex protein 2)  
is much more densely connected to other genes when compared to the HPV− network (Fig. 4A). �e C22orf45 
gene, which showed few connections in the HPV+ Blue network, was not even evidenced in the HPV− coun-
terpart, since no connections were established (Fig. 4A). Concerning TF genes, there are also stronger network 
connections, and a higher number of TF genes involved, when the HPV+ network is compared to the HPV− 
counterpart. Most TF genes in the HPV+ network are connected into a single high-density cluster, which is not 
seen in the HPV− network. Also of note, the YBX2 is a TF that appears only in the HPV+ network, and connects 
the SYCP2 hub to that high-density TF hub. It is worth mentioning that all genes visualized in this network 
(including the TFs) are overexpressed in HPV+ tumors.

�e Yellow modules (Fig. 4B) depict genes that are generally overexpressed in HPV− compared to HPV+ 
tumors. In this set, MMP3, FLRT3 and GJB6 were doubly selected (in expression and methylation analyses) and 
more tightly connected in HPV+ tumors, denoting a concerted downregulated pathway. �e HOXC13 TF is also 
underexpressed in HPV+ tumors, and likely plays an important role in the connection of the pathways encom-
passing those genes.

Figure 3. Co-expression genes modules and their relationship with studied traits. Matrix showing the 
correlation of the color-coded modules as generated with WGCNA (rows) with studied traits (columns). Cell 
contents display the correlation coe�cients and p-values (in parentheses). Correlation coe�cients were color-
coded according to the heat index from red to green depicted at the vertical bar at the right to the graph.
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�e Grey modules (Fig. 4C) encompass genes that were not consistently clustered into any of the modules 
characterizing de�nite co-expression pro�les. However, in the HPV+ network, speci�c co-expression gene 
sub-networks can be retrieved that show under or overexpression compared to HPV− tumors. Genes placed in 
central hubs of these two sub-networks can be visualized in the C1 and C2 inset circles of Fig. 4C, respectively. 
TFs which are DEG and/or DMG and involved in the control of these sub-networks include PITX2 in C1 (under-
expressed in HPV+ tumors) and PAX1 in C2 (overexpressed in those tumors).

�e original TCGA study on HNSCC has characterized that mutated genes were signi�cantly more abundant 
in HPV− compared to HPV+ tumors12. Two of the top three signi�cantly mutated genes (TP53 and CDKN2A; 
Supplementary Fig. 6A,B) were integrated into the gene networks described above and had their locations and 
relationships visualized in the HPV− networks shown in Fig. 4B,C (bottom panels). TP53 appears in two of the 
HPV− modules (Yellow and Grey), while CDKN2A appeared only in the Grey module, as it is also a DEG in that 
case. In the HPV− Yellow module, TP53 appears connected with MMP1, CLCA2 and PRNP (Fig. 4B, bottom 
panel). In the Grey module, TP53 evidences a connection with CDKN2A and with NKO1, while CDKN2A itself is 
additionally associated with C9orf53 (Fig. 4C, bottom panel).

Enrichment functional analysis highlights specific HPV+ and HPV− biological pathways. To 
further explore the possible role of the gene modules and networks identi�ed in our analyses of HNSCC with 
distinct HPV statuses, we performed enrichment analysis with Gene Ontology (GO) – Biological Process (BP), 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Molecular Signatures Database (MSigDB). �e 
hypergeometric analysis was conducted with FDR-adjusted p-value ≤ 0.05. We captured the enriched functions 

Figure 4. Co-expression networks among the modules with signi�cantly di�erent pro�les between HPV+ 
and HPV− HNSCC cases. (A) Blue module. (B) Yellow module. (C) Grey module. In all modules, gene 
classi�cations are shape- and color-coded according to the legend at the lower right inset of the Figure. Links 
between DEG and strongly correlated genes and also those linking signi�cantly mutated genes with genes 
through protein-protein interactions are also color-coded according to the legend of the Figure.

Module HPV+ HPV−

Blue

  nodes 539 112

  edges 2633 114

Yellow

  nodes 145 36

  edges 640 34

Grey

  nodes 127 8

  edges 111 7

Table 1. Connection metrics of co-expression networks of di�erent modules in HPV+ and HPV− cases.
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of the identi�ed modules with the R ‘clusterPro�ler’ package. �e main results are shown in Table 2. We identi-
�ed pathways associated with cell fate speci�cation and glycolysis/gluconeogenesis in the Blue HPV+ module. 
In contrast, genes of the HPV+ Yellow module were downregulated in the overrepresented biological processes 
of epidermis development, negative regulation of epithelial cell proliferation and keratinocyte di�erentiation. 
Finally, processes and pathways involving dendritic spine morphogenesis and lysosome degradation were over-
represented in HPV+ tumors, while cellular ketone metabolism and aging were underpinned in HPV− tumors 
(Table 2).

External biological datasets provide significant congruence with predicted networks. We used 
three independent experiments using two di�erent omics (gene expression and methylation), and distinct tiss-
sue processing (fresh frozen versus FFPE) to check the concordance with our results. �e genes selected from 
the microarray experiment by Pyeon et al.26 (GEO ID: GSE6791) were consistently similar to the modules and 
signals (up- or downregulated) of expression in our analyses obtained from the TCGA (Table 3). In the methyl-
ation datasets, we also found methylated genes in the promoter region (TSS200) similar to those of our analysis 
(Supplementary Table 2). �e SYCP2, PITX2 and GJB6 genes, which were DEG and DMG in the TCGA analysis, 
were also DMG in the two independent datasets studied17,27. However, in the dataset from Esposti et al.17 (GEO 
ID: GSE95036) the signi�cance of the test was lost when the p-values were adjusted (Supplementary Table 2). 
SYCP2 and PITX2 were also DEG in the Pyeon et al.26 dataset. �e methylation levels of the GJB6 and PITX2 
promoters in both independent methylation experiments are shown in Supplementary Fig. 7. When observing 
the connections in the Blue HPV+ network, the HSF4, MYO15B and SERINC4 genes were strongly correlated 
with SYCP2. �ese genes were DMG in our analysis (Fig. 5A) and also found as DMG in Lechner et al.27 (GEO 
ID: GSE38226) (Fig. 5B).

Discussion
�e heterogeneity of HNSCC with respect to the variety of anatomical sites and driving behavioral (alcohol, 
tobacco, hot beverages) and infectious (HPV) factors makes the identi�cation of relevant therapeutic targets 
a challenging task11,28,29. In addition, the analysis of mono-omic data, i.e. from a single layer, provides only one 
dimension of a multifaceted scenario, and limited information about the possible molecular mechanisms involved 

Module Status Category Id Description p-value1 Genes symbol

Blue HPV+ GO (BP) GO:0001708 cell fate speci�cation 0.0285
ISL1, EYA2, DMRTA2, FOXA1, LMO4, FZD7, 
POU5F1, FGF2, CDON, SOX2

Blue HPV+ KEGG hsa00010 Glycolysis/Gluconeogenesis 0.026
ALDH3A1, ADH6, ALDOB, ACSS1, ENO2, LDHC, 
ADH7

Blue HPV+ KEGG hsa00564 Glycerophospholipid metabolism 0.026
MBOAT1, PPAPDC1B, CHKA, CHPT1, DGKB, 
PLA2G6, ETNK2, DGKE

Blue HPV+ KEGG GO:0001708
Glycine, serine and threonine 
metabolism

0.033 CHDH, GNMT, PHGDH, AMT, CBS

Blue HPV+ KEGG hsa04550
Signaling pathways regulating 
pluripotency of stem cells

0.033
ISL1, FZD7, FZD8, LIFR, POU5F1, FGF2, FGFR2, 
PAX6, SOX2

Blue HPV+ MSigDB C6 —
RICKMAN HEAD AND NECK 
CANCER A

3.5e-09

GABRP, MAP7D2, CLDN3, CLDN10, ARNT2, 
STAR, LIFR, C8orf4, C11orf93, FAM71E1, MYB, 
PARM1, STXBP6, CYP4X1, ZIC2, OLFM1, 
TMSB15A, NRCAM, TSPAN8

Blue HPV+ MSigDB C6 —
PYEON HPV POSITIVE TUMORS 
UP

9.7e-07
MAP7D2, BTNL9, TCAM1P, SYCP2, ABCA17P, 
GLS2, IL17RB, ZSCAN16, CDK3, MYB, TM7SF3, 
CENPK, ANKRD36B, KIF15, ZNF238, SYNGR3

Yellow HPV+ GO (BP) GO:0008544 epidermis development 9.2e-08

CASP14, SPINK6, EREG, KLK5, KRT75, SLITRK6, 
FABP5, KRT14, PTHLH, HOXC13, CYP26B1, 
POU3F1, BNC1, IL20, APCDD1, LAMC2, MYO5A, 
CST6, INHBA, CTSV, CDH3

Yellow HPV+ GO (BP) GO:0043588 skin development 1.18e-04
CASP14, SPINK6, EREG, KLK5, KRT75, KRT14, 
HOXC13, CYP26B1, POU3F1, IL20, ITGA6, 
APCDD1, MYO5A, INHBA, CTSV, CDH3

Yellow HPV+ GO (BP) GO:0050680
negative regulation of epithelial cell 
proliferation

1.5e-02 EREG, GJA1, EFNB2, XDH, CAV1, CTSV, CDK6

Yellow HPV+ GO (BP) GO:0030216 keratinocyte di�erentiation 1.6e-0
CASP14, SPINK6, EREG, KLK5, KRT75, KRT14, 
CYP26B1, POU3F1, IL20, CDH3

Yellow HPV+ MSigDB H —
HALLMARK EPITHELIAL 
MESENCHYMAL TRANSITION

0.005
MMP3, MMP1, PTHLH, AREG, GJA1, TNC, 
LAMC2, INHBA, TNFRSF12A, NT5E

Grey (C1) HPV+ GO (BP) GO:0060997 dendritic spine morphogenesis 0.042 KALRN, NGEF, EPHB3

Grey (C2) HPV+ KEGG hsa04142 Lysosome 0.041 CTSE, PSAPL1

Grey HPV− GO (BP) GO:0042180 cellular ketone metabolic process 0.0011 AKR1C2, AKR1C3, NQO1

Grey HPV− GO (BP) GO:0007568 aging 0.0028 CDKN2A, NQO1, TP53

Grey HPV− MSigDB H —
HALLMARK XENOBIOTIC 
METABOLISM

0.007 AKR1C2, AKR1C3, NQO1

Table 2. Biological processes, pathways and molecular signatures signi�cantly overrepresented in the Blue, 
Yellow and Grey modules according to HPV status (FDR-adjusted p-value ≤ 0.05). 1FDR-adjusted.
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in the disease. Genetic and epigenetic changes such as mutations and methylation patterns modulate gene expres-
sion levels of several genes. Although both result in the same phenotypic alteration (changes in expression levels), 
the genetic mechanisms involved and the adjacent gene interactions (gene networks) are di�erent, an observa-
tion that can only be done with the analysis of multi-omic data30–32. In this sense, the analysis of data such as 
those available through the TCGA Consortium provides a unique opportunity to assess multi-layer molecular 
interactions in a feasible manner22,33. In the current study, we utilized HNSCC multi-omic data from TCGA in 
an attempt to more comprehensively understand gene co-expression networks and the putative roles of gene 
promoter methylation patterns and gene mutations associated with HPV+ and HPV− pro�les through disease 
progression.

Probe Entrez Id Symbol FC1 P-value2 Signal Module

1558856_at 63950 DMRTA2 1.91 0.006 ↑ Blue

204343_at 21 ABCA3 1.5 0.04 ↑ Blue

206546_at 10388 SYCP2 3.17 0.003 ↑ Blue

220378_at 6954 TCP11 1.48 0.004 ↑ Blue

228262_at 256714 MAP7D2 3.2 0.001 ↑ Blue

228434_at 153579 BTNL9 1.78 0.025 ↑ Blue

231164_at 650655 ABCA17P 2.89 <0.01 ↑ Blue

231517_at 440590 ZYG11A 1.47 0.036 ↑ Blue

233320_at 146771 TCAM1P 2.58 <0.01 ↑ Blue

237304_at 256126 SYCE2 1.65 0.013 ↑ Blue

244198_at 64901 RANBP17 1.39 0.032 ↑ Blue

205783_at 26085 KLK13 −1.55 0.032 ↓ Brown

206125_s_at 11202 KLK8 −1.72 0.007 ↓ Brown

206605_at 8909 ENDOU −2.61 0.034 ↓ Brown

208539_x_at 6701 SPRR2B −2.75 0.04 ↓ Brown

209792_s_at 5655 KLK10 −2.29 0.023 ↓ Brown

214549_x_at 6698 SPRR1A −2.22 0.039 ↓ Brown

220620_at 54544 CRCT1 −2.59 0.047 ↓ Brown

220664_at 6702 SPRR2C −2.86 0.048 ↓ Brown

233488_at 84659 RNASE7 −1.48 0.033 ↓ Brown

233586_s_at 43849 KLK12 −2.7 0.04 ↓ Brown

235272_at 374897 SBSN −2.24 0.049 ↓ Brown

206561_s_at 57016 AKR1B10 −2.23 0.026 ↓ Grey

207039_at 1029 CDKN2A 3.46 <0.01 ↑ Grey

207366_at 3787 KCNS1 1.32 0.016 ↑ Grey

207558_s_at 5308 PITX2 −1.94 0.041 ↓ Grey

219263_at 79589 RNF128 −2.05 0.019 ↓ Grey

220325_at 54457 TAF7L 1.78 0.007 ↑ Grey

232604_at 84215 ZNF541 1.35 0.001 ↑ Grey

1556300_s_at 6492 SIM1 2.65 0.026 ↑ Turquoise

205551_at 9899 SV2B 1.96 0.029 ↑ Turquoise

207678_s_at 11063 SOX30 2.03 0.01 ↑ Turquoise

219753_at 10734 STAG3 2.26 <0.01 ↑ Turquoise

220507_s_at 51733 UPB1 2.09 0.008 ↑ Turquoise

229024_at 57484 RNF150 1.09 0.036 ↑ Turquoise

230011_at 150365 MEI1 1.46 0.033 ↑ Turquoise

233064_at 23217 ZFR2 4.23 <0.01 ↑ Turquoise

202345_s_at 2171 FABP5 −1.87 0.017 ↓ Yellow

205627_at 978 CDA −2.23 0.03 ↓ Yellow

205767_at 2069 EREG −2.37 0.028 ↓ Yellow

206165_s_at 9635 CLCA2 −1.84 0.044 ↓ Yellow

Table 3. Di�erentially-expressed genes of the GSE679126 external high-throughput experiment and congruence 
with our TCGA analysis. Genes were selected by moderated t-tests comparing HPV+ and HPV− samples. 
Modules are as indicated in Fig. 3. 1absolute-logFC ≥ 1; 2FDR-adjusted ≤ 0.05. Genes in boldface are those also 
found as di�erentially-methylated in our analysis.
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Our approach started with the identi�cation of DEG between HPV+ and HPV− tumors. �e genes involved 
in these networks appeared to vary signi�cantly when we use data from di�erent disease stages (I through IV) 
of both HPV statuses (Supplementary Fig. 1, Supplementary Table 1 and Fig. 2), indicating that their expression 
is modulated to di�erent levels during the carcinogenic process. Despite the fact that most genes lost statistical 
signi�cance in di�erential expression between HPV+ and HPV− tumors at one or more disease stages, a general 
trend could be observed that DEG maintained their patterns throughout the stages (i.e., being over or underex-
pressed in HPV+ compared to HPV− cases; Supplementary Table 1 and insets of Fig. 2). It is worth mentioning 
that data from a small number of cases were available for initial tumor stages, particularly from HPV+ cases, and 
we cannot exclude the possibility that such heterogeneity in the number of samples compromised the robustness 
of the di�erences observed herein. Analyses with larger numbers of cases are warranted in further studies to more 
precisely identify DEG throughout HNSCC stages. On the other hand, most of the converging expression results 
(i.e., lack of signi�cant di�erential expression between HPV+ and HPV− cases) occurred in stage IV (data not 
shown). It is tempting to speculate that, at an advanced disease stage, the molecular processes converge between 
HPV+ and HPV− cases, being the virus a mere initiator of the carcinogenesis via distinct pathways. A similar 
scenario was observed when DMG were derived from the same data (Supplementary Table 1). Again, promoter 
gene methylation patterns di�ered between HNSCC stages comparing HPV+ and HPV− cases and no single 
gene di�ered signi�cantly across all four stages between the two HPV statuses. �ese results indicate that the 
association between methylation and gene expression is stronger in HPV-infected HNSCC, and thus that epige-
netic regulation appears to be pivotal during HPV infection of head-and-neck anatomical sites.

Gene co-expression modules and networks were constructed using global expression data (Fig. 3), and DEG 
were used as �lters for re�ning those networks as described in Methods. In this sense, only genes that were DEG 
or directly interact with DEG in a linear positive fashion were plotted in module networks (Fig. 4). �ree signi�-
cantly supported modules (Blue, Yellow and Grey) were further investigated. �e obtained gene networks di�ered 
between HPV+ and HPV− tumors within each module (Fig. 4), suggesting that HPV infection plays a unique 
role in HNSCC carcinogenesis, which involves a series of distinct molecular processes from the HPV− counter-
parts. To the best of our knowledge, very few studies (if any) tried to assess the composition of gene networks 
through disease progression and also how HPV in�uences that development. In all three modules studied, the 
HPV+ networks were much more densely connected and encompassed a larger number of signi�cant nodes and 
edges compared to the HPV− counterparts (Fig. 4). Irrespective of the modulation provided by the presence of 

Figure 5. Comparison of gene expression and promoter methylation data between the TCGA data analyzed 
and those of independent biological experiments. (A) Scatter plots showing the correlation of expression 
levels of genes from TCGA data which were di�erentially methylated (HSF4, MYO15B and SERINC4; y-axes) 
with SYCP2 (x-axes). �e yellow circles represent HPV− samples, while the green triangles represent HPV+ 
counterparts. (B) Comparison of the methylation levels of the promoter region (TSS200) between HPV+ and 
HPV− samples in external high-throughput methylation experiments. �e adjusted p-values that remained 
signi�cant are shown.
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the virus (either gene overexpression or underexpression compared to the HPV− networks in the Blue or Yellow 
module, respectively), the networks suggest a fundamental role of HPV in hijacking and modulating speci�c 
biological processes within tumor cells.

We further integrated DMG and signi�cantly mutated genes in the HPV+ and HPV− module networks 
by identifying those genes within the networks. Since the networks are composed of DEG, the DMG identi-
�ed are necessarily doubly DEG and DMG. Despite these genes were essentially the same when comparing the 
HPV+ and HPV− networks within each module (with one or two exceptions in each module), their engagement 
in di�erent interactions were noteworthy (compare HPV+ and HPV− modules in Fig. 4A–C). In the HPV+ 
networks, particularly in the Yellow module, DMG were more central in the networks and engaged in higher 
numbers of connections (compare HPV+ and HPV− in Fig. 4B). �is is consistent with the observation that 
DEG in the Yellow module are repressed (underexpressed) in the HPV+ cases compared to HPV− counter-
parts. With respect to the mutated genes, three appeared signi�cantly mutated in HPV− compared to HPV+ 
cases, TP53, CDKN2A and FAT1 (Supplementary Fig. 6B). Of those three, only CDKN2A appeared in one of the 
modules (Grey), because it is also a DEG (Fig. 4C). On the other hand, TP53 also showed relevant PPI with genes 
in the Yellow and Grey modules as evidenced through searches within StringDB, and was arbitrarily added to 
those two modules (Fig. 4B,C). As expected, all those occurrences took place in the HPV− networks, consistent 
with the fact that mutations in those genes were reported almost exclusively in subjects with HPV− status (see 
Supplementary Fig. 6A). Our results point to a fundamental, yet expected role of host gene mutations as primary 
drivers of carcinogenesis in HPV− samples, as opposed to an infectious agent driver in the case of HPV+ sam-
ples. Of note, mutations in the PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha) 
gene have been recently associated with HPV+ HNSCC12,34. We did not �nd such association, since those muta-
tions were also present in HPV− tumors, and the di�erence between the two HPV statuses was not signi�cant 
(19% of HPV− versus 36% of HPV+ cases), a comparison likely not conducted by TCGA in their report12.

Several genes could be retrieved from the gene co-expression networks obtained from the three modules 
which appear to have distinguishable importance in HPV+ and HPV− HNSCC. �e SYCP2 gene encodes the 
synaptonemal complex protein 2, a protein that is localized in chromosomal centromeres and responsible for the 
association of chromosomes with the synaptonemal complex, driving the prophase of meiosis35. SYCP2 has been 
found overexpressed in HPV+ oropharyngeal cancers13, and similar results were found herein for HNSCC in 
general (Fig. 2A). It was also associated with cervical squamous cell carcinomas36. Of note, Peyon et al.26 have pro-
posed that HPV+ cancers from distinct anatomical sites, speci�cally cervical cancers and HNSCC, share many 
upregulated genes and pathways, including the overexpression of testis-speci�c genes involved in meiosis such as 
SYCP226. Aberrant expression of this gene in HPV+ cancers likely contribute to genomic instability and further 
oncogenic alterations, yet a speci�c interaction of viral products with SYCP2 is yet to be elucidated.

Transcription factors were also overexpressed in the HPV+ Blue network, such as YBX2, DMRTA2 and EYA2 
(Fig. 4A). Most of these TF have been described as overexpressed in di�erent types of cancers, including ovar-
ian, testis and breast cancer in the case of YBX237,38, and breast cancer, lung cancer and acute myeloid leukemia 
in the case of EYA239,40. DMRTA2, on the other hand, is also expressed in the spermatogenesis of the testis, and 
regulates the cyclin-dependent kinase CDKN2c41, in addition to maintaining neuroprogenitor cells in the cell 
cycle42. Although the speci�c role of HPV in upregulating these TF is unknown, gene silencing of EYA2 signi�-
cantly reduced viability, migratory capacity, and anchorage-independent growth of HPV16-transformed kerat-
inocytes43. Moreover, our results point to a fundamental interaction of HPV with a de�ned network of genes 
that regulate gametogenesis in the testis and ovaries, a pathway that warrants further study for interventional 
approaches. Additional genes that are co-expressed with the abovementioned ones in a highly signi�cant fash-
ion, such as MYO3A (myosin IIIA), IL17RB (interleukin 17 receptor B) and UBXN11 (UBX domain protein 
11) (please see the complete network visualization described in the “Data Availability” section at the end of this 
report), and for which scarce information as related to carcinogenesis or HPV infection is available, are also 
attractive for further studies and as targets for intervention. According to the GO biological processes associated 
with the reconstructed HPV+ Blue network, cell fate di�erentiation and glucose metabolism appear to be major 
components (Table 2), consistent with gene upregulation that occurs during tumor development.

In the HPV+ Yellow network, two central genes were shown to be signi�cantly underexpressed and more 
methylated compared to HPV− HNSCC, GJB6 (gap junction protein beta 6, also known as connexin 30) and 
FLRT3 (�bronectin leucine rich transmembrane protein 3) (Figs 2 and 4B). Furthermore, the HOXC13 (homeo-
box C13) TF, a regulator of several genes during epithelial di�erentiation, and of which mutations were associated 
with pure hair and nail ectodermal dysplasia44, is also underexpressed in this HPV status. Conversely, HOXC13 
and FLRT3, among other genes seen in our Yellow networks, were found upregulated in HPV− OSCC45, in agree-
ment with our results. Not surprisingly, all these genes have been associated with the expression and metabolism 
of gap junction proteins and keratins, as well as keratinocyte di�erentiation in epithelial cells, and appeared 
to be downregulated in HPV+ tumors. Other genes signi�cantly associated with those are keratins 14 and 19 
(KRT14, KRT19), COL4A6 (collagen type IV alpha 6 chain) and CLCA2 (chloride channel accessory 2), which 
are also involved in keratinocyte biology. �ese results are highlighted in the GO analysis for this network, which 
showed an enrichment in negative regulation of epithelial cell proliferation, keratinocyte di�erentiation, and skin 
and epidermis development (Table 2). �e MMP3 gene encodes the matrix metallopeptidase 3 and is generally 
associated with multiple steps of cancer development, invasion and metastasis46. Interestingly, this gene was also 
underexpressed in our HPV+ compared to the HPV− Yellow network (Fig. 4B). It is tempting to speculate that, 
in a scenario where most adhesion and gap junction molecules are already downregulated, upregulation of MMP3 
is not a sine qua non step towards tumor cell invasion and metastasis.

In the HPV+ Grey network, two genes were found underexpressed and hypermethylated compared to HPV− 
tumors, PITX2 (paired like homeodomain 2) and CCNA1 (cyclin A1) (Figs 2 and 4C). �e �rst one is addition-
ally a TF which has been implicated in muscle development. PITX2 hypermethylation has been interestingly 
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associated with better prognosis in HNSCC47 but with worse prognosis in breast cancer48. PITX2 has also been 
shown to control the expression of CCNA1 in a positive fashion49, which �ts the relationships found in our 
network. Moreover, HPV-16 E7 has also been implicated in the mediation of CCNA1 promoter methylation50. 
Conversely, PAX1 (paired box 1) and correlated genes (Fig. 4C, inset C2) are overexpressed in HPV+ compared 
to HPV− tumors. One of these genes, the DEG CTSE (cathepsin E), is involved in the lysosome degradation path-
way (KEGG, hsa04142). CTSE has been additionally recognized as a biomarker for the detection of pancreatic 
ductal adenocarcinoma51 and for gastric cancer52.

In the HPV− Grey module, no clear networks were formed, but underexpression of CDKN2A and its asso-
ciation with TP53 were evident (Fig. 4C). Moreover, TP53 and CDKN2A were signi�cantly mutated in this net-
work (Supplementary Fig. 6B). CDKN2A is a kinase implicated in the production of p16(INK4a) and p14(ARF), 
well-established tumor suppressors. �erefore, decreased expression of TP53 and CDKN2A by inactivating muta-
tions as seen in our data �ts the scenario of HPV− induced carcinogenesis, where cellular genes are the major 
drivers of the process.

Our novel �ndings with the multi-omic integration of the HNSCC TCGA dataset were further confronted 
with three independent studies reporting experimental data acquisition from biological samples. One study 
derived gene expression data using microarray analysis26, a di�erent method from the TCGA dataset, while the 
other two analyzed methylation pro�les using either fresh frozen27 or FFPE17 samples. Independent of omics, 
methods or sample preparation protocols used, the data from those three studies converged sigini�cantly with 
our �ndings using TCGA. A comprehensive list of genes di�erentially expressed between HPV+ and HPV− 
tumors was found concordant between our study and that by Pyeon et al.26 (GEO: GSE6791) (Table 3). Of note, 
among the 12 simultanously DEG and DMG pointed out in our analysis (Fig. 2), �ve were represented in that 
list (boldfaced in Table 3). With respect to methylation, we found that six out of the 12 genes mentioned above 
were also DMG in the study by Lechner et al.27 (GEO: GSE38266). Conversely, SYCP2, a gene featured as DMG in 
the HPV+ Blue network in our analysis (Fig. 4A), was also evidenced when analyzing the data by Esposti et al.17  
(GEO: GSE95036) (Table 3). Of note, three other genes intimately correlated with SYCP2 for their DMG pat-
terns in our analysis (HSF4, MYO15B and SERINC4) (Fig. 5), have also appeared in the data by Lechner et al.27, 
unveiling a central regulatory pattern in gene expression/methylation in HPV+ tumors. Two of the 12 DMG/
DEG genes found in our HPV+ networks, GJB6 and PITX2, emerged as DMG in both experimental methylation 
datasets17,27 (Supplementary Fig. 7), highlighting them as pivotal to the carcinogenesis of HPV+ tumors.

Overall, the results presented herein emphasize the importance of integrating di�erent genomic data (as 
mRNA expression, DNA methylation and mutation patterns) to get a better understanding of the molecular 
mechanisms involved in the carcinogenesis and progression of HNSCC, an approach that can be applied to other 
tumor types. Even though the individual analysis of one biological level (mRNA) gives information associated 
with the disease, the integration with other biological levels is required to have a more comprehensive view from 
a functional perspective, allowing the identi�cation of novel molecular targets unseen by mono-omic approaches.

Methods
Omics datasets and preprocessing. �e multi-omic data of HNSCC were retrieved from �e Cancer 
Genome Atlas (TCGA) database22 by selecting the datasets published in 201512 which identi�ed HPV-positive 
(HPV+) and HPV-negative (HPV−) cases, totalling a set of 279 patients with data of primary solid tumors 
(HPV+: (stage I) n = 2; (stage II) n = 6; (stage III) n = 5; (stage IV) n = 22. HPV−: (I) n = 12; (II) n = 44; (III) 
n = 40; (IV) n = 144). Using clinical data information, we grouped the samples by HNSCC staging, which 
excluded three patients for whom this information was absent. �e resulting dataset for further analysis consisted 
of 240 HPV− and 36 HPV+ cases.

�e gene expression dataset was composed of data generated in an Illumina HiSeq. 2000 RNA-Seq plat-
form (level 3) using the preprocessed RNAseqV2 normalized count expression values based on RNA-Seq by 
Expectation-Maximization (RSEM). We performed a log-transformation log(1 + p) on the count expression val-
ues. Genes with a zero standard deviation were removed from the dataset.

�e methylation dataset was determined using In�nium HumanMethylation450 BeadChip (450 K). In the meth-
ylation level 3 data, each probe (CpG site) is measured as the ratio (β value) of the signal of methylated probes with 
respect to the sum of methylated and unmethylated probes, which varied continuously from 0 to 1, values that 
indicate unmethylated and fully methylated, respectively. We removed cross-reactive, non-speci�c, single nucleotide 
polymorphisms (SNPs), chromosomes X and Y and probes with genomic coordinates set to zero. We also removed 
probes with more than 5% missing values across samples. In the remaining data, absent data were estimated using 
the weighted k-nearest neighbor (kNN) algorithm, with k = 10, as proposed by Troyanskaya et al.53 and implemented 
in the R ‘impute’ package. �e raw data (M values) normalization was performed with the BMIQ method proposed 
by Teschendorf et al.54 and implemented in the Chip Analysis Methylation Pipeline (ChAMP)55. �e analysis of 
DMG was performed with the de�ned promoter region, following the methodology used by Jiao et al.56. Brie�y, the 
average value of the probes mapping within 200 bp of the transcription start site (TSS) was assigned to the gene. If no 
probes mapped within 200 bp of the TSS, we used the average value of probes mapping to the 1st exon of the gene. If 
such probes were also not available, we used the average value of probes mapping within 1500 bp of the TSS.

�e somatic mutation data were obtained from the Mutation Annotation Format (MAF) �les. MAF �les 
provide baseline data for many downstream analyses identifying somatic mutations in cancers through various 
pipelines and sequencing platforms. MAF �les provide baseline data for many downstream analyses identifying 
somatic mutations in cancers through various pipelines and sequencing platforms.

Genes selected by differences among stages in expression and methylation data. We selected 
signi�cant genes (False Discovery Rate, FDR-adjusted p-value ≤ 0.01) comparing each pro�le (HPV+ ver-
sus HPV−) for each HNSCC stage. For instance, HPV+ (stage I) vs HPV− (stage I), …, HPV+ (stage IV) vs 
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HPV− (stage IV). Genes that were selected in at least one comparison were included in posterior analyses. We 
used this approach for the RNA-Seq dataset including absolute log Fold-Change (absolute-logFC) ≥ 4, resulting 
in Di�erentially Expressed Genes (DEG). For the methylation dataset, we used the same method but considering 
the absolute-logFC ≥ 2 for selecting the DMG. �ese analyses were achieved based on normalized datasets by 
the �tting of the linear model (for each probe or gene) followed by moderated t-tests implemented in the ‘limma’ 
package23. We overlapped the DEG and DMG to determine genes that were doubly selected. Next, we calculated 
the Pearson’s correlation (PC) between the methylation and expression values to those doubly selected genes, and 
considered those with rho values ≤ 0.5 as signi�cant.

Somatic mutation analysis. Somatic mutations from Whole Exome Sequencing (WXS) in HNSCC were 
downloaded in a MAF �le. We performed Fisher’s exact test to detect the di�erentially mutated genes on all 
HPV+ versus HPV− pro�les with the ‘ma�ools’ package57. Adjusted p-values ≤ 0.05, provided by the FDR anal-
ysis58, were considered signi�cant.

Co-expression modules via WGCNA. �e analysis of the co-expression network modules was performed 
using the package Weighted Correlation Network Analysis (WGCNA)59, applying the minimumModuleSize = 20 
and mergingCutHeight = 0.45. �e similarity matrix was converted to a weighted adjacency matrix by raising it 
to the power of β to amplify the strong connections and penalize the weaker connections. Gene expression was 
summarized into the module eigengene (ME) as the �rst principal component (PC) of the entire module gene 
expression. ME values were then correlated with the various studied traits. �e trait-associated mRNAs were then 
subjected to WGCNA60 for the identi�cation of high co-expression modules, denoted as M. �e clinical data used 
in the analysis was related with ‘HPV status’, ‘staging’, ‘age’, ‘gender’, ‘alcohol’, ‘smoked’, and anatomical site (‘anat. 
site’). A subset M′ of M is given by modules signi�cantly associated with HPV status selected for posterior analysis 
(absolute correlation >0.25 and p-value ≤ 0.001).

Refining modules and interactions networks. Due to the number of genes in high-throughput data, the 
resulting modules contain a large number of genes, with interconnections that might result from spurious corre-
lations. In order to obtain a selective and restrictive set of genes involved in each pro�le, we �ltered the nodes in 
HNSCC for HPV+ and HPV− phenotypes. For this, assuming we have n selected modules, each selected module 
′Mi  of ′ ⊆M M is represented by

= 〈 〉 = … = … ≤ ≤′
| | | |M G S G g g S s s i n, , { , , }, { , , }; 1 ,i i i i i G S1 1

i

where Gi is a set of genes and S is the set of samples. We separated the modules in,

= 〈 〉 = ∈ | = ++ + +M G S S s S statusHPV s, , { ( ) },i i

for HPV+ and

= 〈 〉 = ∈ | = −− − −M G S S s S statusHPV s, , { ( ) },i i

for HPV−. For each Mi
v, ≤ ≤i n0  where ∈ + −v { , },
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v
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We select the genes g
iy

 which ≥ .corr g g( , ) 0 65S iy iz
v , >y z, ∈g g C( , )

iy iz i
v and p-value ≤ 0.01.

�e resulting networks were visualized with the ‘igraph’ package available in R CRAN61. DEG, DMG, dou-
bly selected (DEG and DMG), transcription factors (TF) and signi�cantly mutated genes were identi�ed in the 
network. �e TF data were obtained from the TFcheckpoint database62. To link the signi�cantly mutated genes in 
the network, we used the protein-protein Interaction (PPI) associations from the STRING database63, with high 
con�dence (score ≥ 0.7) selected.

Gene Ontology and pathway-enrichment of the selected genes within modules. To identify 
the signi�cant enrichment pathways, Gene Ontology (GO) terms64,65, KEGG66 and the Molecular Signature 
Database (MSigDb v.6.0)67 were used. �e hypergeometric distribution test was used to test for statistically sig-
ni�cant overrepresentation of genes from particular biological gene sets within the co-expression in each module 
and HPV status. �e p-values were corrected for multiple testing (FDR-adjusted ≤0.001) using the R package 
ClusterPro�ler68.

Validation with independent microarray and methylation datasets. We analyzed three independ-
ent biological datasets, one derived from microarray and two from methylation analyses, downloaded from Gene 
Expression Omnibus (GEO). For the microarray experiments, we evaluated the GEO: GSE679126, selecting a 
total of 56 HNSCC samples of which 16 samples are HPV+ (we excluded the cervical samples from the original 
experiment). We applied the MAS5 normalization method followed by moderated t-tests (HPV+ versus HPV−; 
FDR-adjusted p-value ≤ 0.05 and absolute-logFC ≥ 1) implemented in the a�y and limma R packages, respec-
tively23,69. For the methylation datasets, we retrieved the experiments deposited on GEO: GSE3826627 and GEO: 
GSE9503617, both of which using the 450 K platform. �e �rst dataset consisted of 11 samples (six HPV+) from 
fresh frozen biopsies. �e second one contained 42 samples (21 HPV+) from formalin-�xed para�n-embedded 
(FFPE) tissues. We applied the same methodology described for methylation (see in section Omics datasets and 
processing) with absolute-logFC ≥ 1.5 and FDR-adjusted p-value ≤ 0.05.
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Data Availability
�e networks generated in the analysis above are available in an interactive module at: https://quelopes.github.
io/�les/projects/HNSCC/Co-expressionHNSCC.html. �e HPV+ networks were modeled and populated in the 
graph database Neo4J. �e database can be retrieved at GitHub https://github.com/quelopes/HNSCC-network.

References
 1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2017. CA: A Cancer Journal for Clinicians 67, 7–30 (2017).
 2. Ferlay, J., Bray, F., Forman, D., Mathers, C., Parkin, D. & Shin, H. R. Cancer Incidence and Mortality Worldwide: IARC CancerBase, 

http://globocan.iarc.fr (2010).
 3. Goon, P. K. C. et al. HPV & head and neck cancer: a descriptive update. Head & neck oncology 1, 36 (2009).
 4. Stephen, J. K. et al. Signi�cance of p16 in site-speci�c HPV positive and HPV negative HNSCC. Cancer and Clinical Oncology 2, 

51–61 (2012).
 5. Gillison, M. L. et al. Eurogin Roadmap: Comparative epidemiology of HPV infection and associated cancers of the head and neck 

and cervix. International Journal of Cancer 134, 497–507 (2013).
 6. Sepiashvili, L. et al. Novel insights into head and neck cancer using next-generation “Omic” technologies. Cancer Research 75, 

480–486 (2015).
 7. Fakhry, C. et al. Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a 

prospective clinical trial. Journal of the National Cancer Institute 100, 261–269 (2008).
 8. Pai, S. & Westra, W. Moleccular Pathology of Head and Neck Cancer:Implications for Diagnosis, Prognosis and Treatment. Annu. 

Rev. Pathol. 4, 49–70 (2009).
 9. Ang, K. K. et al. Human Papillomavirus and Survival of Patients with Oropharyngeal Cancer. �e New England journal of medicine 

363, 24–35 (2010).
 10. Dai, M. et al. Human papillomavirus type 16 and TP53 mutation in oral cancer: matched analysis of the IARC multicenter study. 

Cancer Res 64, 468–471 (2004).
 11. Riaz, N., Morris, L. G., Lee, W. & Chan, T. A. Unraveling the molecular genetics of head and neck cancer through genome-wide 

approaches. Genes and Diseases 1, 75–86 (2014).
 12. Lawrence, M. S. et al. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 517, 576–582 (2015).
 13. Masterson, L. et al. Deregulation of SYCP2 predicts early stage human papillomavirus-positive oropharyngeal carcinoma: A 

prospective whole transcriptome analysis. Cancer Science 106, 1568–1575 (2015).
 14. Wood, O. et al. Gene expression analysis of TIL rich HPV-driven head and neck tumors reveals a distinct B-cell signature when 

compared to HPV independent tumors. Oncotarget 7, 56781–56797 (2016).
 15. Slebos, R. J. C. et al. Gene expression di�erences associated with human papillomavirus status in head and neck squamous cell 

carcinoma. Clinical Cancer Research 12, 701–709 (2006).
 16. Yu, Y., Li, S., Wang, H. & Bi, L. Comprehensive network analysis of genes expressed in human oropharyngeal cancer. American 

journal of otolaryngology 36, 235–241 (2014).
 17. Esposti, D. D. et al. Unique DNA methylation signature in HPV-positive head and neck squamous cell carcinomas. Genome 

Medicine 9, 33 (2017).
 18. Seiwert, T. Y. et al. Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell 

carcinomas. Clinical Cancer Research 21, 632–641 (2015).
 19. Keck, M. K. et al. Integrative analysis of head and neck cancer identi�es two biologically distinct HPV and three non-HPV subtypes. 

Clinical Cancer Research 21, 870–881 (2015).
 20. Zhang, X., Gao, L., Liu, Z. P., Jia, S. & Chen, L. Uncovering Driver DNA Methylation Events in Nonsmoking Early Stage Lung 

Adenocarcinoma. BioMed Research International 2016 (2016).
 21. Kristensen, V. N. et al. Principles and methods of integrative genomic analyses in cancer. Nature Reviews Cancer 14, 299–313 (2014).
 22. Tomczak, K., Czerwińska, P. & Wiznerowicz, M. �e Cancer Genome Atlas (TCGA): An immeasurable source of knowledge. 

Wspolczesna Onkologia 1A, A68–A77 (2015).
 23. Smyth, G. K. Linear Models and Empirical Bayes Methods for Assessing Di�erential Expression in Microarray Experiments. 

Statistical Applications in Genetics and Molecular Biology 3, 1–25 (2004).
 24. Barabasi, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).
 25. Barabasi, A.-L. Scale-Free Networks: A Decade and Beyond. Science 325, 412–413 (2009).
 26. Pyeon, D. et al. Fundamental di�erences in cell cycle deregulation in human papillomavirus-positive and human papillomavirus-

negative head/neck and cervical cancers. Cancer Research 67, 4605–4619 (2007).
 27. Lechner, M. et al. Identi�cation and functional validation of HPV-mediated hypermethylation in head and neck squamous cell 

carcinoma. Genome Medicine 5, 1–16 (2013).
 28. Stadler, M. E., Patel, M. R., Couch, M. E. & Hayes, D. N. Molecular Biology of Head and Neck Cancer: Risks and Pathways. 

Hematology/Oncology Clinics of North America 22, 1099–1124 (2008).
 29. Aung, K. L. & Siu, L. L. Genomically personalized therapy in head and neck cancer. Cancers of the Head & Neck 1, 2 (2016).
 30. Suravajhala, P., Kogelman, L. J. A. & Kadarmideen, H. N. Multi-omic data integration and analysis using systems genomics 

approaches: methods and applications in animal production, health and welfare. Genetics Selection Evolution 48, 38 (2016).
 31. Huang, S., Chaudhary, K. & Garmire, L. X. More is better: Recent progress in multi-omics data integration methods. Frontiers in 

Genetics 8, 1–12 (2017).
 32. Hasin, Y. et al. Multi-omics approaches to disease. Genome Biology 18, 83 (2017).
 33. Yan, J., Risacher, S. L., Shen, L. & Saykin, A. J. Network approaches to systems biology analysis of complex disease: integrative 

methods for multi-omics data. Brie�ngs in Bioinformatics 16, 85–97 (2017).
 34. Zhang, Y. et al. Subtypes of HPV-Positive Head and Neck Cancers Are Associated with HPV Characteristics, Copy Number 

Alterations, PIK3CA Mutation, and Pathway Signatures. Clinical Cancer Research 22, 4735–4745 (2016).
 35. Feng, J. et al. Synaptonemal complex protein 2 (SYCP2) mediates the association of the centromere with the synaptonemal complex. 

Protein & cell 8, 538–543 (2017).
 36.  Guo, P. et al. �e landscape of alternative splicing in cervical squamous cell carcinoma. OncoTargets and �erapy 73 (2014).
 37. Kohno, Y. et al. Expression of Y-box-binding protein dbpC/contrin, a potentially new cancer/testis antigen. British journal of cancer 

94, 710–6 (2006).
 38. Stricker, T. P. et al. Robust strati�cation of breast cancer subtypes using di�erential patterns of transcript isoform expression. PLoS 

Genetics 13, 1–19 (2017).
 39. Liang, Y. et al. �e EGFR/miR-338-3p/EYA2 axis controls breast tumor growth and lung metastasis. Cell Death and Disease 8, e2928 (2017).
 40. Ono, R., Masuya, M., Ishii, S., Katayama, N. & Nosaka, T. Eya2, a Target Activated by Plzf, Is Critical for PLZF-RARA-Induced 

Leukemogenesis. Molecular and cellular biology 37, 00585–16 (2017).
 41. Xu, S., Xia, W., Zohar, Y. & Gui, J.-F. Zebra�sh dmrta2 Regulates the Expression of cdkn2c in Spermatogenesis in the Adult Testis1. 

Biology of Reproduction 88, 1–12 (2013).
 42. Young, F. I. et al. �e doublesex-related Dmrta2 safeguards neural progenitor maintenance involving transcriptional regulation of 

Hes1. Proceedings of the National Academy of Sciences 114, E5599–E5607 (2017).

https://quelopes.github.io/files/projects/HNSCC/Co-expressionHNSCC.html
https://quelopes.github.io/files/projects/HNSCC/Co-expressionHNSCC.html
https://github.com/quelopes/HNSCC-network
http://globocan.iarc.fr


www.nature.com/scientificreports/

13SCIENTIFIC REPORTS |  (2018) 8:15254  | DOI:10.1038/s41598-018-33498-5

 43. Bierkens, M. et al. Focal aberrations indicate EYA2 and hsa-miR-375 as oncogene and tumor suppressor in cervical carcinogenesis. 
Genes, Chromosomes and Cancer 52, 56–68 (2013).

 44. Mehmood, S., Raza, S. I., Van Bokhoven, H. & Ahmad, W. Autosomal recessive transmission of a rare HOXC13 variant causes pure 
hair and nail ectodermal dysplasia. Clinical and Experimental Dermatology 42, 585–589 (2017).

 45. Bhosale, P. G. et al. Chromosomal Alterations and Gene Expression Changes Associated with the Progression of Leukoplakia to 
Advanced Gingivobuccal Cancer. Translational Oncology 10, 396–409 (2017).

 46. Zhu, X.-m & Sun, W.-f Association between matrix metalloproteinases polymorphisms and ovarian cancer risk: A meta-analysis and 
systematic review. PLoS One 12, e0185456 (2017).

 47. Sailer, V. et al. Clinical performance validation of PITX2 DNA methylation as prognostic biomarker in patients with head and neck 
squamous cell carcinoma. PLoS One 12, 1–12 (2017).

 48. Sheng, X., Guo, Y. & Lu, Y. Prognostic role of methylated GSTP1, p16, ESR1 and PITX2 in patients with breast cancer. Medicine 96, 
e7476 (2017).

 49. Liu, Y., Huang, Y. & Zhu, G. Z. Cyclin A1 is a transcriptional target of PITX2 and overexpressed in papillary thyroid carcinoma. 
Molecular and Cellular Biochemistry 384, 221–227 (2013).

 50. Chalertpet, K., Pakdeechaidan, W., Patel, V., Mutirangura, A. & Yanatatsaneejit, P. Human papillomavirus type 16 E7 oncoprotein 
mediates CCNA1 promoter methylation. Cancer Science 106, 1333–1340 (2015).

 51. Cruz-Monserrate, Z. et al. Detection of pancreatic cancer tumours and precursor lesions by cathepsin E activity in mouse models. 
Gut 61, 1315–1322 (2012).

 52.  Konno-Shimizu, M. et al. Cathepsin E Is a Marker of Gastric Di�erentiation and Signet-Ring Cell Carcinoma of Stomach: A Novel 
Suggestion on Gastric Tumorigenesis. PLoS One 8 (2013).

 53. Troyanskaya, O. et al. Missing value estimation methods for DNA microarrays. Bioinformatics 17, 520–525 (2001).
 54. Teschendor�, A. E. et al. A beta-mixture quantile normalization method for correcting probe design bias in Illumina In�nium 450 

k DNA methylation data. Bioinformatics 29, 189–196 (2013).
 55. Morris, T. J. et al. ChAMP: 450k Chip Analysis Methylation Pipeline. Bioinformatics 30, 428–430 (2014).
 56. Jiao, Y., Widschwendter, M. & Teschendor�, A. E. A systems-level integrative framework for genome-wide DNA methylation and 

gene expression data identi�es di�erential gene expression modules under epigenetic control. Bioinformatics 30, 2360–2366 (2014).
 57. Mayakonda, A. & Koe�er, H. P. Ma�ools: E�cient analysis, visualization and summarization of MAF �les from large-scale cohort 

based cancer studies. bioRxiv 052662 (2016).
 58. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of 

the Royal Statistical Society 57, 289–300 (1995).
 59. Langfelder, P., Zhang, B. & Horvath, S. De�ning clusters from a hierarchical cluster tree: �e Dynamic Tree Cut package for R. 

Bioinformatics 24, 719–720 (2008).
 60.  Zhang, B. & Horvath, S. A General Framework for Weighted Gene Co-Expression Network Analysis. Statistical Applications in 

Genetics and Molecular Biology 4, Article17 (2005).
 61. Yu, G., Chen, Y.-S. & Guo, Y.-C. Design of integrated system for heterogeneous network query terminal. Journal of Computer 

Applications 29, 2191–2193 (2009).
 62. Chawla, K., Tripathi, S., �ommesen, L., Lægreid, A. & Kuiper, M. TFcheckpoint: A curated compendium of speci�c DNA-binding 

RNA polymerase II transcription factors. Bioinformatics 29, 2519–2520 (2013).
 63. Franceschini, A. et al. STRING v9.1: Protein-protein interaction networks, with increased coverage and integration. Nucleic Acids 

Research 41, 808–815 (2013).
 64. Ashburner, M. et al. Gene Ontology: Tool for �e Uni�cation of Biology. Nature Genetics 25, 25–29 (2000).
 65. Carbon, S. et al. Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Research 45, D331–D338 (2017).
 66. Ogata, H. et al. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research 27, 29–34 (1999).
 67. Liberzon, A. et al. �e Molecular Signatures Database Hallmark Gene Set Collection. Cell Systems 1, 417–425 (2015).
 68. Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterPro�ler: an R Package for Comparing Biological �emes Among Gene Clusters. 

OMICS: A Journal of Integrative Biology 16, 284–287 (2012).
 69. Gautier, L., Cope, L., Bolstad, B. M. & Irizarry, R. A. A�y - Analysis of A�ymetrix GeneChip data at the probe level. Bioinformatics 

20, 307–315 (2004).

Acknowledgements
We would like to thank the Brazilian National Laboratory of Scienti�c Computing (LNCC), Brazilian Ministry of 
Science and Technology, for providing computational infrastructure to analyze the data of the study. We would 
also like to thank Dr. Nicole Scherer for providing additional support to the use of the infrastructure from the 
Bioinformatics and Computational Biology Lab of INCA, Brazilian Ministry of Health.

Author Contributions
R.L.C., M.B. and M.A.S. conceived the study. R.L.C. and M.B. designed the experiments. R.L.C. analyzed the data 
and prepared �gures and tables. All authors wrote the manuscript, reviewed its dra�s, approved its �nal version 
and agreed with its submission.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-33498-5.

Competing Interests: �e authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional a�liations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. �e images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© �e Author(s) 2018

http://dx.doi.org/10.1038/s41598-018-33498-5
http://creativecommons.org/licenses/by/4.0/

	Distinct co-expression networks using multi-omic data reveal novel interventional targets in HPV-positive and negative head ...
	Results

	Gene expression profiles are influenced by methylation status in HPV+ and HPV− HNSCC. 
	Gene modules were significantly associated with HPV status. 
	The Blue, Yellow and Grey gene modules result in distinct networks according to HPV status. 
	Enrichment functional analysis highlights specific HPV+ and HPV− biological pathways. 
	External biological datasets provide significant congruence with predicted networks. 

	Discussion

	Methods

	Omics datasets and preprocessing. 
	Genes selected by differences among stages in expression and methylation data. 
	Somatic mutation analysis. 
	Co-expression modules via WGCNA. 
	Refining modules and interactions networks. 
	Gene Ontology and pathway-enrichment of the selected genes within modules. 
	Validation with independent microarray and methylation datasets. 

	Acknowledgements

	Figure 1 Flow diagram of the methodology applied to this study.
	Figure 2 Negative correlation between gene expression and promoter methylation levels of genes doubly selected (A–L).
	Figure 3 Co-expression genes modules and their relationship with studied traits.
	Figure 4 Co-expression networks among the modules with significantly different profiles between HPV+ and HPV− HNSCC cases.
	﻿Figure 5 Comparison of gene expression and promoter methylation data between the TCGA data analyzed and those of independent biological experiments.
	Table 1 Connection metrics of co-expression networks of different modules in HPV+ and HPV− cases.
	Table 2 Biological processes, pathways and molecular signatures significantly overrepresented in the Blue, Yellow and Grey modules according to HPV status (FDR-adjusted p-value ≤ 0.
	Table 3 Differentially-expressed genes of the GSE679126 external high-throughput experiment and congruence with our TCGA analysis.


