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Abstract 23 

 24 

Inherent correlations between visual and semantic features in real-world scenes make it difficult 25 

to determine how different scene properties contribute to neural representations. Here, we 26 

assessed the contributions of multiple properties to scene representation by partitioning the 27 

variance explained in human behavioral and brain measurements by three feature models 28 

whose inter-correlations were minimized a priori through stimulus preselection. Behavioral 29 

assessments of scene similarity reflected unique contributions from a functional feature model 30 

indicating potential actions in scenes as well as high-level visual features from a deep neural 31 

network (DNN). In contrast, similarity of cortical responses in scene-selective areas was 32 

uniquely explained by mid- and high-level DNN features only, while an object label model did 33 

not contribute uniquely to either domain. The striking dissociation between functional and DNN 34 

features in their contribution to behavioral and brain representations of scenes indicates that 35 

scene-selective cortex represents only a subset of behaviorally relevant scene information. 36 



 

 3 

Introduction 37 

Although researchers of visual perception often use simplified, highly controlled images in order 38 

to isolate the underlying neural processes, real-life visual perception requires the continuous 39 

processing of complex visual environments to support a variety of behavioral goals, including 40 

recognition, navigation and action planning (Malcolm et al. 2016). In the human brain, the 41 

perception of complex scenes is characterized by the activation of three scene-selective 42 

regions, the Parahippocampal Place Area (PPA; Aguirre et al. 1998; Epstein and Kanwisher 43 

1998), Occipital Place Area (OPA; Hasson et al. 2002; Dilks et al. 2013), and Medial Place Area 44 

(MPA; Silson et al. 2016), also referred to as the Retrosplenial Complex (Bar and Aminoff 45 

2003). A growing functional magnetic resonance imaging (fMRI) literature focuses on how these 46 

regions might facilitate scene understanding by investigating what information drives neural 47 

responses in these regions when human observers view scene stimuli. Currently, a large set of 48 

candidate low- and high-level characteristics of scenes have been identified, including but not 49 

limited to: a scene’s constituent objects and their co-occurrences; spatial layout; surface 50 

textures; contrast and spatial frequency, as well as scene semantics, contextual associations, 51 

and navigational affordances (see Epstein 2014; Malcolm et al. 2016; Groen et al. 2017, for 52 

recent reviews).  53 

This list of candidate characteristics highlights two major challenges in uncovering neural 54 

representations of complex real-world scenes (Malcolm et al. 2016). First, the presence of 55 

multiple candidate models calls for careful comparison of the contribution of each type of 56 

information to scene representation within a single study. Given the large number of possible 57 

models and the limited number that can realistically be tested in a single study, how do we 58 

select which models to focus on? Second, there are many inherent correlations between 59 

different scene properties. For example, forests are characterized by the presence of spatial 60 

boundaries and numerous vertical edges, whereas beaches are typically open with a prominent 61 

horizon, resulting in correlations between semantic category, layout and spatial frequency (Oliva 62 
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and Torralba 2001; Torralba and Oliva 2003). This makes it problematic to explain neural 63 

representations of scenes based on just one of these properties (Walther et al. 2009; Kravitz et 64 

al. 2011; Park et al. 2011; Rajimehr et al. 2011) without taking into account their covariation. 65 

Indeed, an explicit test of spatial frequency, subjective distance and semantic properties found 66 

that due to inherent feature correlations, all three properties explained the same variance in 67 

fMRI responses, with no discernible unique contribution of any single property (Lescroart et al. 68 

2015).  69 

In the current fMRI study, we addressed the first challenge by choosing models based 70 

on a prior study that investigated scene categorization behavior (Greene et al. 2016). This 71 

behavioral study assessed the relative contributions of different factors that have traditionally 72 

been considered important for scene understanding, including a scene’s component objects 73 

(e.g., Biederman 1987) and its global layout (e.g, Oliva and Torralba 2001), but also included 74 

novel visual feature models based on state-of-the-art computer classification algorithms (e.g., 75 

Sermanet et al. 2013) as well as models that reflect conceptual scene properties, such as 76 

superordinate categories, or the types of actions afforded by scene. Using an online same-77 

different categorization paradigm on hundreds of scene categories from the SUN database 78 

(Xiao et al. 2014), a large-scale scene category distance matrix was obtained (reflecting a total 79 

of 5 million trials), which was subsequently compared to predicted category distances for the 80 

various candidate models. The three models that contributed most to human scene 81 

categorization were 1) a model based on human-assigned labels of actions that can be carried 82 

out in the scene (‘functional model’), 2) a deep convolutional neural network (‘DNN model’) that 83 

was trained to map visual features natural images to a set of a 1000 image classes from the 84 

ImageNet object database (Deng et al. 2009), and 3) human-assigned object labels (‘object 85 

model’) for all the objects in the scene. Given the superior performance of these top three 86 

models in explaining scene categorization, we deemed these models most relevant to test in 87 

terms of their contribution to brain representations. Specifically, we determined the relative 88 
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contribution of these top three models to neural scene representation by comparing them 89 

against multi-voxel patterns in fMRI data collected while participants viewed a reduced set of 90 

scene stimuli from Greene et al., (2016).  91 

To address the second challenge, we implemented a stimulus selection procedure that 92 

reduced inherent correlations between the three models of interest a priori. Specifically, we 93 

compared predicted category distances for repeated samples of stimuli from the larger SUN 94 

database, and selected a final set of stimuli for fMRI for which the predictions were minimally 95 

correlated. To assess whether scene categorization behavior for this reduced stimulus set was 96 

consistent with the previous behavioral findings, participants additionally performed a behavioral 97 

multi-arrangement task outside the scanner. To isolate the unique contribution of each model to 98 

fMRI and behavioral scene similarity, we applied a variance partitioning analysis, accounting for 99 

any residual overlap in representational structure, between models.  100 

To anticipate, our data reveal a striking dissociation between the feature model that best 101 

describes behavioral scene similarity and the model that best explains similarity of fMRI 102 

responses in scene-selective cortex. While we confirmed that behavioral scene categorization 103 

was best explained a combination of unique contributions from the function model and DNN 104 

features, there was no unique representation of scene functions in scene-selective brain 105 

regions, which instead were best described by DNN features only. Follow-up analyses indicated 106 

that scene functions correlated with responses in regions outside of scene-selective cortex, 107 

some of which have been previously associated with action observation. However, a direct 108 

comparison between behavioral scene similarity and fMRI responses indicated that behavioral 109 

scene categorization correlated most strongly with scene-selective regions, with no discernible 110 

contribution of other regions. This dissociation between the features that contribute uniquely to 111 

behavioral versus fMRI scene similarity suggests that scene-selective cortex and DNN feature 112 

models represent only a subset of the information relevant for scene categorization. 113 

  114 
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Results 115 

 116 

Disentangling visual feature, object and functional information in scenes 117 

The goal of the study was to determine the contributions of object, DNN and functional feature 118 

models to neural representations in scene-selective cortex. To do this, we created a stimulus 119 

set by iteratively sampling from the large set of scenes previously characterized in terms of 120 

these three types of information by Greene et al. (2016). The DNN feature model was derived 121 

using a high-level layer of an AlexNet (Krizhevsky et al. 2012; Sermanet et al. 2013) that was 122 

pre-trained using ImageNet class labels (Deng et al. 2009), while the object and function feature 123 

models were derived based on object and action labels assigned by human observers through 124 

Amazon Mechanical Turk (see Methods for details). On each iteration, pairwise distances 125 

between a subset of pseudo-randomly sampled categories were determined for each of these 126 

feature models, resulting in three representational dissimilarity matrices (RDMs) reflecting either 127 

the deep network, object or functional model (Figure 1A) for that sample. Constraining the set 128 

to include equal numbers of indoor, urban, and natural landscape environments, our strategy 129 

was inspired by the odds algorithm of Bruss (2000), in that we rejected the first 10,000 130 

solutions, selecting the next solution that had lower inter-feature correlations than had been 131 

observed thus far. Thus, a final selection of 30 scene categories was selected in which the three 132 

RDMs were minimally correlated (Pearson’s r: 0.23-0.26; Figure 1B-C; see Methods).  133 

Twenty participants viewed the selected scenes while being scanned on a high-field 7T 134 

Siemens MRI scanner using a protocol sensitive to blood oxygenation level dependent (BOLD) 135 

contrasts (see Methods). Stimuli were presented for 500 ms each while participants performed 136 

an orthogonal task on the fixation cross. To assess how each feature model contributed to 137 

scene categorization behavior for our much reduced stimulus set (30 instead of the 311 138 

categories of Greene et al. 2016), participants performed a behavioral multi-arrangement task 139 

(Kriegeskorte and Mur 2012) on the same stimuli, administered on a separate day after 140 
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scanning. In this task, participants were presented with all stimuli in the set arranged around a 141 

large white circle on a computer screen, and were instructed to drag-and-drop these scenes 142 

within the white circle according to their similarity (see Methods and Figure 2A).  143 

 144 
Function model and DNN model both contribute uniquely to scene categorization behavior 145 

To determine what information contributed to behavioral similarity judgments in the multi-146 

arrangement task, we created RDMs based on each participant’s final arrangement by 147 

measuring the pairwise distances between all 30 categories in the set (Figure 2B), and then 148 

computed correlations of these RDMs with the three model RDMs that quantified the similarity 149 

of the scenes in terms of either functions, objects, or DNN features, respectively (see Figure 150 

1B).  151 

 Replicating Greene et al., (2016), this analysis indicated that all three feature models 152 

were significantly correlated with scene categorization behavior, with the functional feature 153 

model having the highest correlation on average (Figure 2C; objects: mean r = 0.16; DNN 154 

features: mean r = 0.26; functions: mean r = 0.29, Wilcoxon one-sided signed-rank test, all 155 

W(20) > 210, all z > 3.9, all p < 0.0001). The correlation with functions was higher than with 156 

objects (Wilcoxon two-sided signed-rank test, W(20) = 199, z = 3.5, p = 0.0004), but not than 157 

with DNN features (W(20) = 134, z = 1.1, p = 0.28), which also correlated higher than objects 158 

(W(20) = 194, z = 3.3, p = 0.0009). However, comparison at the level of individual participants 159 

indicated that functions outperformed both the DNN and object models for the majority of 160 

participants (highest correlation with functions: n = 12; with DNN features: n = 7; with objects: n 161 

= 1; Figure 2D).  162 

 While these correlations indicate that scene dissimilarity based on the functional feature 163 

model best matched the stimulus arrangements that participants made, they do not reveal to 164 

what extent functional, DNN or object features independently contribute to the behavior. To 165 

assess this, we performed two additional analyses. First, we computed partial correlations 166 
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between models and behavior whereby the correlation of each feature model with the behavior 167 

was determined while taking into account the contributions of the other two feature models. The 168 

results indicated that each model independently contributed to the behavioral data: significant 169 

partial correlations were obtained for the object (W(20) = 173, z = 2.5, p = 0.006), DNN (W(20) = 170 

209, z = 3.9, p < 0.0001) and functional feature models (W(20) = 209, z = 3.9, p < 0.0001), with 171 

the functional model having the largest partial correlation (Figure 2E). Direct comparisons 172 

yielded a similar pattern as the independent correlations, with weaker contributions of objects 173 

relative to both functional (W(20) = 201, z = 3.6, p < 0.0003) and DNN features (W(20) = 195, z 174 

= 3.4, p = 0.0008), whose partial correlations did not differ (W(20) = 135, z = 1.12, p = 0.26). 175 

Second, we conducted a variance partitioning analysis, in which the function, DNN and 176 

object feature models were entered either separately or in combination as predictors in a set of 177 

multiple regression analyses aimed at explaining the multi-arrangement categorization behavior. 178 

By comparing the explained variance based on regression on individual models versus models 179 

in combination, we computed portions of unique variance contributed by each model as well as 180 

portions of shared variance across models (see Methods for details). A full model in which all 181 

three models were included explained 50.3% of the variance in the average multi-arrangement 182 

behavior (Figure 2F). Highlighting the importance of functional features for scene 183 

categorization, the largest portion of this variance could be uniquely attributed to the functional 184 

feature model (unique r2 = 37.6%), more than the unique variance explained by the DNN 185 

features (unique r2 = 29.0%) or the object features (unique r2 = 1.4%). This result is consistent 186 

with the findings of Greene et al., (2016), who found unique contributions of 45.2% by the 187 

function model, 7.1% by the DNN model
*
, and 0.3% by objects, respectively to scene 188 

                                                       
*
 When performing the variation partition on the behavioral categorization measured in Greene et al., (2016) but 

limited to the 30 scene categories that were used here, we obtained a highly similar distribution of unique 

variances as for the current behavioral data, namely 42.8% for the function model, 28.0% for the DNN model, and 

0.003% for the objects, respectively. This suggests that the higher contribution of the DNN to the behavior relative 
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categorization measured using an online same-different categorization ask. One interesting 189 

difference with this previous study is that the degree of shared variance between the three 190 

models in our study is notably smaller (8.4% versus 27.4%); this is presumably a result of our 191 

stimulus selection procedure that was explicitly aimed at minimizing correlations between the 192 

models. Importantly, a reproducibility test indicated that the scene similarity reflected in the 193 

multi-arrangement behavior was highly generalizable, resulting in an RDM correlation of r = 0.73 194 

(95% confidence interval =  [0.73-0.88], p = 0.0001), as assessed by comparison of two different 195 

sets of scene exemplars that were evenly distributed across participants (see Methods).  196 

 In sum, these behavioral results confirm a unique, independent contribution of the 197 

functional feature model to scene categorization behavior, here assessed using a multi-198 

arrangement sorting task (as opposed to a same/different categorization task). We also found a 199 

unique but smaller contribution of deep network features, while the unique contribution of object 200 

features was negligible. Next, we examined to what extent this information is represented in 201 

brain responses to the same set of real-world scenes as measured with fMRI. 202 

  203 

DNN feature model uniquely predicts responses in scene-selective cortex 204 

To determine the information that is represented in scene-selective brain regions PPA, OPA and 205 

MPA, we created RDMs based on the pairwise comparisons of multi-voxel activity patterns for 206 

each category in these cortical regions (Figure 3A), which we subsequently correlated with the 207 

RDMs based on the object, function and DNN feature models. Similar to the behavioral findings, 208 

all three feature models correlated with the fMRI response patterns to scenes in PPA (objects: 209 

W(20) = 181, z = 2.8, p = 0.002; DNN: W(20) = 206, z = 3.8, p < 0.0001; functions: W(20) = 154, 210 

z = 1.8, p = 0.035, see Figure 3B). However, fMRI dissimilarity in PPA correlated more strongly 211 

                                                                                                                                                                               
to what is reported in Greene et al., (2016) is a result of the reduced stimulus set used here, rather than a 

qualitative difference in experimental results between the previous study and the current study.  
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with the DNN model than the object (W(20) = 195, z = 2.5, p = 0.012) and function (W(20) = 212 

198, z = 3.5, p < 0.0005) feature models, which did not differ from one another (W(20) = 145 , z 213 

= 1.5, p = 0.14). In OPA, only the DNN model correlated with the fMRI response patterns (W(20) 214 

= 165, z = 2,2, p = 0.013), and this correlation was again stronger than for the object model 215 

(W(20) = 172, z = 2.5, p = 0.012), but not the function model (W(20) = 134, z = 1.1, p = 0.28). In 216 

MPA, none of the model correlations were significant (all W(14) < 76, all z < 1.4, all p > 0.07).  217 

When the three models were considered in combination, only the DNN model yielded a 218 

significant partial correlation (PPA: W(20) = 203, z = 3.6, p < 0.0001, OPA: W(20) = 171, z = 219 

2.5, p = 0.007, Figure 3C), further showing that DNN features best capture responses in scene-220 

selective cortex. No significant partial correlation was found for the object model (PPA: W(20) = 221 

148, z = 1.6, p = 0.056; OPA: W(20) = 74, z = 1.2, p = 0.88) or the function model (PPA: W(20) 222 

= 98, z = 0.3, p = 0.61, OPA: W(20) = 127, z = 0.8, p = 0.21), or for any model in MPA (all W(14) 223 

< 63, all z < 0.66, all p > 0.50). Variance partitioning of the fMRI response patterns (Figure 3D) 224 

indicated that the DNN model also contributed the largest portion of unique variance: in PPA 225 

and OPA, DNN features contributed 71.1% and 68.9%, respectively, of the variance explained 226 

by all models combined, more than the unique variance explained by the object (PPA: 5.3%; 227 

OPA, 2.3%) and function (PPA: 0.3%; OPA: 2.6%) models. In MPA, a larger share of unique 228 

variance was found for the function model (41.5%) than for the DNN (38.7%) and object model 229 

(3.2%); however, overall explained variance in MPA was much lower than in the other ROIs. A 230 

reproducibility test indicated that RDMs generalized across participants and stimulus sets for 231 

PPA (r = 0.26 [0.03-0.54], p = 0.009) and OPA (r = 0.23 [0.04-0.51], p = 0.0148), but not in MPA 232 

(r = 0.06 [-0.16-0.26], p = 0.29), suggesting that the multi-voxel patterns measured in MPA were 233 

less stable (see also the low noise ceiling in MPA in Figure 3B/C).  234 

Taken together, the fMRI results indicate that of the three models considered, deep 235 

network features (derived using a pre-trained convolutional network) best explained the coding 236 

of real-world scene information in scene-selective regions PPA and OPA, more so than object 237 
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or functional information derived from semantic labels that were explicitly generated by human 238 

observers. For MPA, results were inconclusive, as none of the models adequately captured the 239 

response patterns measured in this region, which also did not contain response patterns that 240 

generalized across stimulus sets and participants. This result reveals a discrepancy between 241 

measurements of brain responses versus behavioral scene similarity, which indicated a large 242 

contribution of functions to scene representation independent of the DNN features. To better 243 

understand if and how scene-selective cortex represents behaviorally relevant information, we 244 

next compared measurements of behavioral scene similarity to the fMRI responses directly. 245 

 246 

Scene selective cortex correlation with behavior reflects DNN feature model only 247 

To assess the extent to which fMRI response patterns in scene-selective cortex predicted 248 

behavioral scene categorization, we correlated each of the scene-selective ROIs with three 249 

measures of behavioral categorization: 1) the large-scale online categorization behavior 250 

measured in Greene et al., (2016), 2) the average multi-arrangement behavior, and 3) each 251 

participant’s own multi-arrangement behavior. This analysis revealed a significant correlation 252 

with behavior in all scene-selective ROIs (Figure 4A). In PPA, all three measures of behavioral 253 

categorization correlated with fMRI patterns of response (signed-rank test, online categorization 254 

behavior: W(20) = 168, z = 2.3,  p = 0.010; average multi-arrangement behavior: W(20) = 195, z 255 

= 3.3, p = 0.0004; own arrangement behavior: W(20) = 159, z = 2.0, p = 0.023).  In OPA, 256 

significant correlations were found for both of the average behavioral measures (online 257 

categorization behavior: W(20) = 181, z = 2.8, p = 0.002; average multi-arrangement behavior: 258 

W(20) = 158, z = 1.96, p = 0.025), but not for the participant’s own multi-arrangement behavior 259 

(W(20) = 106, z = 0.02, p = 0.49), possible due to higher noise in the individual data. 260 

Interestingly, however, MPA showed the opposite pattern: participant’s own behavior was 261 

significantly related to the observed patterns of response (W(14) = 89, z = 2.26, p = 0.011), but 262 

the average behavioral measures were not (online behavior: W(14) = 47, z = 0.4, p = 0.65; 263 



 

 12 

average behavior: W(14) = 74, z = 1.3, p = 0.09). Combined with the reproducibility test results 264 

(see above), this suggests that the representations in MPA are more idiosyncratic to individual 265 

participants or stimulus sets. 266 

While these results support an important role for scene-selective regions in representing 267 

information that informs scene categorization behavior, they also raise an intriguing question: 268 

what aspect of categorization behavior is reflected in these neural response patterns? To 269 

address this, we performed another variance partitioning analysis, now including the average 270 

multi-arrangement behavior as a predictor of the fMRI response patterns, in combination with 271 

the two models that correlated most strongly with this behavior, i.e. the DNN and function 272 

feature models. The purpose of this analysis was to determine how much variance in neural 273 

responses each of the models shared with the behavior, and whether there was any behavioral 274 

variance in scene cortex that was not explained by our models. If the behaviorally relevant 275 

information in the fMRI responses is primarily of a functional nature, we would expect portions of 276 

the variance explained by behavior to be shared with the function features. Alternatively, if this 277 

variance reflects mainly DNN features (which also contributed uniquely to the behavioral 278 

categorization; Figure 2F), we would expect it to be shared primarily with the DNN model. 279 

Consistent with this second hypothesis, the variance partitioning results indicated that in 280 

OPA and PPA, most of the behaviorally relevant information in the fMRI response patterns was 281 

shared with the DNN model (Figure 4B). In PPA, the behavioral RDMs on average shared 282 

25.7% variance with the DNN model, while a negligible portion was shared with the function 283 

model (less than 1%); indeed, nearly all variance shared between the function model and the 284 

behavior was also shared with the DNN model (10.1%). In OPA, a similar trend was observed, 285 

with behavior sharing 38.9% of the fMRI variance with the DNN model. In OPA, the DNN model 286 

also eclipsed nearly all variance that behavior shared with the function model (9.7% shared by 287 

behavior, functions and DNN features), leaving only 1.6% of variance shared exclusively by 288 

functions and behavior. In contrast, in MPA, behavioral variance was shared with either the 289 



 

 13 

DNN model or the function model to a similar degree (14.7% and 17.7%, respectively), with an 290 

additional 27.1% shared with both; note, however, again MPA’s low explained variance overall.  291 

In sum, while fMRI response patterns in PPA and OPA reflect information that 292 

contributes to scene similarity judgments, this information aligns best with the DNN feature 293 

model; it does not reflect the unique contribution of functions to scene categorization behavior. 294 

While in MPA, the behaviorally relevant representations may partly reflect other information, the 295 

overall explained variance in MPA was again quite low, limiting interpretation of this result. 296 

 297 

Relative model contributions to fMRI responses do not change with task manipulation 298 

An important difference between the behavioral and the fMRI experiment was that participants 299 

had access to the entire stimulus set when performing the behavioral multi-arrangement task, 300 

which they could perform at their own pace, while they performed an task unrelated to scene 301 

categorization in the fMRI scanner. Therefore, we reasoned that a possible explanation of the 302 

discrepancy between our fMRI and behavioral findings could be a limited engagement of 303 

participants with the briefly presented scenes while in the scanner, resulting in only superficial 304 

encoding of the images in terms of visual features that are well captured by the DNN model, 305 

rather than functional or object features that might be more conceptual in nature.  306 

To test this possible explanation, we ran Experiment 2 and collected another set of fMRI 307 

data (n = 8; four of these participants also participated in Experiment 1, allowing for comparison 308 

of tasks within individuals) using the exact same visual stimulation, but with a different task 309 

instruction. Specifically, instead of performing an unrelated fixation task, we instructed 310 

participants to covertly name the presented scene. Covert naming has been shown to facilitate 311 

stimulus processing within category-selective regions and to enhance semantic processing 312 

(Turennout et al. 2000; van Turennout et al. 2003). Before entering the scanner, participants 313 

were familiarized with all the individual scenes in the set, whereby they were explicitly asked to 314 

generate a name for each individual scene (see Methods). Together, these manipulations were 315 
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intended to ensure that participants attended to the scenes and processed their content to a 316 

fuller extent than in Experiment 1.  317 

 Despite this task manipulation, Experiment 2 yielded similar results as Experiment 1 318 

(Figure 5A). Reflecting participant’s enhanced engagement with the scenes when performing 319 

the covert naming task, overall model correlations were considerably higher than in Experiment 320 

1, and now yielded significant correlations with the function model in both OPA and MPA 321 

(Figure 5B). The direct test of reproducibility also yielded significant, and somewhat increased, 322 

correlations for PPA (r = 0.35 [0.26-0.55], p = 0.0001) and OPA (r = 0.27 [0.18-0.60], p = 0.039), 323 

but not in MPA (r = 0.10 [-0.07-0.28], p = 0.17).  324 

Importantly, in all three ROIs, the DNN model correlations were again significantly 325 

stronger than the function and object model correlations, which again contributed very little 326 

unique variance (Figure 5C). Direct comparison of RDM correlations across the two 327 

Experiments indicated that in PPA and OPA, the naming task resulted in increased correlations 328 

for the DNN model only (two-sided Wilcoxon ranksum test, PPA: p = 0.0048; OPA p = 0.0056), 329 

without any difference in correlations for the other models (all p > 0.52). In MPA, none of the 330 

model correlations differed across tasks (all p > 0.21). Increased correlation with the DNN 331 

model was present within the participants that participated in both experiments (n = 4; see 332 

Methods): in PPA and OPA, 4/4 and 3/4 participants showed an increased correlation, 333 

respectively, whereas no consistent patterns was observed for the other models and MPA 334 

(Figure 5D). 335 

In sum, the results of Experiment 2 indicate that the strong contribution of DNN features 336 

to fMRI responses in scene-selective cortex is not likely the result of limited engagement of 337 

participants with the scenes when viewed in the scanner. If anything, enhanced attention to the 338 

scenes under an explicit naming instruction resulted in even stronger representation of these 339 

features, without a clear increase in contributions of the functional or object feature models. 340 

 341 
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Contributions of the functional feature model outside of scene-selective cortex 342 

All our results so far indicate a dissociation between brain and behavioral assessments of the 343 

representational similarity of scenes. In the behavioral domain, visual features in a deep 344 

convolutional network uniquely contributed to behavioral scene categorization, but the function 345 

model also exhibited a large unique contribution to scene categorization, regardless of whether 346 

this behavior was assessed using a same-different categorization or a multi-arrangement task. 347 

In contrast, fMRI responses in scene-selective cortex were primarily driven by DNN features, 348 

without convincing evidence of an independent contribution of functions. Given this lack of 349 

correlation with the function model in the scene-selective cortex, we explored whether this 350 

information could be reflected elsewhere in the brain by performing whole-brain searchlight 351 

analyses. Specifically, we extracted the multi-voxel patterns from spherical ROIs throughout 352 

each participant’s entire volume and performed partial correlation analyses including all three 353 

models (visual features, objects, functions) to extract corresponding correlation maps for each 354 

model. The resulting whole-brain searchlight maps were then fed into a to surface-based group 355 

analysis (see Methods) to identify clusters of positive correlations indicating significant model 356 

contributions to brain representation throughout all measured regions of cortex. 357 

 The results of these analyses were entirely consistent with the ROI analyses: for the 358 

DNN feature model, significant searchlight clusters were found in PPA and OPA (Figure 6A), 359 

but not MPA, whereas no significant clusters were found for the function model in any of the 360 

scene-selective ROIs. (The object model yielded no positive clusters). However, two clusters 361 

were identified for the function model outside of scene-selective cortex (Figure 6B): a bilateral 362 

cluster on the ventral surface, lateral to PPA, overlapping with the fusiform and temporal lateral 363 

gyri, as well as a unilateral cluster on the left lateral surface, located adjacent to, but more 364 

ventral than, OPA, overlapping the posterior middle and inferior temporal gyrus.  365 

The observed dissociation between behavioral categorization and scene-selective cortex 366 

might mean that the functional features are represented outside of scene-selective cortex. If so, 367 
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we would expect the searchlight clusters that correlated with the function model to show a 368 

correspondence with the behavioral scene categorization. To test this, we also correlated the 369 

multi-arrangement behavior with multi-voxel pattern responses throughout the brain. Consistent 370 

with the results reported in Figure 4, we found a significant searchlight correlation between the 371 

behavioral measurements and response patterns in PPA and OPA (Figure 7A). Surprisingly, 372 

however, behavioral categorization did not correlate with any regions outside these ROIs, 373 

including the clusters that correlated with the function model.  374 

In order to better understand how representational dissimilarity in those clusters relates 375 

to the functional feature model, we extracted the average RDM from each searchlight cluster 376 

and inspected which scene categories were grouped together in these ROIs. Visual inspection 377 

of the RDM and MDS plots of the RDMs (Figure 7B) indicates that in both the bilateral ventral 378 

and left-lateralized searchlight clusters, there is some grouping by category according to the 379 

function feature model (indicated by grouping by color in the MDS plot). However, it is also clear 380 

that the representational space in these ROIs does not exactly map onto the functional feature 381 

model in Figure 1C. Specifically, a few categories clearly ‘stand out’ with respect to the other 382 

categories, as indicated by a large average distance relative to the remainder of the stimulus 383 

set. Most of the scene categories that were strongly separated all contained scene exemplars 384 

depicting humans that performed actions (see Figure 7C), although it is worth noting that the 385 

fourth most distinct category, ‘volcano’, did not contain humans in its scene exemplars but may 386 

be characterized by implied motion. These post-hoc observations suggest that (parts of) the 387 

searchlight correlation with the functional feature model may be due to the presence of human-, 388 

body- and/or motion selective voxels in these searchlight clusters.  389 

In sum, the searchlight analyses indicate that the maximum contributions of the DNN 390 

model were located in scene-selective cortex. While some aspects of the functional feature 391 

model may be reflected in regions outside of scene-selective cortex, these regions did not 392 
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appear to contribute to the scene categorization behavior, and may reflect selectivity for only a 393 

subset of scene categories that clustered together in the functional model. 394 

 395 

Scene-selective cortex correlates with features in both mid- and high-level DNN layers 396 

DNNs consist of multiple layers that capture a series of transformations from pixels in the input 397 

image to a class label, implementing a non-linear mapping of local convolutional filters 398 

responses (layers 1-5) onto a set of fully-connected layers consisting of classification nodes 399 

(layers 6-8) culminating in a vector of output ‘activations’ for labels assigned in the DNN training 400 

phase. Visualization and quantification methods of the learned feature selectivity (e.g., Zhou et 401 

al. 2014; Güçlü and van Gerven 2015; Bau et al. 2017; Wen et al. 2017) suggest that while 402 

earlier layers contain local filters that resemble V1-like receptive fields, higher layers develop 403 

selectivity for entire objects or object parts, perhaps resembling category-selective regions in 404 

visual cortex. Our deep network feature model was derived using a single high-level layer, fully-405 

connected layer 7 (“fc7”). Moreover, this model was derived using the response patterns of a 406 

DNN pretrained on ImageNet (Deng et al. 2009), an image database largely consisting of object 407 

labels. Given the strong performance of the DNN feature model in explaining the fMRI 408 

responses in scene-selective cortex, it is important to determine whether this result was 409 

exclusive to higher DNN layers, and whether the task used for DNN training influences how well 410 

the features represented in individual layers explain responses in scene-selective cortex. To do 411 

so, we conducted a series of exploratory analyses to assess the contribution of other DNN 412 

layers to fMRI responses, whereby we compared DNNs that were trained using either object or 413 

scene labels.  414 

To allow for a clean test of the influence of DNN training on features representations in 415 

each layer, we derived two new sets of RDMs by passing our stimuli through 1) a novel 1000-416 

object label ImageNet-trained network implemented in Caffe (Jia et al. 2014) (‘ReferenceNet’) 417 

and 2) a 250-scene label Places-trained network (“Places”) (Zhou et al. 2014), (see Methods). 418 
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Direct comparisons of the layer-by-layer RDMs of these two DNNs (Figure 8A) indicated that 419 

while both models extracted similar features (evidenced by strong between-model correlations 420 

overall; all layers r > 0.6). However, the similarity between models decreased with higher layers, 421 

suggesting that features in higher DNN layers become tailored to the task they are trained on. 422 

Moreover, this suggests that higher layers of the scene-trained DNN could potentially capture 423 

different  features than the object-trained DNN. To investigate this, we next computed 424 

correlations between the features in each DNN layer and the three original feature models 425 

(Figure 8B). 426 

As expected, the original fc7 DNN model (which was derived using DNN responses to 427 

the large set of images in the Greene et al., (2016) database, and thus not corresponding 428 

directly to the reduced set of stimuli used in the current study) correlated most strongly with the 429 

new DNN layer representations, showing steadily increasing correlations with higher layers of 430 

both object-trained and the scene-trained DNN. By design, the object and functional feature 431 

models should correlate minimally with layer 7 of the object-trained ReferenceNet DNN. 432 

However, the function model correlated somewhat better with higher layers of the scene-trained 433 

DNN, highlighting a potential overlap of the function model with the scene-trained DNN features, 434 

again suggesting that the higher layers of the scene-trained DNN potentially capture additional 435 

information that is not represented in the object-trained DNN. Therefore, we next tested whether 436 

the scene-trained DNN correlated more strongly with fMRI responses in scene-selective cortex.  437 

 Layer-by-layer correlations of the object-trained (Figure 8C) and the scene-trained DNN 438 

(Figure 8D) with fMRI responses in PPA, OPA and MPA however did not indicate a strong 439 

evidence of a difference in DNN performance as a result of training. In PPA, both the object-440 

trained and place-trained DNN showed increased correlation with higher DNN layers, consistent 441 

with previous work showing a hierarchical mapping of DNN layers to low vs. high-level visual 442 

cortex (Güçlü and van Gerven 2015; Cichy et al. 2016; Wen et al. 2017). Note however that the 443 

slope of this increase is quite modest; while higher layers overall correlate better than layers 1 444 
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and 2, in both DNNs the correlation with layer 3 is not significantly different from the correlation 445 

of layers 7 and 8. In OPA, we observed no evidence for increased performance with higher 446 

layers for the object-trained DNN; none of the pairwise tests survived multiple comparisons 447 

correction. In fact, for the scene-trained DNN, the OPA correlation significantly decreased rather 448 

than increased with higher layers, showing a peak correlation with layer 3. No significant 449 

correlations were found for any model layer with MPA. These observations were confirmed by 450 

searchlight analyses in which whole-brain correlation maps were derived for each layer of the 451 

object- and scene-trained DNN (see Figure 8-video 1 and Figure 8-video 2 for layer-by-layer 452 

searchlight results in a movie format for the ReferenceNet and the Places DNN, respectively). 453 

 These results indicate that despite a divergence in representation in high-level layers for 454 

differently-trained DNNs, their performance in predicting brain responses in scene-selective 455 

cortex is quite similar. In PPA, higher layers perform significantly better than (very) low-level 456 

layers, but mid-level layers already provide a relatively good correspondence with PPA activity. 457 

This result was even more pronounced for OPA where mid-level layers yielded the maximal 458 

correlations for both DNNs regardless of training. Therefore, these results suggest that fMRI 459 

responses in scene-selective ROIs may reflect a contribution of visual features of intermediate 460 

complexity rather than, or in addition to, the fc7 layer that was selected a priori. 461 

 462 

Discussion 463 

 464 

We assessed the contribution of three feature models previously implicated to be important for 465 

scene understanding to neural representations of scenes in the human brain. First, we 466 

confirmed earlier reports that functions strongly contribute to scene categorization by replicating 467 

the results of Greene et al., (2016), now using a multi-arrangement task. Second, we found that 468 

brain responses to visual scenes in scene-selective regions were best explained by a DNN 469 

feature model, with no discernible unique contribution of the functional features. Although parts 470 
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of variance in the multi-arrangement behavior were captured by the DNN feature model - and 471 

this part of the behavior was reflected in the scene-selective cortex - there are clearly aspects of 472 

scene categorization behavior that were not reflected in the activity of these regions. 473 

Collectively, these results thus reveal a striking dissociation between the information that is 474 

most important for behavioral scene categorization and the information that best describes 475 

representational dissimilarity of fMRI responses in regions of cortex that are thought to support 476 

scene recognition. Below, we discuss two potential explanations for this dissociation. 477 

 First, one possibility is that functions are represented outside of scene-selective cortex. 478 

Our searchlight analysis indeed revealed clusters of correlations with the function model in 479 

bilateral ventral and left lateral occipito-temporal cortex. Visual inspection of these maps 480 

suggests that these clusters potentially overlap with known face- and body-selective regions 481 

such as the Fusiform Face (FFA; Kanwisher et al. 1997) and Fusiform Body (FBA; Peelen and 482 

Downing 2007) areas on ventral surface, as well as the Extrastriate Body Area (EBA; Downing 483 

2001) on the lateral surface. This lateral cluster could possibly include motion-selective (Zeki et 484 

al. 1991; Tootell et al. 1995) and tool-selective (Martin et al. 1996) regions as well. Our results 485 

further indicated that these searchlight clusters contained distinct representations of scenes that 486 

contained acting bodies, and may therefore partially overlap with regions important for action 487 

observation (e.g., Hafri et al. 2017). Lateral occipital-temporal cortex in particular is thought to 488 

support action observation by containing ‘representations which capture perceptual, semantic 489 

and motor knowledge of how actions change the state of the world’ (Lingnau & Downing, 2015). 490 

While our searchlight results suggest a possible contribution of these non-scene-selective 491 

regions to scene understanding, more research is needed to address how the functional feature 492 

model as defined here relates to the action observation network, and to what extent the 493 

correlations with functional features can be explained by bottom-up coding of bodies and motion 494 

versus more abstract action-associated features. Importantly, the lack of a correlation between 495 
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these regions and the multi-arrangement behavior suggests that these regions do not fully 496 

capture the representational space that is reflected in the function feature model.  497 

The second possible explanation for the dissociation between brain and behavioral data 498 

is that the task that participants performed during fMRI did not engage the same mental 499 

processes that participants employed during the two behavioral tasks we investigated. 500 

Specifically, both the multi-arrangement used here and the online same-different behavioral 501 

paradigm used in (Greene et al. 2016) required participants to directly compare simultaneously 502 

presented scenes, while we employed a ‘standard’ fixation task in the scanner to prevent 503 

biasing our participants towards one of our feature models. Therefore, one possibility is that 504 

functional features only become relevant for scene categorization when participants are 505 

engaged in a contrastive task, i.e. explicitly comparing two scene exemplars side-by-side (as in 506 

Greene et al., 2016) or within the context of the entire stimulus set being present on the screen 507 

(as in our multi-arrangement paradigm). Thus, the fMRI results might change with an explicit 508 

contrastive task in which multiple stimuli are presented at the same time, or perhaps with a task 509 

that explicitly requires participants to consider functional aspects of the scenes. Although we 510 

investigated one possible influence of task in the scanner by using a covert naming task in 511 

Experiment 2, resulting in deeper and more conceptual processing, it did not result in a clear 512 

increase in the correlation with the function model in scene-selective cortex. The evidence for 513 

task effects on fMRI responses in category-selective cortex is somewhat mixed: Task 514 

differences have been reported to affect multi-voxel pattern activity in both object-selective 515 

(Harel et al. 2014) and scene-selective cortex (Lowe et al. 2016), but other studies suggest that 516 

task has a minimal influence on representation in ventral stream regions, instead being reflected 517 

in fronto-parietal networks (Erez and Duncan 2015; Bracci et al. 2017; Bugatus et al. 2017). 518 

Overall, our findings suggest that not all the information that contributes to scene categorization 519 

is reflected in scene-selective cortex activity ‘by default’, and that explicit task requirements may 520 
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be necessary in order for this information to emerge in the neural activation patterns in these 521 

regions of cortex. 522 

Importantly, the two explanations outlined above are not mutually exclusive. For 523 

example, it is possible that a task instruction to explicitly label the scenes with potential actions 524 

will activate components of both the action observation network (outside scene-selective cortex) 525 

as well as task-dependent processes within scene-selective cortex. Furthermore, given reports 526 

of potentially separate scene-selective networks for memory versus perception (Baldassano et 527 

al. 2016; Silson et al. 2016), it is likely that differences in mnemonic demands between tasks 528 

may have an important influence on scene-selective cortex activity. Indeed, memory-based 529 

navigation or place recognition tasks (Epstein et al. 2007; Marchette et al. 2014) have been 530 

shown to more strongly engage the medial parietal cortex and MPA. In contrast, our observed 531 

correlation with DNN features seems to support a primary role for PPA and OPA in bottom-up  532 

visual scene analysis, and fits well with the growing literature showing correspondences 533 

between extrastriate cortex activity and DNN features (Cadieu et al. 2014; Khaligh-Razavi and 534 

Kriegeskorte 2014; Güçlü and van Gerven 2015; Cichy et al. 2016; Horikawa and Kamitani 535 

2017; Wen et al. 2017). Our analyses further showed that DNN correlations with scene-selective 536 

cortex were not exclusive to higher DNN layers, but already emerged at earlier layers, 537 

suggesting that the neural representation in PPA/OPA may be driven more by visual features 538 

than semantic information (Watson et al. 2017).  539 

One limitation of our study is that we did not exhaustively test all possible DNN models. 540 

While our design - in which we explicitly aimed to minimize inherent correlations between the 541 

feature models beforehand - required us to ‘fix’ the DNN features to be evaluated beforehand, 542 

many more variants of DNN models have been developed, consisting of different architectures 543 

such as VGG, GoogleNet and ResNet (Garcia-Garcia et al. 2017), as well as different training 544 

regimes. Here, we explored the effect of DNN training by comparing the feature representations 545 

between an object- versus a place-trained DNN, but we did not see strong differences in terms 546 
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of their ability to explain fMRI responses in either scene-selective cortex or other parts of the 547 

brain (see whole-brain searchlights for the two DNNs in Figure 8-video 1 and Figure 8-video 2). 548 

However, this does not exclude the possibility that other DNNs will map differently onto brain 549 

responses, and possibly also explain more of the behavioral measures of human scene 550 

categorization. For example, aDNN trained on the Atomic Visual Actions (AVA) dataset (Gu et 551 

al. 2017), or the DNNs currently being developed in context of event understanding the 552 

Moments in Time Dataset (Monfort et al. 2018) could potentially capture more of the variance 553 

explained by the functional feature model in the scene categorization behavior. To facilitate the 554 

comparison of our measurements with alternative and future models, we have made the fMRI 555 

and the behavioral data accompanying this paper publicly available in Figure 1-source data 1.  556 

These considerations highlight an important avenue for future research in which multiple 557 

feature models (including DNNs that vary by training and architecture) and brain and behavioral 558 

measurements are carefully compared. However, our current results suggest that when 559 

participants perform scene categorization, either explicitly (Greene et al. 2016) or within a multi-560 

arrangement paradigm (Kriegeskorte and Mur 2012), they incorporate information that is not 561 

reflected in either the DNNs or in PPA and OPA. Our results thus highlight a significant gap 562 

between the real-world information that is captured both in scene–selective cortex and a set of 563 

commonly used off-the-shelf DNNs relative to the information that drives human understanding 564 

of visual environments. Visual environments are highly multidimensional, and scene 565 

understanding encompasses many behavioral goals, including not just visual object or scene 566 

recognition, but also navigation and action planning (Malcolm et al. 2016). While visual/DNN 567 

features likely feed into multiple of these goals - for example, by signaling navigable paths in the 568 

environment (Bonner and Epstein 2017), or landmark suitability (Troiani et al. 2014) - it is 569 

probably not appropriate to think about the neural representations relevant to all these different 570 

behavioral goals as being contained within one single brain region or a single neural network 571 

model. Ultimately, unraveling the neural coding of scene information will require careful 572 
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manipulations of both multiple tasks and multiple scene feature models, as well as a potential 573 

expansion of our focus on a broader set of regions than those characterized by the presence of 574 

scene-selectivity.  575 

 576 

Summary and conclusion 577 

We successfully disentangled the type of information represented in scene-selective cortex: out 578 

of three behaviorally relevant feature models, only one provided a robust correlation with activity 579 

in scene-selective cortex. This model was derived from deep neural network features in a widely 580 

used computer vision algorithm of object and scene recognition. Intriguingly, however, the DNN 581 

model was not sufficient to explain scene categorization behavior, which was characterized by 582 

an additional strong contribution of functional information. This highlights both a limitation of 583 

current DNNs in explaining scene understanding, as well as a potentially more distributed 584 

representation of scene information in the human brain beyond scene-selective cortex. 585 

 586 

Methods 587 

 588 

Participants. Twenty healthy participants (13 female, mean age 25.4 yrs, SD = 4.6) completed 589 

the first fMRI experiment and subsequent behavioral experiment. Four of these participants (3 590 

female, mean age 24.3 yrs, SD = 4.6) additionally participated in the second fMRI experiment, 591 

as well as four new participants (2 female, mean age 25 yrs, SD = 1.6), yielding a total of eight 592 

participants. Criteria for inclusion were that participants had to complete the entire experimental 593 

protocol (i.e., the fMRI scan and the behavioral experiment). Beyond the participants reported, 594 

three additional subjects were scanned but behavioral data was either not obtained or lost. Four 595 

additional participants did not complete the scan session due to discomfort or technical 596 

difficulties. All participants had normal or corrected-to-normal vision and gave written informed 597 

consent as part of the study protocol (93 M-0170, NCT00001360) prior to participation in the 598 
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study. The study was approved by the Institutional Review Board of the National Institutes of 599 

Health and was conducted according to the Declaration of Helsinki. 600 

 601 

MRI acquisition. Participants were scanned on a research-dedicated Siemens 7T Magnetom 602 

scanner in the Clinical Research Center on the National Institutes of Health Campus (Bethesda, 603 

MD). Partial T2*-weighted functional image volumes were acquired using a gradient echo planar 604 

imaging (EPI) sequence with a 32-channel head coil (47 slices; 1.6 x 1.6 x 1.6 mm; 10% 605 

interslice gap; TR, 2s; TE, 27 ms; matrix size, 126 x 126; FOV, 192 mm). Oblique slices were 606 

oriented approximately parallel to the base of the temporal lobe and were positioned such that 607 

they covered the occipital, temporal, parietal cortices, and as much as possible of frontal cortex. 608 

After the functional imaging runs, standard MPRAGE (magnetization-prepared rapid-acquisition 609 

gradient echo) and corresponding GE-PD (gradient echo–proton density) images were 610 

acquired, and the MPRAGE images were then normalized by the GE-PD images for use as a 611 

high-resolution anatomical image for the following fMRI data analysis (Van de Moortele, 2009). 612 

 613 

Stimuli & models. Experimental stimuli consisted of color photographs of real-world scenes (256 614 

x 256 pixels) from 30 difference scene categories that were selected from a larger database 615 

previously described in (Greene et al. 2016). These scene categories were picked using an 616 

iterative sampling procedure that minimized the correlation between the categories across three 617 

different models of scene information: functions, object labels and DNN features, with the 618 

additional constraint that the final stimulus set should be have equal portions of categories from 619 

indoor, outdoor man-made and outdoor natural scenes, which is the largest superordinate 620 

distinction present in the largest scene-database that is publicly available, the SUN database 621 

(Xiao et al. 2014). As obtaining a guaranteed minimum was impractical, we adopted a variant of 622 

the odds algorithm (Bruss 2000) as our stopping rule. Specifically, we created 10,000 sets of 30 623 

categories and measured the correlations between functional, object, and DNN RDMs (distance 624 



 

 26 

metric: Spearman’s rho), noting the minimal value from the set. We persisted in this procedure 625 

until we observed a set with lower inter-feature correlations than was observed in the initial 626 

10,000. From each scene category, 8 exemplars were randomly selected and divided across 627 

two separate stimulus sets of 4 exemplars for each scene category. Stimulus sets were 628 

assigned randomly to individual participants (Experiment 1: stimulus set 1, n = 10; stimulus set 629 

2, n = 10; Experiment 2, stimulus set 1, n = 5; stimulus set 2, n = 3). Participants from 630 

Experiment 2 that had also participated in Experiment 1 were presented with the other stimulus 631 

set than the one they saw in Experiment 1. 632 

 633 

fMRI procedure. Participants were scanned while viewing the stimuli on a back-projected screen 634 

through a rear-view mirror that was mounted on the head coil. Stimuli were presented at a 635 

resolution of 800 x 600 pixels such that stimuli subtended ~10 x 10 degrees of visual angle. 636 

Individual scenes were presented in an event-related design for a duration of 500 ms, separated 637 

by a 6s interval. Throughout the experimental run, a small fixation cross (< 0.5 degrees) was 638 

presented in the center of the screen. In Experiment 1, participants performed a task on the 639 

central fixation cross that was unrelated to the scenes. Specifically, simultaneous with the 640 

presentation of each scene, either the vertical or horizontal arm of the fixation cross became 641 

slightly elongated and participants indicated which arm was longer by pressing one of two 642 

buttons indicated on a hand-held button box. Both arms changed equally often within a given 643 

run and arm changes were randomly assigned to individual scenes. In Experiment 2, the fixation 644 

cross had a constant size, and participants were instructed to covertly name the scene whilst 645 

simultaneously pressing one button on the button box. To assure that participants were able to 646 

generate a name for each scene, they were first familiarized with the stimuli. Specifically, prior 647 

to scanning, participants were presented with all scenes in the set in randomized order on a 648 

laptop in the console room. Using a self-paced procedure, each scene was presented in 649 

isolation on the screen accompanied by the question ‘How would you name this scene?’. The 650 
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participants were asked to type one or two words to describe the scene; as they typed, their 651 

answer appeared under the question, and they were able to correct mistakes using backspace. 652 

After typing the self-generated name, participants hit enter and the next scene would appear 653 

until all 120 scenes had been seen by the participant. This procedure took about ~10 minutes.  654 

In both Experiment 1 and 2, participants completed 8 experimental runs of 6.4 minutes 655 

each (192 TRs per run); one participant from Experiment 1 only completed 7 runs due to time 656 

constraints. Each run started and ended with a 12s fixation period. Each run contained 2 657 

exemplar presentations per scene category. Individual exemplars were balanced across runs 658 

such that all stimuli were presented after two consecutive runs, yielding 4 presentations per 659 

exemplar in total. Exemplars were randomized across participants such that each participant 660 

always saw the same two exemplars within an individual run; however the particular 661 

combination was determined anew for each individual participant and scene category. Stimulus 662 

order was randomized independently for each run. Stimuli were presented using PsychoPy 663 

v1.83.01 (Peirce 2007).  664 

 665 

Functional localizers. Participants additionally completed four independent functional block-666 

design runs (6.9 minutes, 208 TRs) that were used to localize scene-selective regions of 667 

interest (ROIs). Per block, twenty gray-scale images (300 x 300 pixels) were presented from 668 

one of eight different categories: faces, man-made and natural objects, buildings, and four 669 

different scene types (man-made open, man-made closed, natural open, natural closed; Kravitz 670 

et al., 2011) while participants performed a one-back repetition-detection task. Stimuli were 671 

presented on a gray background for 500 ms duration, separated by 300 ms gaps, for blocks of 672 

16s duration, separated by 8s fixation periods. Categories were counterbalanced both within 673 

runs (such that each category occurred twice within a run in a mirror-balanced sequence) and 674 

across runs (such that each category was equidistantly spaced in time relative to each other 675 

category across all four runs). Two localizer runs were presented after the first four experimental 676 



 

 28 

runs and two after the eight experimental runs were completed but prior to the T1 acquisition. 677 

For four participants, only two localizer runs were collected due to time constraints.  678 

 679 

Behavioral experiment. On a separate day following the MRI data acquisition, participants 680 

performed a behavioral multi-arrangement experiment. In a behavioral testing room, participants 681 

were seated in front of a desktop computer with a flat screen monitor (size?) on which all 120 682 

stimuli that the participant had previously seen in the scanner were displayed as small 683 

thumbnails around a white circular arena. A mouse-click on an individual thumbnail displayed a 684 

larger version of that stimulus in the upper right corner. Participants were instructed to arrange 685 

the thumbnails within the white circle in such a way that the arrangement would reflect ‘how 686 

similar the scenes are, whatever that means to you’, by means of dragging and dropping the 687 

individual exemplar thumbnails. We purposely avoided provided specific instructions in order to 688 

not bias participants towards using either functions, objects or visual features to determine 689 

scene similarity. Participants were instructed to perform the task at their own pace; if the task 690 

took longer than 1hr, participants were encouraged to finish the experiment (almost all 691 

participants took less time, averaging a total experiment duration of ~45 mins). Stimuli were 692 

presented using the single-arrangement MATLAB code provided in (Kriegeskorte & Mur, 2012). 693 

To obtain some insight in the sorting strategies used by participants, they were asked (after 694 

completing the experiment) to take a few minutes to describe how they organized the scenes, 695 

using a blank sheet of paper and a pen, using words, bullet-points or drawings.   696 

 697 

Behavioral data analysis. Behavioral representational dissimilarity matrices (RDMs) were 698 

constructed for each individual participant by computing the pairwise squared on-screen 699 

distances between the arranged thumbnails and averaging the obtained distances across the 700 

exemplars within each category. The relatedness of the models and the behavioral data was 701 
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determined in the same manner as for the fMRI analysis, i.e. by computing both individual 702 

model correlations and unique and shared variance across models via hierarchical regression.  703 

 704 

fMRI preprocessing. Data were analyzed using AFNI software (https://afni.nimh.nih.gov). Before 705 

statistical analysis, the functional scans were slice-time corrected and all the images for each 706 

participant were motion corrected to the first image of their first task run after removal of the first 707 

and last six TRs from each run. After motion correction, the localizer runs were smoothed with a 708 

5mm full-width at half-maximum Gaussian kernel; the even-related data was not smoothed. 709 

 710 

fMRI statistical analysis: localizers. Bilateral ROIs were created for each participant individually 711 

based on the localizer runs by conducting a standard general linear model implemented in 712 

AFNI. A response model was built by convolving a standard gamma function with a 16s square 713 

wave for each condition and compared against the activation time courses using Generalized 714 

Least Squares (GLSQ) regression. Motion parameters and four polynomials accounting for slow 715 

drifts were included as regressors of no interest. To derive the response magnitude per 716 

category, t-tests were performed between the category-specific beta estimates and baseline. 717 

Scene-selective ROIs were generated by thresholding the statistical parametric maps resulting 718 

from contrasting scenes > faces at p < 0.0001 (uncorrected). Only contiguous clusters of voxels 719 

(>25) exceeding this threshold were then inspected to define scene-selective ROIs consistent 720 

with previously published work (Epstein 2005). For participants in which clusters could not be 721 

disambiguated, the threshold was raised until individual clusters were clearly identifiable. While 722 

PPA and OPA were identified in all participants for both Experiment 1 and 2, MPA/RSC was 723 

detected in only 14 out 20 participants in Experiment 1, and all analyses for this ROI in 724 

Experiment 1 are thus based on this subset of participants.  725 

 726 

https://afni.nimh.nih.gov)/
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fMRI statistical analysis: event-related data. Each event-related run was deconvolved 727 

independently using the standard GLSQ regression model in AFNI. The regression model 728 

included a separate regressor for each of the 30 scene categories as well as motion parameters 729 

and four polynomials to account for slow drifts in the signal. The resulting beta-estimates were 730 

then used to compute representational dissimilarity matrices (RDMs; (Kriegeskorte et al. 2008) 731 

based on the multi-voxel patterns extracted from individual ROIs. Specifically, we computed 732 

pairwise cross-validated Mahalanobis distances between each of the scene 30 categories 733 

following the approach in (Walther et al. 2016). First, multi-variate noise normalization was 734 

applied by normalizing the beta-estimates by the covariance matrix of the residual time-courses 735 

between voxels within the ROI. Covariance matrices were regularized using shrinkage toward 736 

the diagonal matrix (Ledoit and Wolf 2004). Unlike univariate noise normalization, which 737 

normalizes each voxel’s response by its own error term, multivariate noise normalization also 738 

takes into account the noise covariance between voxels, resulting in more reliable RDMs 739 

(Walther et al. 2016). After noise normalization, squared Euclidean distances were computed 740 

between individual runs using a leave-one-run-out procedure, resulting in cross-validated 741 

Mahalanobis distance estimates. Note that unlike correlation distance measures, cross-742 

validated distances provide unbiased estimates of pattern dissimilarity on a ratio scale (Walther 743 

et al. 2016), thus providing a distance measure suitable for direct model comparisons. 744 

 745 

Model comparisons: individual models. To test the relatedness of the three models of scene 746 

dissimilarity with the measured fMRI dissimilarity, the off-diagonal elements of each model RDM 747 

were correlated (Pearson’s r) with the off-diagonal elements of the RDM of each fMRI ROI for 748 

each individual participant separately. Following (Nili et al. 2014), the significance of these 749 

correlations was determined using one-sided signed-rank tests against zero, while pairwise 750 

differences between models in terms of their correlation with fMRI dissimilarity were determined 751 

using two-sided signed-ranked tests. For each test, we report the sum of signed ranks for the 752 
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number of observations W(n) and the corresponding p-value; for tests with n > 10 we also report 753 

the z-ratio approximation. The results were corrected for multiple comparisons (across both 754 

individual model correlations and pairwise comparisons) using FDR correction (Benjamini and 755 

Hochberg 1995) for each individual ROI separately. Noise ceilings were computed following (Nili 756 

et al. 2014): an upper bound was estimated by computing the correlation between each 757 

participant’s individual RDM and the group-average RDM, while a lower bound was estimated 758 

by correlating each participant’s RDM with the average RDM of the other participants (leave-759 

one-out approach). The participant-averaged RDM was converted to rank order for visualization 760 

purposes only. 761 

 762 

Model comparisons: partial correlations and variance partitioning. To determine the contribution 763 

of each individual model when considered in conjunction with the other models, we performed to 764 

additional types of analyses: partial correlations, in which each model was correlated (Pearsons 765 

r) while partialling out the other two models, as well as variation partitioning based on multiple 766 

linear regression. For the latter, the off-diagonal elements of each ROI RDM were assigned as 767 

the dependent variable, while the off-diagonal elements of the three model RDMs were entered 768 

as independent variables (predictors). To obtain unique and shared variance across the three 769 

models, 7 multiple regression analyses were run in total: one ‘full’ regression that included all 770 

three feature models as predictors; and six reduced models that included as predictors either 771 

combinations of two models in pairs (e.g., functions and objects), or including each model by 772 

itself. By comparing the explained variance (r2) of a model used alone to the r2 of that model in 773 

conjunction with another model, we can infer the amount of variance that is independently 774 

explained by that model, i.e. partition the variance (see also (Groen et al. 2012; Ramakrishnan 775 

et al. 2014; Lescroart et al. 2015; Çukur et al. 2016; Greene et al. 2016; Hebart et al. 2018) for 776 

similar approaches). 777 
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Analogous to the individual model correlation analyses, partial correlations were 778 

calculated for each individual participant separately, and significance was determined using 779 

one-sided signed-rank tests across participants (FDR-corrected across all comparisons within a 780 

given ROI). To allow comparison with the results reported in (Greene et al. 2016), variance 781 

partitioning was performed on the participant-average RDMs. Similar results were found, 782 

however, when variance was partitioned for individual participant’s RDMs and then averaged 783 

across participants. To visualize this information in an Euler diagram, we used the EulerAPE 784 

software (Micallef and Rodgers 2014).  785 

 786 

Direct reproducibiilty test of representational structure in behavior and fMRI. To assess how well 787 

the obtained RDMs were reproducible in each measurement domain (behavior and fMRI), we 788 

compared the average RDMs obtained for the two separate stimulus sets. Since these two sets 789 

of stimuli were viewed by different participants (see above under ‘Stimuli & models’), this 790 

comparison provides a strong test of generalizability, across both scene exemplars and across 791 

participant pools. Set-average RDMs were compared by computing inter-RDM correlations 792 

(Pearson’s r) and 96% confidence intervals (CI) and statistically tested for reproducibility using a 793 

random permutation test based on 10.000 randomizations of the category labels.  794 

 795 

Variance partitioning of fMRI based on models and behavior. Using the same approach as in 796 

the previous section, a second set of regression analyses was performed to determine the 797 

degree of shared variance between the behavior on the one hand, and the functions and visual 798 

features on the other hand, in terms of the fMRI response pattern dissimilarity. The Euler 799 

diagrams were derived using the group-average RDMs, taking the average result of the multi-800 

arrangement task of these participants as the behavioral input into the analysis.  801 

 802 
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DNN comparisons The original fc7 DNN feature model was determined based on to the large 803 

set of exemplars (average of 65 per scene category) used in Greene et al., (2016). To 804 

investigate the influence of DNN layer and training images on the learned visual features and 805 

their correspondence with activity in scene-selective cortex, we derived two new sets of RDMs 806 

by passing our scene stimuli through two pre-trained, 8-layer AlexNet (Krizhevsky et al. 2012) 807 

architecture networks: 1) a 1000-object label ImageNet-trained (Deng et al. 2009) network 808 

implemented in Caffe (Jia et al. 2014) (‘ReferenceNet’) and 2) a 250-scene label Places-trained 809 

network (“Places”) (Zhou et al. 2014). By extracting the node activations from each layer, we 810 

computed pairwise dissimilarity  (1 – Pearson’s r) resulting in one RDM per layer and per model. 811 

These RDMs were then each correlated with the fMRI RDMs from each participant in PPA, OPA 812 

and MPA (Pearson’s r). These analyses were performed on the combined data of Experiment 1 813 

and 2; RDMs for participants that participated in both Experiments (n = 4) were averaged prior 814 

to group-level analyses.  815 

 816 

Searchlight analyses. To test the relatedness of functions, objects and visual feature models 817 

with fMRI activity recorded outside scene-selective ROIs, we conducted whole-brain searchlight 818 

analyses. RDMs were computed in the same manner as for the ROI analysis, i.e. computing 819 

cross-validated Mahalanobis distances based on multivariate noise-normalized multi-voxel 820 

patterns, but now within spherical ROIs of 3 voxel diameter (i.e. 123 voxels/searchlight). 821 

Analogous to the ROI analyses, we computed partial correlations of each feature model, 822 

correcting for the contributions of the remaining two models. These partial correlation 823 

coefficients were assigned to the center voxel of each searchlight, resulting in one whole-824 

volume map per model. Partial correlation maps were computed for in each participant 825 

separately in their native volume space. To allow comparison at the group level, individual 826 

participant maps were first aligned to their own high-resolution anatomical scan and then to 827 

surface reconstructions of the grey and white matter boundaries created from these high-828 
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resolution scans using the Freesurfer (http://surfer.nmr.mgh.harvard.edu/) 5.3 autorecon script 829 

using SUMA (Surface Mapping with AFNI) software (https://afni.nimh.nih.gov/Suma). The 830 

surface images for each participant were then smoothed with a Gaussian 10mm FWHM filter in 831 

surface coordinate units using the SurfSmooth function with the HEAT_07 smoothing method.  832 

Group-level significance was determined by submitting these surface maps to node-wise 833 

one-sample t-tests in conjunction with Threshold Free Cluster Enhancement (Smith and Nichols 834 

2009) through Monte Carlo simulations using the algorithm implemented in the CoSMoMVPA 835 

toolbox (Oosterhof et al. 2016), which performs group-level comparisons using sign-based 836 

permutation testing (n = 10,000) to correct for multiple comparisons. To increase power, the 837 

data of Experiment 1 and 2 were combined; coefficient maps for participants that participated in 838 

both Experiments (n = 4) were averaged prior to proceeding to group-level analyses.  839 

For searchlight comparisons with scene categorization behavior and feature models 840 

based on different DNN layers, we computed regular correlations (Pearson’s r) rather than 841 

partial correlations. For the behavioral searchlight, we used the average multi-arrangement 842 

behavior from Experiment 1 (since the participants from Experiment 2 did not perform this task). 843 

For the DNN searchlights, we used the same layer-by-layer RDMs as for the ROI analyses, 844 

independently correlating those with the RDMs of each spherical ROI. Group-level significance 845 

was determined in the same manner as for the a priori selected feature models (see above).  846 
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Data sharing statement 853 

To facilitate replicability and to allow for potential comparisons of other models against the 854 

behavioral and fMRI data reported in this study, the RDMs reflecting individual participant’s 855 

behavior and their fMRI activity in scene-selective ROIs are made available in Figure 1-source 856 

data 1, along with the RDMs of the feature models and the scene stimuli tested. 857 

Figure captions 858 

Figure 1 Models and predicted stimulus dissimilarity. A) Stimuli were characterized in three 859 

different ways: functions (derived using human-generated action labels), objects (derived using 860 

human-generated object labels) and DNN features (derived using layer 7 of a 1000-class 861 

trained convolutional neural network). B) RDMs showing predicted representational dissimilarity 862 

in terms of functions, objects and DNN features for the 30 scene categories sampled from 863 

Greene et al., (2016) for the purpose of the current study. Scenes were sampled to achieve 864 

minimal between-matrix correlations, with the constraint that the final stimulus set should have 865 

equal portions of categories from indoor, outdoor man-made and outdoor natural scenes. The 866 

category order in the figure is determined based on a k-means clustering on the functional 867 

model RDM; clustering was performed by requesting 8 clusters, which explained 80% of the 868 

variance in the functional feature model. RDMs were rank-ordered for visualization purposes 869 

only. C) Multi-dimensional scaling plots of the model RDMs, color-coded based on the functional 870 

clusters depicted in B). Functional model clusters reflected functions such as ‘sports’, and 871 

‘transportation’; note that these semantic labels were derived post-hoc after clustering, and did 872 

not affect stimulus selection. Critically, representational dissimilarity based on the two other 873 

models (objects and DNN features) predicted different cluster patterns. The stimuli and model 874 

RDMs, along with the behavioral and fMRI measurements, are provided in Figure 1-source data 875 

1. 876 
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Figure 2 Behavioral multi-arrangement paradigm and results. A) Participants organized the 877 

scenes in inside a large white circle according to their perceived similarity as determined by 878 

their own judgment, without receiving explicit instructions as to what information to use to 879 

determine scene similarity. B) RDM displaying the average dissimilarity between categories in 880 

behavioral arrangement (rank-ordered for visualization only). C) Average (bar) and individual 881 

participant (gray dots) correlations between the behavioral RDM and the model RDMs for 882 

objects (red), DNN features (yellow) and functions (blue) from Figure 1B. Stars (*) indicate p < 883 

0.05 for model-specific one-sided signed-rank tests against zero, while horizontal bars indicate 884 

p < 0.05 for two-sided pairwise signed-rank tests between models; p-values were FDR-885 

corrected across both types of comparisons. The light-blue shaded rectangular region reflects 886 

the upper and lower bound of the noise ceiling, indicating RDM similarity between individual 887 

participants and the group average (see Methods). D) Count of participants with the highest 888 

correlation with either objects, DNN features or objects. E) Average (bar) and individual 889 

participant (gray dots) partial correlation values for each model RDM. Statistical significance 890 

was determined the same way as in C). F) Euler diagram depicting the results of a variance 891 

partitioning analysis on the behavioral RDM for objects (red circle), DNN features (yellow circle) 892 

and functions (blue circle). Unique (non-overlapping diagram portions) and shared (overlapping 893 

diagram portions) variances are expressed as percentages of the total variance explained by all 894 

models combined. 895 

Figure 3 RDMs and model comparisons for fMRI Experiment 1 (n = 20). A) RDMs displaying 896 

average dissimilarity between categories in multi-voxel patterns in PPA, OPA and MPA (rank-897 

ordered for visualization only). B) Average (bar) and individual (gray dots) correlations between 898 

the ROIs in A) and the model RDMs for objects (red), DNN features (yellow) and functions 899 

(blue) (FDR-corrected). See legend of Figure 2B for explanation of the statistical indicators and 900 

noise ceiling. C) Average (bar) and individual (gray dots) partial correlation coefficients for each 901 
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model RDM. Statistics are the same as in B). D) Euler diagram depicting the variance 902 

partitioning results the average dissimilarity in each ROI for each of the three models, 903 

expressed as percentages of unique and shared variance of the variance explained by all three 904 

models together. 905 

Figure 4 Correlations and variance partitioning of behavioral measurements of scene 906 

categorization and similarity of fMRI responses to the same scene categories. A) Correlations of 907 

three measures of behavioral categorization (see Results section for details) with fMRI response 908 

patterns in PPA, OPA and MPA. See legend of Figure 2B for explanation of the statistical 909 

indicators and noise ceiling. B) Euler diagram depicting the results of variance partitioning the 910 

fMRI responses in PPA, OPA and MPA for objects (red), DNN features (yellow) and average 911 

sorting behavior (green), indicating that the majority of the variance in the fMRI signal that is 912 

explained by categorization behavior is shared with the DNN features. 913 

Figure 5 RDMs and model comparisons for Experiment 2 (n = 8, covert naming task). A) 914 

Average dissimilarity between categories in multi-voxel patterns measured in PPA, OPA and 915 

MPA (rank-ordered). B) Correlations between the ROIs in A) and the model RDMs for objects 916 

(red), DNN features (yellow) and functions (blue) (FDR-corrected). See legend of Figure 2B for 917 

explanation of the statistical indicators and noise ceiling. Note how in PPA, the DNN model 918 

correlation approaches the noise ceiling, suggesting that this model adequately captures the 919 

information reflected in response patterns in this ROI. C) Euler diagram depicting the variance 920 

partitioning results on the average dissimilarity in each ROI. D) Average (bars) and individual 921 

(dots/lines) within-participant (n = 4) comparison of fMRI-model correlations across the different 922 

task manipulations in Experiment 1 and 2 (participants were presented with a different set of 923 

scenes in each task, see Methods). Note how increased attention to the scenes due to the 924 

naming mainly enhances the correlation with DNN features. 925 
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Figure 6. Medial (left) and lateral (right) views of group-level searchlights for A) the DNN and B) 926 

function feature models, overlaid on surface reconstructions of both hemispheres of one 927 

participant. Each map was created by submitting the group-average partial correlation maps for 928 

each model and hemisphere to one-sample tests against a mean of zero, cluster-corrected for 929 

multiple comparisons using Threshold-Free Cluster Enhancement (thresholded on z = 1.64, 930 

corresponding to one-sided p < 0.05). Unthresholded versions of the average partial correlation 931 

maps are inset above. Group-level ROIs PPA, OPA and MPA are highlighted in solid white 932 

lines. Consistent with the ROI analyses, the DNN feature model contributed uniquely to 933 

representation in PPA and OPA. The function model uniquely correlated with a bilateral ventral 934 

region, as well as a left-lateralized region overlapping with the middle temporal and occipital 935 

gyri.  936 

Figure 7. A) Group-average searchlight result for behavioral scene categorization. Maps reflect 937 

correlation (Pearson’s r) of the group-average behavior in the multi-arrangement task from the 938 

participants of Experiment 1. Scene-selective ROIs are outlined in white solid lines; the 939 

searchlight clusters showing a significant contribution of the functional feature model are 940 

outlined in dashed white lines for reference. See Figure 6 for further explanation of the 941 

searchlight display. B) RDM and MDS plots based on the MVPA patterns in the function model 942 

searchlight clusters. RDM rows are ordered as in Figure 1B and category color coding in the 943 

MDS plots is as in Figure 1C. C) Illustrative exemplars of the four categories that were most 944 

dissimilar from other categories within the searchlight-derived clusters depicted in B. 945 

Figure 8 DNN layer and DNN training comparisons, showing layer-by-layer RDM correlations 946 

between A) an object-trained (ReferenceNet) and a scene-trained (Places) DNN; B) both DNNs 947 

and the a priori selected feature models; C) the object-trained DNN and scene-selective ROIs; 948 

D) the scene-trained DNN and scene-selective ROIs (all comparisons FDR-corrected within 949 

ROI: See legend of Figure 2B for explanation of the statistical indicators and noise ceiling). 950 
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While the decreasing correlation between DNNs indicates stronger task-specificity of higher 951 

DNN layers, the original fc7 DNN feature model correlated most strongly with high-level layers 952 

of both DNNs. The object-trained and the scene-trained DNN correlated similarly with PPA and 953 

OPA, with both showing remarkable good performance for mid-level layers. The RDMs for each 954 

individual DNN layer are provided in Source Data 1. Searchlight maps for each layer of the 955 

object- and scene trained DNN are provided in Figure 8–video 1 and Figure 8-video 2, 956 

respectively.  957 

Figure 8-video 1 Layer-by-layer searchlight results for the object-trained DNN (ReferenceNet). 958 

The first half of the movie shows group-average correlation maps for layer 1-8, cluster-corrected 959 

for multiple comparisons using Threshold-Free Cluster Enhancement (thresholded on z = 1.64, 960 

corresponding to one-sided p < 0.05), overlaid on medial and lateral views of inflated surface 961 

reconstructions of both hemispheres of one participant. The second half of the movie shows the 962 

same data but without thresholding. Group-level ROIs PPA, OPA and MPA are highlighted in 963 

solid white lines. 964 

Figure 8-video 2 Layer-by-layer searchlight results for the scene-trained DNN (Places). See 965 

legend of Figure 8-video 1 for details. 966 
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