

Open access • Posted Content • DOI:10.1101/2020.12.05.413161

Distinct Contributions of Nonpredictive and Predictive Peripheral Cues to Visual Conscious Perception: an MEG study — Source link ☑

Alfredo Spagna, Alfredo Spagna, Dimitri J. Bayle, Zaira Romeo ...+3 more authors

Institutions: Columbia University, Allen Institute for Brain Science, Paris West University Nanterre La Défense, University of Padua ...+2 more institutions

Published on: 07 Dec 2020 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Sensory cue and Visual perception

Related papers:

- Neural Bases of the Interactions between Spatial Attention and Conscious Perception
- Neural Correlates of the Spatial and Expectancy Components of Endogenous and Stimulus-Driven Orienting of Attention in the Posner Task
- · Normal and impaired reflexive orienting of attention after central nonpredictive cues
- · Dorsal and ventral attention systems underlie social and symbolic cueing
- Activation of frontoparietal attention networks by non-predictive gaze and arrow cues.

1	Distinct Contributions of Nonpredictive and Predictive Peripheral Cues to Visual
2	Conscious Perception: an MEG study
3	Alfredo Spagna ^{1,2,*} , Dimitri J. Bayle ³ , Zaira Romeo ⁴ , Lydia Yahia-Cherif ² , Ana B. Chica ⁵ ,
4	Paolo Bartolomeo ^{2,*}
5	¹ Department of Psychology, Columbia University in the City of New York, NY, USA, 10027
6	² Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital
7	de la Pitié-Salpêtrière, 75013 Paris, France
8	³ Licae Lab, Université Paris Nanterre, Nanterre, France
9	⁴ Department of General Psychology, University of Padova, Padova 35131, Italy
10	⁵ Department of Experimental Psychology; Mind, Brain, and Behavior Research Center
11	(CIMCYC), University of Granada, Granada, Spain, 18071
12	
13	* Corresponding authors
14	Alfredo Spagna, Ph. D.
15	Department of Psychology,
16	Columbia University in the City of New York,
17	NY, USA, 10027
18	as5559@columbia.edu
19	
20	Paolo Bartolomeo, M.D., Ph.D.
21	Sorbonne Université, Inserm U 1127,
22	CNRS UMR 7225, Paris Brain Institute,
23	ICM, Hôpital de la Pitié-Salpêtrière,
24	75013 Paris, France
25	paolo.bartolomeo@icm-institute.org

- 26 Number of pages: 39
- 27 Number of Figures (6) and Tables (1)
- Number of words for abstract (208/250), introduction (648/650), discussion (1227/1500)
- 29 Conflict of interest statement (yes)
- 30 Author Contributions (yes)
- 31 Funding (yes)

RUNNING TITLE: Effects of Nonpredictive and Predictive Spatial Cues on Consciousness

32	Abstract
22	Do we need attention to become aware of an external event? We used
55	Do we need attention to become aware of an external event? we used
34	magnetoencephalography (MEG) in human participants to assess the effects of nonpredictive
35	and predictive supra-threshold peripheral visual cues on the conscious perception of near-
36	threshold Gabor patches. Both nonpredictive and predictive valid cues increased the number
37	of detected targets, and shifted the response criterion towards a more liberal decision.
38	Predictive cues unexpectedly induced a greater sensitivity (d') for invalid trials than for valid
39	trials. With nonpredictive cues, seen targets were associated with right-lateralized
40	frontoparietal feed-forward and feedback sweeps. For seen targets there was increased
41	connectivity among visual regions, and between these areas and the inferior parietal lobes and
42	the anterior insular cortices (AIC), bilaterally. Valid predictive cues interacted with conscious
43	target detection, with greater activation of areas mostly located in the left hemisphere,
44	especially in the frontoparietal network and temporoparietal junction, and induced an
45	increased connectivity between the right AIC and areas of the visual ventral stream in the
46	seen condition only. Thus, neural activity induced by nonpredictive and predictive spatial
47	cues can enhance conscious visual perception through distinct mechanisms, mostly relying on
48	frontoparietal activity in the right or left hemisphere, respectively. Connectivity involving the
49	AIC participates in shaping the interaction between attention and conscious visual perception.
50	
51	Significance Statement
52	Do we need to pay attention to external objects in order to become aware of them?
53	Characterizing the spatiotemporal dynamics of attentional effects on visual perception is
54	critical to understand how humans process information coming from relevant aspects of their
55	environment. Participants detected near-threshold visual targets preceded by supra-threshold
56	spatial cues with varying degrees of predictivity, while their brain activity was recorded using

- 57 magnetoencephalography. Results demonstrated that spatial cues, especially when predictive,
- 58 biased participants' conscious perception through an early recruitment of frontoparietal
- 59 regions. This work highlights an interactive pattern between spatial attention and
- 60 consciousness, as shown by the effects of attention-related regions on visual sensory cortices
- 61 bilaterally, consistent with the hypothesis that attention is a pathway to conscious perception.

RUNNING TITLE: Effects of Nonpredictive and Predictive Spatial Cues on Consciousness

62 **Introduction**

63	The relationship between attention and consciousness remains debated. Some argue
64	that conscious perception cannot occur without attention (Posner, 1994; Dehaene et al., 2006;
65	Mashour et al., 2020); others propose that attention and consciousness are dissociable
66	processes (Wyart and Tallon-Baudry, 2008; Tallon-Baudry, 2012). In spite of the growing
67	effort devoted to characterizing the neural substrates supporting visual conscious perception,
68	this quest is still open, possibly because attention is a heterogeneous psychological construct
69	consisting of independent but interactive functions, which may differentially influence
70	conscious visual perception.
71	Studies investigating how attention modulates conscious perception mainly focused on
72	visuospatial orienting, which enhances the processing of stimuli appearing in a specific region
73	of the visual field (Posner, 1980). Nonpredictive visual cues, which are not informative about
74	the future location of the target, exogenously capture attention (Fan et al., 2002; Funes et al.,
75	2007; Chica et al., 2013b; Spagna et al., 2015). For short stimulus-onset asynchronies (SOAs)
76	a benefit in performance often occurs when the cue and the target appear on the same side
77	(so-called "valid" trials), compared to when they occur on opposite sides ("invalid" trials).
78	More endogenous, or goal-driven forms of orienting occur with predictive cues that correctly
79	indicate the location of the upcoming target in most trials. Neuroimaging studies have shown
80	partially distinct neural processes underlying exogenous and endogenous orienting (Corbetta
81	and Shulman, 2002; Fan et al., 2005; Chica et al., 2013b; Xuan et al., 2016), but the
82	spatiotemporal dynamics of these mechanisms remain unclear, possibly due to insufficient
83	temporal resolution.
84	Longstanding evidence indicates that nonpredictive orienting cues improve conscious
85	perception (Chica et al., 2011b; Sergent et al., 2013). However, the effects of endogenous

86 orienting remain more controversial (Ling and Carrasco, 2006; Koch and Tsuchiya, 2007;

RUNNING TITLE: Effects of Nonpredictive and Predictive Spatial Cues on Consciousness

87	Kentridge et al., 2008; Liu et al., 2009; Van Boxtel et al., 2010; Tsuchiya and Koch, 2014,
88	2016; Botta et al., 2017; Vernet et al., 2019). Peripheral predictive cues engage a mix of
89	exogenous and endogenous orienting mechanisms, because they initially capture attention
90	exogenously, but as time passes attention is endogenously kept at the cued location. This
91	endogenous persistence is apparently strategic, because it is more likely that the target appears
92	at the cued location (but see Bartolomeo et al., 2007). A series of studies (Chica et al., 2011b;
93	Chica et al., 2013b; Botta et al., 2017) showed that exogenous attention affects perceptual
94	consciousness, and that the maximal attentional effect on conscious perception is observed
95	when attention is first exogenously captured, and then endogenously maintained at the target
96	location. Characterizing the spatial and temporal dynamics of the neural substrates supporting
97	possible interactions between attentional orienting and visual conscious processing could
98	reduce the tension between competing, but not necessarily mutually exclusive, theoretical
99	frameworks.
100	Here, we addressed two questions: (1) What are the spatiotemporal dynamics of the
101	effects of peripheral cues on visual conscious processing? (2) How does cue predictivity
102	modulate these effects? We recorded magnetoencephalography, capitalizing on its unique
103	capacity to characterize a wide range of neural dynamics (Baillet, 2017), while participants
104	performed a version of a Posner-type cueing paradigm (Chica et al., 2014b) with supra-
105	threshold peripheral cues and near-threshold Gabor targets. In different experiments, spatial
106	cues were either nonpredictive or predictive of the site of occurrence of targets. This setting
107	enabled us to examine the effects of cues on conscious visual perception, in terms of
108	behavioral effects, neural activity, and brain connectivity.
109	The gateway hypothesis would be supported by findings of increased reportability of
110	the target stimuli under conditions of increased attention (i.e., valid cues) (Posner, 1994),
111	perhaps with larger effects for predictive than for nonpredictive cues (Chica et al., 2011b),

RUNNING TITLE: Effects of Nonpredictive and Predictive Spatial Cues on Consciousness

and a possible involvement of frontoparietal attention networks in the interaction between

- attention and consciousness (Chica et al., 2013c). The absence of cue validity effects on
- 114 conscious perception would instead favor the cumulative influence hypothesis (Wyart and
- 115 Tallon-Baudry, 2008; Tallon-Baudry, 2012), together with an absence of interaction between
- attention and consciousness in frontoparietal activations.

117 Materials and Methods

- 118 *Participants.* To estimate the sample size required to detect a difference in d' for valid and
- invalid cue trials, we conducted a statistical power analysis using the parameters estimated in
- our previous study (Chica et al., 2011b). With alpha = 0.05, an expected power of 0.80 and an
- effect size of 0.81, the projected sample size needed was of n = 15 (two-tailed). We also
- 122 conducted a statistical power analysis to estimate the sample size required to detect a
- 123 difference in *criterion* for valid and invalid cue trials in the experiment with predictive cues.
- 124 With alpha = 0.05, an expected power of 0.80, and the effect size of 1.53 as shown in
- previous research (Chica et al., 2011b), the projected sample size needed was of n = 6 (two-
- 126 tailed).
- 127 In total, 37 participants were recruited across two experiments. Eighteen participants
- 128 completed the experiment with nonpredictive cues (age = 24 ± 3.13 years; age range = 22-33
- 129 years; 6M), and nineteen participants completed the experiment with predictive cues (age =
- 130 24 ± 3.79 years; age range = 20-32 years; 7M). Five participants had to be excluded from data
- analysis of the predictive cue experiment, due to issues in the data quality of MEG recordings.
- 132 All participants reported normal or corrected-to-normal vision, and gave written informed
- 133 consent before participation. The study was approved by the INSERM and by the Institutional
- 134 Review Boards of Paris Ile de France (CPP 1).
- 135 *Stimuli and Procedure.* The tasks were compiled and run using E-Prime software (RRID:
- 136 SCR_009567; Psychology Software Tools, Pittsburgh, PA) on a Windows XP desktop

RUNNING TITLE: Effects of Nonpredictive and Predictive Spatial Cues on Consciousness

137	computer. All stimuli were presented on a gray background at the center of a black projection
138	screen using a PROPixx projector (resolution, 1050×1400 pixels; refresh rate, 60 Hz) located
139	outside the shielded recording room. Fig 1a. shows a schematic representation of the
140	sequence of events in an invalid trial. Fig 1b. illustrates size of the stimuli used in our tasks.
141	The display consisted of three black boxes $(3.6^{\circ} \times 4.9^{\circ} \text{ of visual angle})$ presented on a gray
142	background; the central one was presented at the center of the screen and contained a fixation
143	point (a black cross) at its center. The other two boxes were located 6° of visual angle to the
144	left and right side and 4° of visual angle below the central box, respectively, a setting created
145	to maximize MEG responses from early visual areas (Portin et al., 1999).
146	Participants sat in the MEG recording room, with the screen being positioned
147	approximately 80 cm away from their eyes, and performed two tasks sequentially: 1) a
148	discrimination task, which required to identify the orientation of a Gabor patch (spatial
149	frequency: 5 cycles per degree of visual angle; diameter: 2.5° of visual angle; orientation:
150	chosen among 12 equally spaced between 0 and 180°, vertical and horizontal orientations
151	being excluded) that was presented for 16ms in either the box to the left or to the right side of
152	the display. After a 484ms delay, participants were asked to press a button on a response box
153	with 3 vertical buttons to indicate the orientation of the grating among two possibilities
154	presented vertically on the screen, distant by 3° from each other. Participants pressed the
155	upper response button with their index finger to choose the upper orientation or the middle
156	response button with their middle finger to choose the lower orientation. The location of the
157	correct orientation was randomized. After the participants' response, or after 3s without
158	response, 2) a detection task was presented, which required to press one of the three buttons
159	of the response box to indicate whether the target was absent, or whether it had been
160	presented in the left or right box. Two arrow-like stimuli (>>>>> or <<<<<) were
161	presented above and below the fixation cross, their respective position being randomized

162	across trial, and the word "absent" presented under the arrow-like stimuli. For trials in which
163	participants reported to have seen a stimulus, they then pressed the upper or lower response
164	button (with their index or middle finger, respectively) to indicate the visual hemifield of the
165	target presentation. For trials in which participants reported to have not seen the stimulus,
166	they pressed the lower response button with their ring finger. After the participants' response,
167	or after 3s without response, the next trial began after a variable delay of 1 to 1.5 s.
168	Before the recording session, participants were briefly instructed about the goal of the
169	study and were then shown instructions on the screen. Each participant underwent a
170	calibration session (mean duration, 6 min), during which the target contrast was manipulated
171	in order to estimate the individual threshold for which the percentage of consciously
172	perceived target was 50%. The calibration session consisted of two randomly inter-leaved
173	psychophysical staircases (one-up / one-down), theoretically converging toward a detection
174	rate of 50%. During the calibration session, participants were engaged in the same paradigm
175	as described previously, except that the contrast of the stimuli was varied from trial to trial
176	depending on their previous seen – unseen report in the corresponding staircase. Threshold
177	contrasts were estimated separately for the valid and invalid locations. The calibration session
178	was followed by eight recording sessions (mean duration, 8 min per session).
179	Each trial started with a fixation display, whose duration varied randomly between
180	1,000ms and 1,500ms. In the target-present trials, a cue occurred 300ms before targets, in the
181	form of a black dot with a 1° diameter, and presented for 50ms near the external upper corner
182	of one of the two peripheral boxes. Such a small cue was used in order to avoid possible
183	phenomena of perceptual interference with the subsequent, near-threshold target.
184	Experimental designs and statistical analyses. In the nonpredictive cue experiment,
185	each of the eight MEG recording sessions consisted of 110 trials, including 88 stimulus-
186	present trials (in which stimuli at threshold contrast were presented either in the left or right

RUNNING TITLE: Effects of Nonpredictive and Predictive Spatial Cues on Consciousness

187	lower visual quadrants) and 22 stimulus-absent trials (in which no stimulus was presented).
188	The total number of trials was 880, with 50% valid cue trials (352 trials), 50% invalid cue
189	trials (352 trials), and 176 catch trials. Fifty percent of the targets were presented at the cued
190	location (valid cue condition); the other 50% was presented at the uncued location (invalid
191	cue condition) (Fig. 1c). Trials within a recording session were presented in a different
192	randomized order for each subject.
193	In the experiment with predictive cues, parameters of stimulus size and timing of
194	presentation were the same as those used in the nonpredictive cue experiment, except that the

195 total number of trials on each of the eight MEG recording sessions consisted of 784 trials,

196 with 67% valid cue trials (448 trials), 33% invalid cue trials (224 trials), and 112 catch trials

197 (Fig. 1d).

198

199 Figure 1 a. Schematic representation of the sequence of events in an invalid-cue trial. b. Size of the stimuli and 200 exact location of presentation on the screen. The experiment with nonpredictive cues (NonPredCue) and the 201 experiment with predictive cues (*PredCue*) shared the same sequence of event and size of stimuli; c. in the 202 NonPredCue experiment 50% of cues were valid and 50% were invalid; d. in the PredCue experiment 67% of 203

cues were valid and 33% were invalid.

RUNNING TITLE: Effects of Nonpredictive and Predictive Spatial Cues on Consciousness

204	MFG recordings	Continuous MEG	recordings were	conducted at the CENIR
204	mbo recordings.	Continuous MLO	recolutings were	

205 (http://www.cenir.org) with an ELEKTA Neuromag TRIUX[®] machine (204 planar

- 206 gradiometers and 102 magnetometers) located in a magnetically shielded room with a
- sampling frequency rate of 1kHz and a bandwidth ranging from of 0.01 to 300 Hz. The
- recordings were then MaxFiltered (v2.2) (Taulu and Simola, 2006) to attenuate environmental
- 209 noise, Signal Space Separation (SSS) was then implemented, automatic detection of bad
- channels was conducted, data were filtered (1 to 250 Hz), and resampled at a rate of 250Hz,

and then converted in the Fieldtrip structure (RRID: SCR_004849;

212 <u>http://www.fieldtriptoolbox.org/</u>) (Oostenveld et al., 2011) to conduct further preprocessing

and analytic steps. Cardiac activity (electrocardiogram – ECG), vertical and horizontal EOG

signals were also recorded together with the electrophysiological data. The exact timing of the

215 presentation of the stimuli onset was corrected in accordance to the signal received from a

216 photodiode located in the MEG room, in order to adjust to the delay produced by the refresh

rate of the projector.

218 Preprocessing and Artifact Rejection. Additional preprocessing steps were conducted using 219 Fieldtrip and included an initial visual inspection of the recordings conducted by two of the 220 authors (D.J.B. and Z.R.) to exclude segments with artifacts and ensure data quality control. 221 Electroculogram (EOG) recordings from both vertical and horizontal sensors were then used 222 to reject trials in which eye movements (beyond 3°) occurred. Rejection thresholds for both 223 horizontal and vertical EOG traces was set to \pm .66V, corresponding to a deviation greater 224 than 3° of visual angle (and with the target at 6° of visual angle). Trials with excessive eye 225 movements and eye blinks (~10.52% of trials) were rejected offline from the MEG traces 226 according to the 3° threshold mentioned above. Signal from the photodiode was used to 227 discard 1) trials with a delay between the trigger and the photodiode greater than 300ms; 2) 228 trials with a delay between the cue and the target greater than 827ms; 3) trials in which the

RUNNING TITLE: Effects of Nonpredictive and Predictive Spatial Cues on Consciousness

229	delay between the trigger of the cue and the photodiode was greater than 40ms or smaller than
230	30ms, for a total of ~1% of the trials. Last, trials contaminated by muscular activity (jump or
231	movement) were rejected manually upon visual inspection (~15%). For the nonpredictive cue
232	experiment, out of the 15,840 trials acquired, 8517 trials were analyzed (right visual field:
233	seen invalid = 1033; seen valid = 1284; unseen invalid = 1056; unseen valid = 882; <i>left visual</i>
234	<i>field</i> : seen invalid = 1191; seen valid 1176; unseen invalid = 956; unseen valid = 939). For the
235	predictive cue experiment, out of the 10,796 trials acquired in total, 7454 trials were analyzed
236	(<i>right visual field</i> : seen invalid = 396; seen valid = 1588; unseen invalid = 812; unseen valid =
237	1379; <i>left visual field</i> : seen invalid = 639; seen valid 1144; unseen invalid = 576; unseen valid
238	= 1379) (see Table S1 for a subject-by-subject breakdown of the number of trials in each
239	condition remaining after artifact rejection).
240	Event-Related Magnetic Fields. Data from 102 neuromag channels was analyzed in this study.
241	A Matlab® script was used to separate the MEG continuous recordings into 2300ms-long
242	epochs (ranging from -1000 before the cue and 1300ms after the cue), and epochs from the
243	eight experimental conditions from each participant were then imported into Brainstorm
244	(Tadel et al., 2011). For each condition, event-related magnetic fields were then averaged
245	(weighted) along their entire length (2300ms).
246	Source reconstruction. Signal amplitude from the 15,000 cortical elemental dipoles
247	underlying the signals measured by the sensors were then estimated from the epochs using the
248	weighted minimum norm estimation (wMNE) imaging method as implemented in Brainstorm
249	(Tadel et al., 2011), which first identifies a current source density image fitting the data
250	through the forward model, and then favors solutions that are of minimum energy by using
251	source covariance as a prior. To use this method, a noise covariance matrix was estimated for
252	each subject from the recordings using the pre-stimulus interval (-1,000 to -2ms before the

253 presentation of the cue), while constrained source covariance model was used to model one

RUNNING TITLE: Effects of Nonpredictive and Predictive Spatial Cues on Consciousness

254	dipole, oriented normally to the surface. Further processing conducted on the sources per
255	participant consisted of z-score transformation of the signal with reference to the baseline
256	(from -1,000 to -2ms). A spatial smoothing kernel (FWHM = 3mm) was then applied on the
257	sources, that were then re-interpolated (projected) on a common template (default anatomy).
258	MRI recordings. High-resolution T1-weighted structural MRI images (MPRAGE sequence,
259	flip-angle, 9; Repetition Time, 2300ms; Echo Time, 4.18ms; voxel size: $1 \times 1 \times 1$ mm) were
260	acquired for each participant using a 3-T Siemens, TRIO whole-body MRI scanner (Siemens
261	Medical Solutions, Erlangen, Germany) located at the CENIR MRI center (Salpetriere
262	Hospital, Paris, France). After acquisition, images were then segmented using the FreeSurfer
263	"recon-all" pipeline (Fischl, 2012), and imported in Brainstorm (Tadel et al., 2011) for co-
264	registration purposes. MEG sensors and structural MRI images were first manually aligned
265	using the nasion/left ear/right ear (NAS/LPA/RPA) fiducial points recorded in the MEG file
266	and in the MRI MNI coordinates. Co-registration was then further refined using the "refine
267	using head points" option on Brainstorm, which uses an iterative closest point algorithm to fit
268	the head shape and the digitized scalp points. Additional details about the MRI-MEG co-
269	registration steps as done in Brainstorm can be found here (Tadel et al., 2019).
270	Behavioral Data Analysis. Response times (RTs) below 150ms (anticipated responses) and
271	above 1,800ms (delayed responses) were excluded from subsequent analyses (below 2% of
272	total number of trials). Independent sample <i>t</i> -tests were used to assess potential differences in
273	the thresholds sampled during the calibration sessions separately for invalid and valid cue
274	trials. Analysis of Variance (ANOVA) and Signal Detection Theory (SDT) analyses were
275	conducted to examine whether and how nonpredictive and predictive cues modulated visual
276	conscious perception. The Kolmogorov-Smirnov and the Shapiro Wilk test for normality were
277	conducted to examine whether the data on accuracy was normally distributed. For both RT
278	and Accuracy (in percentage), a 2 (seen, unseen) \times 2 (valid, invalid) repeated measures

RUNNING TITLE: Effects of Nonpredictive and Predictive Spatial Cues on Consciousness

279	ANOVA was conducted on correctly discriminated responses. These analyses were conducted
280	to examine behavioral differences between trials reported as seen or unseen under the valid
281	and invalid cue conditions. SDT was conducted to estimate changes in the signal to noise ratio
282	as a function of cue validity condition (d') , and to investigate whether the presence of a cue
283	could bias the observer towards a more liberal reporting threshold (<i>criterion</i>). For the d' ,
284	participants' performance was estimated using the standardized difference between target-
285	present (Hits: z(H)) and target-absent (false alarms: z(F)) trials, by diving the percentage of
286	correctly detected trials by the number of false alarms (FA: trials in which participants
287	reported having seen the stimulus); zero false alarm rates $(n = 12)$ were corrected using the
288	following formula $(FA = (FA + 0,5) / (FA + CR + 1,0))$ (Snodgrass and Corwin, 1988). The
289	greater the value of d' , the higher the quantity between the noise and the signal distribution
290	(i.e., the signal/noise ratio). The criterion (C) summarizes the distance of the threshold
291	relative to the noise distribution <i>B</i> from the threshold of an ideal observer $(-0.5 * ([z(H) +$
292	z(F)])). A negative value of C represents a more liberal threshold, while a positive value of C
293	represents a more conservative threshold. Both d' and C were estimated separately for valid
294	and invalid trials, and paired sample t -test was used to assess differences in d ' and criterion
295	between these two conditions.
296	<i>MEG data analysis.</i> In parallel with the behavioral analyses, 2 (seen, unseen) \times 2 (valid,
297	invalid) \times 2 (left, right) repeated-measures ANOVAs were conducted on individuals'
298	estimated activity (z-scores) of reconstructed source images to examine how neuronal activity
299	induced by nonpredictive cues can enhance conscious perception. Spatiotemporal cluster-
300	based permutation tests (Maris and Oostenveld, 2007) were used for comparing main effects
301	and interactions between brain activations in the time window between 0 and 800ms (locked
302	to cue onset), with the number of permutations set to 1000 and the alpha threshold level set to
303	0.05 for all tests.

RUNNING TITLE: Effects of Nonpredictive and Predictive Spatial Cues on Consciousness

304	Connectivity Analysis. To examine the modulation in connectivity between brain areas as a
305	result of the experimental conditions, we estimated leakage-controlled (orthogonalized) high-
306	gamma (60 to 90 Hz) amplitude envelope correlation (AEC) (Brookes et al., 2012; Colclough
307	et al., 2015) of eighteen regions of interest (ROIs). Analyses were conducted solely on the
308	high-gamma frequency band because of the extensive knowledge on the role of the oscillatory
309	synchronization in this frequency band in spatial attention and its modulation of visual areas
310	(Tallon-Baudry et al., 2005; Magazzini and Singh, 2018; Fiebelkorn and Kastner, 2019).
311	ROIs were selected on the basis of previous results (Corbetta and Shulman, 2002; Fan et al.,
312	2005; Tallon-Baudry et al., 2005; Bressler et al., 2008; Chica et al., 2013c; Chica et al.,
313	2016b; Xuan et al., 2016), showing their involvement in attention-related processes. In
314	addition, areas of the ventral visual stream were also added to the ROI analyses to examine
315	potential frontoparietal modulation of activity in early and late visual areas. The ROIs were
316	created using Brainstorm (Tadel et al., 2011), seed vertices and area (in cm ²) of the ROIs are
317	listed in Table 1 (in MNI coordinates). Paired sample <i>t</i> -tests ($p \le .05$, FDR corrected) were
318	used to compare the AEC estimates across experimental conditions.
319	Results
320	Does the validity of nonpredictive cues affect participants' response to visual Gabor
321	targets? To answer this question, we examined behavioral responses to seen and unseen
322	targets separately for valid and invalid nonpredictive cues. Valid cues, compared to invalid
323	cues, lowered the response criterion (mean \pm SD valid: 0.85 \pm 0.28; invalid: 1.03 \pm 0.27; <i>t</i> (17)
324	= -2.82; $p \le 0.05$), and increased the percentage of detected targets (mean ± SD valid: 0.57 ±
325	0.09; invalid: 0.52 ± 0.11 ; $t(17) = -3.08$; $p < .01$). However, sensitivity (<i>d</i> ') was similar for
326	valid and invalid trials (valid: 2.30 ± 0.57 ; invalid: 2.29 ± 0.47 ; $t(17) \le 1$) (see Fig 2). These
327	results did not depend on different perceptual thresholds resulting from the calibration

session, because these thresholds were similar for valid trials (43.98%) and for invalid trials

RUNNING TITLE: Effects of Nonpredictive and Predictive Spatial Cues on Consciousness

329	(43.99%: t <	< 1). Left- and	right-sided	targets evoked	d a similar nu	mber of correc	t responses
	() -		0				

- 330 (sum of the total number of correctly discriminated targets presented to the left visual field:
- 331 3,489; mean \pm SD: 194.83 \pm 37.05; sum of the total number of correctly discriminated targets
- presented to the right visual field: 3,507; mean \pm SD: 194.83 \pm 33.6; Wilcoxon signed-rank
- test = 76; p = .70; Bayesian Wilcoxon signed-rank test BF₁₀ = 0.56, with median posterior δ =
- 334 -0.079, 95% CI [-1.07, 0.91]).
- As expected, participants were more accurate in discriminating the orientation of *Seen*
- targets (79.2 \pm 14.0%) than that of *Unseen* targets (50.2 \pm 7.0%) [ANOVA with
- 337 Consciousness (seen, unseen), Visual Field (left, right), and Validity (valid, invalid) as factors,

338 $F_{(1,17)} = 85.60; p < .0001; \eta^2 = .84$] (Fig 2a). No other factors or interactions reached

339 statistical significance.

340 A similar ANOVA conducted on RTs (see **Fig 2b**) revealed a main effect of

- 341 *Consciousness* ($F_{(1,17)} = 102.65$; p < .0001; $\eta^2 = .86$), because participants were slower for
- 342 Seen targets $(1034 \pm 115 \text{ ms})$ than for Unseen targets $(601 \pm 190 \text{ ms})$. No other factors or
- 343 interactions reached significance.

RUNNING TITLE: Effects of Nonpredictive and Predictive Spatial Cues on Consciousness

Figure 2. Results of the behavioral analyses conducted on performance with nonpredictive cues (a.-e.) and with predictive cues (f.-j.). a. and b.
 report result of the ANOVA conducted on Accuracy (in percentage) and RTs (in ms), respectively, while c., d., and e report result of the Signal
 Detection Theory analysis for d', criterion, and detection (in percentage). f. and g. report result of the ANOVA conducted on Accuracy (in
 percentage) and RT (in ms), respectively, while h., i., and j. report results of the SDT analysis for d prime, criterion, and detection (in
 percentage).

RUNNING TITLE: Effects of Nonpredictive and Predictive Spatial Cues on Consciousness

RUNNING TITLE: Effects of Nonpredictive and Predictive Spatial Cues on Consciousness

366	Figure 3. a. When preceded by nonpredictive cues, seen targets evoked two clusters of brain
367	activity compared to unseen targets. Cluster 1 occurred in the 400 - 800ms time window after
368	cue onset, was lateralized to the right hemisphere, and encompassed a frontoparietal feed-
369	forward and feedback sweeps (around 456ms), with subsequent diffusion to widespread
370	bilateral activation. Cluster 2 occurred also in the 400 - 800ms time window after cue onset,
371	but was lateralized to the left hemisphere, and encompassed a widespread brain activation. b.
372	Average signal changes in the ROIs separately for the Seen (solid line) and Unseen (dashed
373	line) condition. The area in green highlights the time interval in which cluster-corrected
374	analysis showed a significant difference between the two signals.
375	Does the validity of nonpredictive cues modulate the connectivity between ROIs associated
376	with the conscious report of visual Gabor targets? To answer this question, we examined
377	functional connectivity associated to seen and unseen targets separately for valid and invalid
378	nonpredictive cues. Whole-trial (0 – 800ms) high-gamma band (60 - 90Hz) amplitude
379	envelope correlation analyses conducted among attention-related ROIs (see Table 1) revealed
380	a strong connectivity within visual ventral areas and between these areas and the anterior
381	insular cortex (AIC), bilaterally for <i>Seen</i> compared to <i>Unseen</i> trials ($p \le .001$, FDR corrected;
382	Fig 4a). There was no evidence for a difference in connectivity between Valid and Invalid
383	trials. Differences ($ps < .005$, FDR corrected; Fig 4b and c) emerged in the connectivity
384	between Seen Valid and Unseen Valid trials across areas within the visual ventral stream as
385	well as with the right inferior parietal lobule (IPL) and with the right AIC. There was also
386	increased connectivity of the right AIC with areas in the visual ventral cortical stream and in
387	Seen Invalid trials than Unseen Invalid trials.

RUNNING TITLE: Effects of Nonpredictive and Predictive Spatial Cues on Consciousness

389 Figure 4. Pairwise functional connectivity (estimated using amplitude envelope correlation, 390 AEC, of the whole duration of the trials -0 to 800ms) between ROIs, with weighted edges 391 denoting significant t-score values (overall ps < .005, FDR corrected) obtained from the 392 contrast between the conditions of interest. a. difference in AEC between Seen and Unseen 393 trials in the nonpredictive cue (*NonPredCue*) experiment; **b.** difference in the AEC between 394 Seen Valid and Unseen Valid in the NonPredCue experiment; c. difference in the AEC Seen 395 Invalid and Unseen Invalid in the NonPredCue experiment; d. difference in the AEC Seen 396 Valid and Seen Invalid in the predictive cue (PredCue) experiment.

Thus, the validity of nonpredictive cues modulated participants' conscious reports of visual Gabors for both behavioral performance and MEG connectivity measures. Differences also emerged between seen and unseen trials that were not confined to the occipital lobe, but were quickly followed by frontoparietal activity (approximately 150ms after the target and 50ms after the occipital activation), and subsequently by a widespread activity that lasted to the end of the trial, and resembled the pattern described as the Global Neuronal Workspace (Mashour et al., 2020).

RUNNING TITLE: Effects of Nonpredictive and Predictive Spatial Cues on Consciousness

404 Does the validity of predictive cues affect participants' response to visual Gabor targets? To

- 405 address this issue, we examined behavioral responses to seen and unseen targets separately for
- 406 valid and invalid predictive cues. As did nonpredictive cues, also valid predictive cues,
- 407 compared to invalid predictive cues, lowered the response criterion (mean \pm SD valid: (0.85 \pm

408 0.28; 1.26 ± 0.15 ; (t(13) = -6.37; p < .001), because participants adopted a more liberal

409 response threshold in the valid cue condition, and increased the percentage of detected targets

410 (mean \pm SD valid: 54.11 % \pm 7.13%; invalid: 43.33 \pm 5.14%; *t*(13) = 8.06; *p* <.001).

However, *sensitivity* (d') was greater for invalid trials (2.20 ± 0.33) than for valid trials (1.91)

412 ± 0.54) (t(13) = -2.29; $p \le .05$) (see **Fig 2**). These results did not depend on possible

differences between the thresholds established separately for valid and invalid trials cue trials

414 during the calibration session (valid trials: 59.21; invalid trials: 60.79; t < 1). Unexpectedly,

415 right-sided targets evoked more correct responses that left-sided ones (right visual field, mean

416 \pm SD: 220.21 \pm 35.42; left visual field, 194.72 \pm 21.89; Wilcoxon signed-rank test = 6.00; p <

417 .01; Bayesian Wilcoxon signed-rank test BF₁₀ = 4.06, with median posterior δ = -1.19, 95%

418 CI [-2.51, 0.01]).

419 Results of the ANOVA conducted on Accuracy percentages to the discrimination task

420 (after ensuring that these percentages followed a normal distribution by using the

421 Kolmogorov-Smirnov and the Shapiro Wilk tests for normality) are shown in Fig 2f. There

422 was a main effect of the factor *Consciousness* ($F_{(1,13)} = 31.62$; p < .0001; $\eta^2 = .71$), because

423 participants were more accurate for *Seen* trials (72.87 \pm 15.2%) than for *Unseen* (49.71 \pm

424 5.9%) trials. No other effect or interaction reached significance, except for the interactions

between *Consciousness* and *Validity* ($F_{(1,13)} = 11.9$; p < .01; $\eta^2 = .48$) and between *Visual*

426 *Field* and *Validity* ($F_{(1,13)} = 8.89$; $p \le .05$; $\eta^2 = .41$). Pairwise comparisons showed that the

427 difference between valid and invalid trials was significant for the seen trials (valid: $74.88 \pm$

428 14.41%; invalid: 70.86 \pm 16.14%; $p \le .01$), but not for the unseen trials (valid: 48.91 \pm 5.13%;

RUNNING TITLE: Effects of Nonpredictive and Predictive Spatial Cues on Consciousness

429	invalid 50.51 \pm 6.52%; $p = .14$). Participants detected more validly cued targets than invalidly
430	cued targets in the right visual field (valid: 64.24 \pm 9.92%, invalid: 60.08 \pm 12.26%, $p \leq .01$),
431	but not in the left visual field (valid: $59.56 \pm 9.62\%$; invalid: $61.29 \pm 10.04\% p = .21$).
432	Results of the ANOVA conducted on the RTs (see Fig 2g) showed that participants
433	responded slower to <i>Seen</i> targets (1048 \pm 171ms) than to <i>Unseen</i> ones (640 \pm 259ms; F _(1,13) =
434	28.91; $p \le .0001$; $\eta^2 = .69$). The main effects of <i>Visual Field</i> and <i>Validity</i> did not reach
435	significance (both Fs < 1). <i>Consciousness</i> interacted with <i>Visual Field</i> ($F_{(1,13)} = 5.08$; $p < .05$;
436	η^2 = .28), because the seen/unseen difference was greater for left-sided targets (seen: 1,055 ±
437	168ms; unseen: 624 ± 249 ms; $p \le .001$) than for right-sided targets (seen: 1,040 ± 177;
438	unseen: 656 ± 272 ; $p < .001$).
439	Does the validity of predictive cues affect neural responses associated with the conscious
440	report of visual Gabor targets? We addressed this question by examining brain responses to
441	seen and unseen targets separately for valid and invalid predictive cues. Similar to the
442	experiment with nonpredictive cues, two clusters exceeding the threshold of randomization
443	distribution under H0 emerged for the seen vs unseen comparison ($ps < 0.001$), both in the
444	time window of 460 - 760ms after cue onset. The first cluster was lateralized to the right
445	hemisphere, the second was lateralized to the left hemisphere. Both started in the occipital
446	cortex and then spread to the parieto-temporal regions, without any evidence of involvement
447	of prefrontal regions. Consciousness interacted with Validity. Four clusters exceeding the
448	threshold of randomization distribution under H0 were found for the interaction term ((seen
449	valid <i>minus</i> unseen valid) <i>minus</i> (seen invalid <i>minus</i> unseen invalid)). The first cluster ($p \le p$
450	0.001) occurred in the 100 - 150ms time window after cue onset, and was lateralized to the
451	left visual cortex; the second cluster ($p < 0.05$), was also lateralized to the left visual cortex
452	and left IPL, in the 300 - 380ms time window after cue onset; the third cluster ($p < 0.05$)
453	occurred in the inferior temporal lobe of the right hemisphere and spanned across the time

454	window of 550 and 600ms after cue onset; the forth cluster ($p < 0.05$) was localized in the left
455	precuneus, extending into the left posterior cingulate cortex and spanned across the time
456	window of 580 and 600ms after cue onset. Fig 5 displays the follow-up analysis conducted in
457	the valid vs invalid comparison for the seen condition only (seen valid minus seen invalid).
458	Three clusters exceeded the threshold of randomization distribution under H0. A first cluster
459	(p < 0.001) was lateralized to the left hemisphere and occurred in the 50 - 400ms time
460	window after cue onset, spanning across visual cortex, to the parietal cortex (around 100ms
461	post-cue), prefrontal cortex (around 150ms post-cue), and temporoparietal cortex. A second
462	cluster ($p < 0.05$), occurred later, as a right-hemisphere occipito-parietal activation around
463	200ms post-cue, and then substantially resembled the activity found in the first cluster,
464	spanning across the frontoparietal cortex (around 240ms post-cue), and temporoparietal
465	cortex (around 280ms post-cue). The third cluster ($p < 0.05$) was lateralized to the left visual
466	cortex and included middle- and infero-temporal areas, the inferior frontal gyrus (around
467	470ms post-cue), the left frontal eye fields (524ms post-cue) and then temporoparietal,
468	inferior parietal, and inferior temporal areas.
469	Control analyses showed that there was no significant difference between the number
470	of MEG trials for left- and right-sided targets (left visual field mean \pm SD: 265.43 \pm 21.16;
471	right visual field; mean \pm SD: 266.79 \pm 26.91; Wilcoxon signed-rank test = 48.5; $p = 0.83$;
472	Bayesian Wilcoxon signed-rank test BF ₁₀ = 0.58, with median posterior δ = -0.073, 95% CI [-
473	1.11, 0.94]).

RUNNING TITLE: Effects of Nonpredictive and Predictive Spatial Cues on Consciousness

475 Figure 5. When preceded by valid predictive cues, seen targets evoked three clusters of brain 476 activity, compared to invalidly cued targets. a) Cluster 1 occurred in the 50-400ms time 477 window after cue onset and was lateralized to the left hemisphere (p < 0.001); Cluster 2 478 occurred in 200ms time-window after cue onset and was lateralized to the right hemisphere (p 479 < 0.05); Cluster 3: occurred 470ms after cue onset and lateralized to the left hemisphere. The 480 same valid-invalid comparison for unseen targets did not reveal any significant cluster. **b**) 481 average signal changes in the ROIs separately for the Seen Valid (solid line) and Seen Invalid 482 (dashed line) condition. The area in green highlights the time interval in which cluster-483 corrected analysis showed a significant difference between the two signals. 484 Does the validity of predictive cues modulate the connectivity between ROIs associated with 485 the conscious report of visual Gabor targets? We examined functional connectivity 486 associated to seen and unseen targets separately for valid and invalid predictive cues. High-487 gamma band (60 - 90Hz) amplitude envelope correlation analyses conducted on the ROIs revealed increased connectivity between the right AIC and the right temporo-occipital area for 488 489 Seen Valid vs Seen Invalid trials (see Fig 4d). The comparisons between connectivity patterns 490 in the Seen Valid vs Unseen Valid and the comparison between connectivity patterns in the

491 Seen Invalid vs Unseen Invalid did not yield statistically significant results.

RUNNING TITLE: Effects of Nonpredictive and Predictive Spatial Cues on Consciousness

492	Thus, similar to nonpredictive cues, also the validity of predictive cues modulated
493	participants' conscious reports of visual Gabors for both behavioral performance and neural
494	activity measures. Differences between seen and unseen trials with predictive cues emerged in
495	the post-target time period, but these were delayed in time compared to the same contrast with
496	nonpredictive cues. Bilateral activity started in the visual cortex, around 160ms after the
497	target, and was followed by mainly temporo-parietal activity, with prefrontal activity arising
498	only later in time (almost 300ms after the target). The interaction between attention and
499	consciousness showed four clusters of activation located in occipito-temporal regions that
500	spanned across both the cue-target and the post-target periods, possibly showing the site of
501	attentional modulation (Posner and Driver, 1992) rather than the source of it (Bressler et al.,
502	2008; Liu et al., 2016). The modulation produced by predictive cues on visual awareness was
503	also evident in the contrast between the functional connectivity patterns in valid and invalid
504	trials for seen targets, which again showed correlated activity in AIC and areas in the ventral
505	visual stream, bilaterally.
506	Cross-experiment comparison: different effects of nonpredictive and predictive cues on
507	visual conscious perception.
508	Did nonpredictive and predictive cues produce different effects on brain activity and
509	connectivity? Seen targets preceded by a nonpredictive cue evoked a significant cluster (Fig
510	6), occurring in the 210 - 300ms time window after cue onset, lateralized to the right
511	hemisphere, and encompassing an early activation in the middle and inferior frontal gyri, the
512	superior frontal gyrus and the temporoparietal junction (mainly located in the angular gyrus),
513	with subsequent diffusion to occipitotemporal regions (cluster-corrected Welch's t test
514	conducted in the cue-target period $(0 - 300 \text{ ms}), p \le .02)$.

RUNNING TITLE: Effects of Nonpredictive and Predictive Spatial Cues on Consciousness

Figure 6. MEG activity evoked by nonpredictive vs. predictive cues for Seen vs. Unseen
targets in the cue-target period (0 – 300 ms). a. One right-hemispheric cluster emerged in the
210-300ms time window, and included the temporoparietal junction and the prefrontal cortex.
b. Average signal changes in the ROIs separately for the experiments with nonpredictive cue
(solid line) and with predictive cues (dashed line). The area in green highlights the time
interval in which cluster-corrected analysis showed a significant difference between the two
signals.

RUNNING TITLE: Effects of Nonpredictive and Predictive Spatial Cues on Consciousness

531	Our results establish the existence of interaction patterns between spatial attention and
532	consciousness that vary based on the predictivity of the cue, and specify how attention
533	modulates conscious perception. Altogether, the contributions of nonpredictive and predictive
534	cues in improving target detection indicate that distinct spatiotemporal dynamics support the
535	flexible allocation of attentional resources for near-threshold visual information to reach a
536	conscious level of processing.
537	Valid spatial cues influence conscious reports. Both predictive and nonpredictive valid
538	cues increased the proportion of correctly detected targets. These results align with behavioral
539	evidence showing the modulation of orienting cues in increasing visual awareness (Ling and
540	Carrasco, 2006; Liu et al., 2009; Chica et al., 2011b; Sergent et al., 2013; Botta et al., 2017;
541	Vernet et al., 2019). However, only predictive cues improved performance on the
542	discrimination task, while Chica et al. (2011b) found effects of both nonpredictive and
543	predictive cues in a similar task. One important methodological difference between our study
544	and the Chica et al. (2011b) study is that in the current experiments two supra-threshold
545	Gabor patches were presented 500ms after the target to collect the discrimination response.
546	This screen could have increased the perceptual difficulty of the task and therefore reduced or
547	abolished the effects of nonpredictive cues (Kerzel et al., 2009). Unexpectedly, valid
548	predictive cues decreased perceptual sensitivity. This result is at odds with previous
549	observations of increased perceptual sensitivity (Chica et al., 2011b) and contrast sensitivity
550	(Carrasco, 2018) at attended locations with predictive cues. Possible masking effects caused
551	by the post-target display might explain our finding. Validly cued targets might have suffered
552	interference from the preceding cue and the subsequent response Gabors, while invalid targets
553	were only masked by the response Gabors. Facilitatory effects induced by peripheral cues are
554	typically much larger for discrimination than for detection tasks (Lupiáñez et al., 1997;
555	Lupiáñez et al., 2001; Chica et al., 2006). Consequently, the possible increased difficulty of

RUNNING TITLE: Effects of Nonpredictive and Predictive Spatial Cues on Consciousness

556	detecting a near-threshold target, might have reduced the behavioral effects of spatial
557	attention. Peripheral cues (whether nonpredictive or predictive) produced a shift in the
558	response criterion towards a more liberal response in valid compared to invalid trials,
559	indicating that orienting cues modulated decision-related processes in our setting.
560	Distinct neural processes elicited by nonpredictive and predictive cues. MEG results
561	indicated distinct spatiotemporal dynamics across tasks, both at the source level and in the
562	functional connectivity patterns. Nonpredictive cues elicited a greater activation of the right
563	TPJ and right prefrontal cortex in the seen <i>minus</i> unseen contrast compared to predictive cues.
564	This network is connected by the ventral branch of the superior longitudinal fasciculus (SLF
565	III) (Thiebaut De Schotten et al., 2011), and involved in exogenous attention (Corbetta and
566	Shulman, 2002; Chica et al., 2011a). Interestingly, comparison of brain activity elicited by
567	nonpredictive versus predictive cues (irrespective of participants' responses), showed a right-
568	hemispheric TPJ-prefrontal cluster. The reduced TPJ activity for predictive cues compared to
569	nonpredictive cues is consistent with evidence of TPJ deactivation during endogenous
570	orienting (Shulman et al., 2007; Doricchi et al., 2010). Moreover, the combination of spatial
571	and temporal resolution of MEG results demonstrated that this reduced TPJ activation for
572	predictive as compared to nonpredictive cue was preceded by deactivation of the prefrontal
573	nodes of the SLF III network in the middle and inferior frontal gyri. The statistically higher
574	frequency of valid trials in the predictive cue experiment than in the nonpredictive cue
575	experiment might explain the occurrence of different preparatory states after cue presentation
576	between the two experiments. This possibility may account for the absence of such effects in
577	the task with nonpredictive cues, which did not induce any probabilistic expectations.
578	Together with the behavioral validity effect occurring with predictive cues, this result
579	suggests that cue predictivity enhances attentional modulation. Interestingly, while the
580	occipital activation was bilateral, the IPL-TPJ activations lasted longer (by around 100ms)

RUNNING TITLE: Effects of Nonpredictive and Predictive Spatial Cues on Consciousness

581	only in the right hemisphere, in line with abundant evidence on anatomical and functional
582	asymmetries in frontoparietal attention networks favoring the right hemisphere (reviewed in
583	Bartolomeo and Malkinson, 2019; see also Spagna et al., 2020b), and specifically with the
584	role of the right TPJ in attentional orienting (Doricchi et al., 2010; Chica et al., 2014a), and in
585	the processing of behaviorally relevant stimuli (Macaluso and Doricchi, 2013).
586	Frontoparietal networks and visual awareness. Dysfunction of SLF II and III
587	networks in the right hemisphere is a typical finding in brain-damaged patients with left visual
588	neglect, who have impaired awareness of left-sided events (Bartolomeo et al., 2012). The
589	frontoparietal activity found with nonpredictive cues seems consistent with the forward and
590	backward sweeps associated with the awareness of a visual target (Lamme, 2006), and
591	suggests a role for exogenous attention in this process. The relationship of these
592	forward/backward sweeps with behavioral changes in criterion, but not in sensitivity, might
593	be consistent with the known role of frontoparietal networks in the activation of general
594	processes, such as the alerting system (Périn et al., 2010; Chica et al., 2016a; Baria et al.,
595	2017; Petersen et al., 2017; Podvalny et al., 2019). An interaction of nonpredictive cues with
596	alerting is also supported by the functional connectivity analysis, which showed a role of the
597	right AIC in differentiating seen vs. unseen trials separately for valid and invalid trials (see
598	Fig 6). This result is consistent with evidence showing the critical role of the AIC in the
599	production and maintenance of alertness, both in terms of BOLD response and of functional
600	connectivity (Cai et al., 2014; Sadaghiani and D'Esposito, 2015; Chica et al., 2016a; Coste
601	and Kleinschmidt, 2016; Han et al., 2019; Haupt et al., 2019). As a node of the SLF III
602	network, the AIC may have an important role in signaling behaviorally relevant stimuli
603	(Uddin, 2015).
604	In conclusion, four results of this study are broadly consistent with the gateway

605 hypothesis (Posner, 1994), and demonstrate how the interaction between attention and visual

RUNNING TITLE: Effects of Nonpredictive and Predictive Spatial Cues on Consciousness

606	conscious processing heavily depends on the specific attentional component manipulated.
607	First, both predictive and nonpredictive visual cues modulated behavioral performance in the
608	form of a shift towards a more liberal response criterion. Second, peripheral predictive cues
609	were able to modulate visual conscious processing, as shown by the interaction with response
610	accuracy, in line with previous evidence (Chica et al., 2013a). Third, predictive cues also
611	interacted with consciousness at the neural level, and induced increased activity in visual
612	areas, possibly related to the site of attentional modulation. Last, high-gamma band functional
613	connectivity patterns involving the AIC and the visual areas for seen trials differed across task
614	conditions, with valid cues inducing greater modulation of the visual areas compared to
615	invalid cues.
616	It remains possible that attention is required for conscious processing only when there
617	is some competition between the stimuli to be resolved (Tsuchiya and Koch, 2014; Davidson
618	et al., 2018), which was the case in our setting with two possible target locations.
619	Alternatively, even an isolated stimulus might need some attentional capture to be
620	consciously processed. Evidence from visual mental imagery studies, showing the implication
621	of frontoparietal attention networks within the conscious imagination of an object in its
622	absence, and thus without any competition (Spagna et al., 2020a), might support this
623	possibility, which needs to be empirically assessed. Altogether, the comparison of the
624	spatiotemporal dynamics underlying the interaction between nonpredictive and predictive
625	attention with consciousness shown here confirmed that these distinct contributions span
626	across behavioral, neural, and connectivity measures, and underlines the role of the right AIC
627	in visual awareness.

RUNNING TITLE: Effects of Nonpredictive and Predictive Spatial Cues on Consciousness

629 Author Contributions

- 630 D.B., A.B.C., and P.B. designed the experiments; A.S., D.B., and Z.R. analyzed the data. All
- authors discussed the results and contributed to writing up the report. Behavioral data and the
- 632 code to reproduce the figures (built using Python on Spyder) can be found on the <u>GitHub page</u>
- 633 of A.S. We thank Fabrizio Doricchi, Isabella Elaine Rosario, and Catherine Tallon-Baudry for
- 634 providing extensive comments on this manuscript.
- 635

RUNNING TITLE: Effects of Nonpredictive and Predictive Spatial Cues on Consciousness

636 Conflict of Interest Statement

637 The authors report no conflict of interest.

RUNNING TITLE: Effects of Nonpredictive and Predictive Spatial Cues on Consciousness

639 640 641	Funding		
	Funded by an ICM fellowship to A.S., by project eraNET-NEURON 2009 "BEYONDVIS" to		
642	D.J.B and P.B P.B. is also supported by the Agence Nationale de la Recherche through		
643	ANR-16-CE37-0005 and ANR-10-IAIHU-06, and by the Fondation pour la Recherche sur		
644	les AVC through FR-AVC-017.		
645			

646

648 649	References
650	Baillet S (2017) Magnetoencephalography for brain electrophysiology and imaging. Nature
651	neuroscience 20:327.
652	Baria AT, Maniscalco B, He BJ (2017) Initial-state-dependent, robust, transient neural
653	dynamics encode conscious visual perception. PLoS Comput Biol 13:e1005806.
654	Bartolomeo P. Malkinson TS (2019) Hemispheric lateralization of attention processes in the
655	human brain. Current opinion in psychology 29:90-96.
656	Bartolomeo P. Decaix C. Siéroff E (2007) The phenomenology of endogenous orienting.
657	Consciousness and Cognition 16:144-161.
658	Bartolomeo P, Thiebaut De Schotten M, Chica AB (2012) Brain networks of visuospatial
659	attention and their disruption in visual neglect. Frontiers in human neuroscience
660	6:110.
661	Botta F. Ródenas E. Chica AB (2017) Target bottom-up strength determines the extent of
662	attentional modulations on conscious perception. Experimental brain research
663	235:2109-2124.
664	Bressler SL, Tang W, Sylvester CM, Shulman GL, Corbetta M (2008) Top-down control of
665	human visual cortex by frontal and parietal cortex in anticipatory visual spatial
666	attention. Journal of Neuroscience 28:10056-10061.
667	Brookes MJ, Woolrich MW, Barnes GR (2012) Measuring functional connectivity in MEG: a
668	multivariate approach insensitive to linear source leakage. Neuroimage 63:910-920.
669	Cai W, Ryali S, Chen T, Li C-SR, Menon V (2014) Dissociable roles of right inferior frontal
670	cortex and anterior insula in inhibitory control: evidence from intrinsic and task-
671	related functional parcellation, connectivity, and response profile analyses across
672	multiple datasets. Journal of Neuroscience 34:14652-14667.
673	Carrasco M (2018) How visual spatial attention alters perception. Cognitive processing
674	19:77-88.
675	Chica AB, Lupiánez J, Bartolomeo P (2006) Dissociating inhibition of return from endogenous
676	orienting of spatial attention: Evidence from detection and discrimination tasks.
677	Cognitive neuropsychology 23:1015-1034.
678	Chica AB, Bartolomeo P, Valero-Cabré A (2011a) Dorsal and ventral parietal contributions to
679	spatial orienting in the human brain. Journal of Neuroscience 31:8143-8149.
680	Chica AB, Bartolomeo P, Lupianez J (2013a) Two cognitive and neural systems for
681	endogenous and exogenous spatial attention. Behav Brain Res 237:107-123.
682	Chica AB, Bartolomeo P, Lupiáñez J (2013b) Two cognitive and neural systems for
683	endogenous and exogenous spatial attention. Behavioural brain research 237:107-
684	123.
685	Chica AB, Bourgeois A, Bartolomeo P (2014a) On the role of the ventral attention system in
686	spatial orienting. Frontiers in Human Neuroscience 8:235.
687	Chica AB, Paz-Alonso PM, Valero-Cabre A, Bartolomeo P (2013c) Neural bases of the
688	interactions between spatial attention and conscious perception. Cerebral Cortex
689	23:1269-1279.
690	Chica AB, Martín-Arévalo E, Botta F, Lupiánez J (2014b) The Spatial Orienting paradigm: How
691	to design and interpret spatial attention experiments. Neuroscience & Biobehavioral
692	Reviews 40:35-51.
693	Chica AB, Bayle DJ, Botta F, Bartolomeo P, Paz-Alonso PM (2016a) Interactions between
694	phasic alerting and consciousness in the fronto-striatal network. Sci Rep 6.

695 696 697	Chica AB, Bayle DJ, Botta F, Bartolomeo P, Paz-Alonso PM (2016b) Interactions between phasic alerting and consciousness in the fronto-striatal network. Scientific reports
608	Chica AR, Lacanonara S, Chanas L, Valero Cabré A, Dericchi E, Lupiáñoz L, Partolemoo R
600	(2011b) Spatial attention and conscious percention: the role of and gapous and
700	exogenous grienting Attention Percention & Psychophysics 72:1065 1081
700	Colclough GL Brookes ML Smith SM Woolrich MW (2015) A symmetric multivariate leakage
702	correction for MEG connectomes. Neuroimage 117:439-448.
703	Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the
704	brain. Nature reviews neuroscience 3:201-215.
705	Coste CP, Kleinschmidt A (2016) Cingulo-opercular network activity maintains alertness.
706	Neuroimage 128:264-272.
707	Davidson MJ, Alais D, van Boxtel JJ, Tsuchiya N (2018) Attention periodically samples
708	competing stimuli during binocular rivalry. Elife 7:e40868.
709	Dehaene S, Changeux J-P, Naccache L, Sackur J, Sergent C (2006) Conscious, preconscious,
710	and subliminal processing: a testable taxonomy. Trends Cogn Sci 10:204-211.
711	Doricchi F, Macci E, Silvetti M, Macaluso E (2010) Neural correlates of the spatial and
712	expectancy components of endogenous and stimulus-driven orienting of attention in
713	the Posner task. Cerebral Cortex 20:1574-1585.
714	Fan J, McCandliss BD, Sommer T, Raz A, Posner MI (2002) Testing the efficiency and
715	independence of attentional networks. Journal of cognitive neuroscience 14:340-347.
716	Fan J, McCandliss BD, Fossella J, Flombaum JI, Posner MI (2005) The activation of attentional
717	networks. Neuroimage 26:471-479.
718	Fiebelkorn IC, Kastner S (2019) A rhythmic theory of attention. Trends in cognitive sciences
719	23:87-101.
720	Fischl B (2012) FreeSurfer. Neuroimage 62:774-781.
721	Funes MJ, Lupiáñez J, Milliken B (2007) Separate mechanisms recruited by exogenous and
722	endogenous spatial cues: Evidence from a spatial Stroop paradigm. Journal of
723	Experimental Psychology: Human Perception and Performance 33:348.
724	Han SW, Eaton HP, Marois R (2019) Functional fractionation of the Cingulo-opercular
725	network: alerting insula and updating cingulate. Cerebral Cortex 29:2624-2638.
726	Haupt M, Ruiz-Rizzo AL, Sorg C, Finke K (2019) Phasic alerting effects on visual processing
727	speed are associated with intrinsic functional connectivity in the cingulo-opercular
728	network. Neurolmage 196:216-226.
729	Kentridge RW, Nijboer TC, Heywood CA (2008) Attended but unseen: Visual attention is not
730	sufficient for visual awareness. Neuropsychologia 46:864-869.
731	Kerzel D, Zarian L, Souto D (2009) Involuntary cueing effects on accuracy measures: Stimulus
732	and task dependence. Journal of Vision 9:16-16.
733	Koch C, Tsuchiya N (2007) Attention and consciousness: two distinct brain processes. Trends
734	in cognitive sciences 11:16-22.
735	Lamme VA (2006) Towards a true neural stance on consciousness. Trends in cognitive
736	sciences 10:494-501.
737	Ling S, Carrasco M (2006) Sustained and transient covert attention enhance the signal via
738	different contrast response functions. Vision research 46:1210-1220.
739	Liu T, Abrams J, Carrasco M (2009) Voluntary attention enhances contrast appearance.
740	Psychological science 20:354-362.

741	Liu Y, Bengson J, Huang H, Mangun GR, Ding M (2016) Top-down modulation of neural
742	activity in anticipatory visual attention: control mechanisms revealed by
743	simultaneous EEG-fMRI. Cerebral Cortex 26:517-529.
744	Lupiáñez J, Milán EG, Tornay FJ, Madrid E, Tudela P (1997) Does IOR occur in discrimination
745	tasks? Yes, it does, but later. Perception & psychophysics 59:1241-1254.
746	Lupiáñez J, Milliken B, Solano C, Weaver B, Tipper SP (2001) On the strategic modulation of
747	the time course of facilitation and inhibition of return. The Quarterly Journal of
748	Experimental Psychology: Section A 54:753-773.
749	Macaluso E, Doricchi F (2013) Attention and predictions: control of spatial attention beyond
750	the endogenous-exogenous dichotomy. Frontiers in human neuroscience 7:685.
751	Magazzini L, Singh KD (2018) Spatial attention modulates visual gamma oscillations across
752	the human ventral stream. Neuroimage 166:219-229.
753	Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG-and MEG-data. Journal
754	of neuroscience methods 164:177-190.
755	Mashour GA, Roelfsema P, Changeux J-P, Dehaene S (2020) Conscious processing and the
756	global neuronal workspace hypothesis. Neuron 105:776-798.
757	Oostenveld R, Fries P, Maris E, Schoffelen J-M (2011) FieldTrip: open source software for
758	advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell
759	Neurosci 2011:1.
760	Périn B, Godefroy O, Fall S, de Marco G (2010) Alertness in young healthy subjects: an fMRI
761	study of brain region interactivity enhanced by a warning signal. Brain and cognition
762	72:271-281.
763	Petersen A, Petersen AH, Bundesen C, Vangkilde S, Habekost T (2017) The effect of phasic
764	auditory alerting on visual perception. Cognition 165:73-81.
765	Podvalny E, Flounders MW, King LE, Holroyd T, He BJ (2019) A dual role of prestimulus
766	spontaneous neural activity in visual object recognition. Nature communications
767	10:1-13.
768	Portin K, Vanni S, Virsu V, Hari R (1999) Stronger occipital cortical activation to lower than
769	upper visual field stimuli. Neuromagnetic recordings. Exp Brain Res 124:287-294.
770	Posner MI (1980) Orienting of attention. Quarterly journal of experimental psychology 32:3-
771	25.
772	Posner MI (1994) Attention: the mechanisms of consciousness. Proceedings of the National
773	Academy of Sciences 91:7398-7403.
774	Posner MI, Driver J (1992) The neurobiology of selective attention. Current opinion in
775	neurobiology 2:165-169.
776	Sadaghiani S, D'Esposito M (2015) Functional characterization of the cingulo-opercular
777	network in the maintenance of tonic alertness. Cerebral Cortex 25:2763-2773.
778	Sergent C, Wyart V, Babo-Rebelo M, Cohen L, Naccache L, Tallon-Baudry C (2013) Cueing
779	attention after the stimulus is gone can retrospectively trigger conscious perception.
780	Current biology 23:150-155.
781	Shulman GL, Astafiev SV, McAvoy MP, d'Avossa G, Corbetta M (2007) Right TPJ deactivation
782	during visual search: functional significance and support for a filter hypothesis.
783	Cerebral Cortex 17:2625-2633.
784	Snodgrass JG, Corwin J (1988) Pragmatics of measuring recognition memory: applications to
785	dementia and amnesia. J Exp Psychol Gen 117:34.
786	Spagna A, Mackie M-A, Fan J (2015) Supramodal executive control of attention. Frontiers in
787	psychology 6:65.

RUNNING TITLE: Effects of Nonpredictive and Predictive Spatial Cues on Consciousness

788 789 790	Spagna A, Hajhajate D, Liu J, Bartolomeo P (2020a) Visual mental imagery engages the left fusiform gyrus, but not the early visual cortex: a meta-analysis of neuroimaging evidence. BioRxiv.
791 792	Spagna A, Kim TH, Wu T, Fan J (2020b) Right hemisphere superiority for executive control of attention. Cortex 122:263-276.
793	Tadel F. Baillet S. Mosher JC. Pantazis D. Leahy RM (2011) Brainstorm: a user-friendly
794	application for MEG/EEG analysis. Comput Intell Neurosci 2011:879716.
795	Tadel F, Bock EA, Niso G, Mosher JC, Cousineau M, Pantazis D, Leahy RM, Baillet S (2019)
796	MEG/EEG group analysis with Brainstorm. Front Neurosci 13:76.
797	Tallon-Baudry C (2012) On the neural mechanisms subserving consciousness and attention.
798	Front Psychol 2:397.
799	Tallon-Baudry C, Bertrand O, Hénaff M-A, Isnard J, Fischer C (2005) Attention modulates
800	gamma-band oscillations differently in the human lateral occipital cortex and
801	fusiform gyrus. Cerebral cortex 15:654-662.
802	Taulu S, Simola J (2006) Spatiotemporal signal space separation method for rejecting nearby
803	interference in MEG measurements. Phys Med Biol 51:1759.
804	Thiebaut De Schotten M, Dell'Acqua F, Forkel S, Simmons A, Vergani F, Murphy DG, Catani M
805	(2011) A lateralized brain network for visuo-spatial attention. Nature Precedings:1-1.
806	Tsuchiya N, Koch C (2014) On the relationship between consciousness and attention: MIT
807	Press.
808	Tsuchiya N, Koch C (2016) The relationship between consciousness and top-down attention.
809	In: The neurology of conclousness, pp /1-91: Elsevier.
810	Uddin LQ (2015) Salience processing and insular cortical function and dysfunction. Nature
811 010	reviews neuroscience 16:55-61.
01Z 012	van Boxter JJ, Tsuchiya N, Koch C (2010) Opposing effects of attention and consciousness on
015 917	Alterimages. Proceedings of the National Academy of Sciences 107:8883-8888.
014 815	visuospatial attention increases visual awareness independent of visual
815 816	discrimination sensitivity. Neuronsychologia 128:297-304
817	Wyart V. Tallon-Baudry C (2008) Neural dissociation between visual awareness and spatial
818	attention 1 Neurosci 28:2667-2679
819	Xuan B. Mackie M-A. Spagna A. Wu T. Tian Y. Hof PR. Fan J (2016) The activation of
820	interactive attentional networks. NeuroImage 129:308-319.
821	Ŭ

RUNNING TITLE: Effects of Nonpredictive and Predictive Spatial Cues on Consciousness

823

Tables

ROI	X	У	Z	area
Left V1	-26	-99	7	12.63
Right V1	25	99	9	17.03
Left OT	-45	-88	-10	12.69
Right OT	45	-80	-17	12.67
Left hV4	-25	-95	-20	10.78
Right hV4	16	-95	-16	7.62
Left Fusiform	-34	-50	-21	9.82
Right Fusiform	34	-50	-21	9.59
Left SPL	-28	-60	57	16.64
Right SPL	21	-39	62	16.17
Left IPL	-27	-82	45	16.65
Right IPL	31	-82	43	16.96
Left TPJ	-62	-55	17	42.86
Right TPJ	67	-38	20	34.75
Left Ant Insula	-35	21	3	13.5
Right Ant Insula	35	21	3	13.82
Left FEF	-47	14	52	14.17
Right FEF	47	14	53	12.28

Table 1. MNI Coordinates and size of the area (in cm²) used in the connectivity analyses.

Note: ROIs were selected based on results from previous studies (Corbetta and Shulman,
2002; Fan et al., 2005; Tallon-Baudry et al., 2005; Bressler et al., 2008; Chica et al., 2013c;
Chica et al., 2016b; Xuan et al., 2016) showing the involvement of these areas in attentionrelated processes. In addition, areas of the ventral visual stream were also added to the ROI
analyses to examine the potential modulation of the activity in attention network regions on

RUNNING TITLE: Effects of Nonpredictive and Predictive Spatial Cues on Consciousness

- 829 early and late visual areas. Seed vertices of the ROIs are reported in MNI coordinates, and the
- 830 area of the ROI is reported in cm^2 .

a.

c. NonPredCue AEC: Seen Invalid vs Unseen Invalid (pfdr <.005)

