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Abstract. It is shown that every set af points in the plane has an element from which
there are at leasin®” other elements at distinct distances, where 0 is a constant. This
improves earlier results of Eod; Moser, Beck, Chung, Szeradi, Trotter, and SaKely.

1. Introduction

The following well-known problem is due to Evd 6] (see also [9]): Given distinct
points in the plane, what is the minimum number of distinct distances determined by
them?

Denoting this minimum by (n), Erdds [6] conjectured thaB(n) = ©(n//Togn),
and showed that this bound is attained by {fe x ./n grid. Moser [8] proved that the
number of distinct distances is at le&stn?3). Chung [3] and Chung et al. [4] improved
this bound toQ2(n>") and Q(n*®/log® n), respectively, where is a small positive
constant. Finally, Sekely [11] proved thaG(n) = Q(n*%), and that there always exists
at least one point from which there are at le@gn*®) distinct distances. Our main
result is

Theorem 1. Any set P of n points in the plane has an element from which the number
of distinct distances to the other points of P is at le@gh® ).

The proof relies on three results: (a) Beck’s theorem [2] on the minimum number of
lines connecting points in a planar point set; (b) the Szediefrotter theorem [12] on
the number of incidences between points and lines; and @jeBz$ method [11] for
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estimating the number on incidences using a previously known upper bound on crossing
numbers of graphs drawn in the plane. It is worth noting that these three ingredients are
related to each other. Beck’s result follows from the SzexheiTrotter theorem, which,

in turn, has a very elegant proof usingeRely’s method.

Atopological (multi)graph is a (multi)grapB(V, E) drawn in the plane such that the
vertices ofG are represented by distinct points in the plane, and its edges by continuous
arcs between the corresponding point pairs. Any two arcs representing distinct edges
have finitely many points in common. We make no notational distinction between the
vertices (resp., edges) and the points (resp., arcs) representing them.

Unlike in the standard definition of topological graphs, we allow arcs representing
edges ofG to pass through other vertices. Such topological graphs were first employed
by Pach and Sharir [10]. Two edges of a topological graph are said to forossingif
they have a common point which is not an endpoint of both curves. Thus, two crossing
edges together have four distinct endpoints. @lessing numbeof atopologicalgraph
or multigraph is the total number of crossing pairs of edges. &rbssing humbebf
an abstractgraph or multigraptG is the minimum crossing number over all possible
representations (i.e., drawings)®fas a topological graph.

2. Proof of Theorem 1

Let P be a set of points in general position in the plane. ltdie the maximal number
of distinct distances measured from one point, that {8 max,p |{|pgl: g € P}|.
Suppose that = o(n) andt > ¢;n%*, for some constard; > 0. This latter assumption
follows from the earlier results [4], [5]. We apply Beck’s theorem to the poinPset

Theorem 2[2]. Given n pointsin the planat least one of the following two statements
holds

1. There is a line incident to at leasy/h00points
2. There are at leas® (n?) lines incident to at least two points

Let £ denote the set of all lines connecting at least two point3.diVe have

Corollary 3. There is an absolute constant & 0 with the property that the number
of points in P incident to at leaspn distinct lines off is at least gn, provided that
t < n/100.

Let B denote the set of points i incident to at leastyon lines of £. By Corollary 3,
[B| > con.

Fix a pointa € B. Let P, ¢ P\{a} be a maximal set such that for each pajr¢ P,
the lineaq contains no other point d?,. Consider the se&f, of all circles centered at
a € B that contain at least three points Bf. Let P, denote the set of all elements of
P2 which belong to a circle ii€,. Clearly, |P;| = €2(n), becaus¢Pa| = €2(n), and
t = o(n), by assumption.
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After deleting at most two points from each circl&liy partition the remaining points
into pairwise disjoint consecutive tripl€g,, gz, gs). Clearly, the number of such triples
over all circles around is 2 (n).

Aline ¢ is calledrich if ¢ is incident to at leash points inP, wherem is a number to
be specified later. A tripléqgs, 0z, g3) is said to begoodif the bisector of at least one of
the segmentg; 0y, 0103, Or 0203 is not rich; otherwise it is calledad A pointp € Bis
good if at least half of the triples associated with it are good, otherwisd#dsDenote
by g the number of good points iB.

The outline of the rest of the proof is as follows. First, we choos@an that at least
half of the points inB will be bad. Then we deduce a lower bound on the number of
rich lines incident to a fixed bad point, which then implidswaer bound for the overall
number of incidences between bad points and rich lines. On the other hand, a theorem
of Szemeedi and Trotter, mentioned in the Introduction, providesupperbound on
the same quantity. Comparing the two bounds, the desired inequalityvitifollow.

Define a topological multigrap® on the vertex se¥ = P, as follows. If a triple
(a1, 02, O3) is good, add to the graph one edge between a pair of points{ffarg,, gs}
whose bisector is not rich. We generate exactly one edge for each good triple. Draw each
such edge along the circle determined by the triple.

The number of vertices @ is |V| = n; the number ofedges @ isE = g-Q2(n) =
Q(gn). The graphG may have multiple edges when two pointsand v, happen to
belong to more than one good triple, associated with different poirs(eé centers of
the corresponding circles). However, the multiplicity of each edge is atimdstcause
all of these points oB must lie on the perpendicular bisectorwfind v, which, by
assumption, is not rich.

The following lemma of [11] is a straightforward extension of a result of Ajtai et al.
[1] and of Leighton [7] to topologicahultigraphs. As we pointed out in the Introduction,
we use a slightly nonstandard definition of topological multigraphs, which allows edges
to pass through vertices, buté&k&ly’s proof applieserbatimto this case as well.

Lemma 4[11]. Let G(V, E) be a topological multigraphin which every pair of ver-
tices is connected by at most m eddegE| > 5|V |m, then the crossing number of G is

BIEI®

cr(G) > ——,
©=nve

for an absolute constart > 0.

Apply Lemma 4 to the grap® defined above, with

con?
= —t2 )
wherec, > 0is a small constant. We distinguish two cases. If the condition in the lemma
is not satisfied, then

5c,n3 52\ 3/
Q(gn = [E| < 3IV|m = 2 S(C_f n~=,
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and, by choosing; sufficiently small, we havg < (cy/2)n. Otherwise, according to
the statement,
ﬂ93n3 _ ’3g3t2

cr(G) = (con2/t2) . n2 cn -

On the other hand, since the edge&adre constructed along at mastcircles (at most
t concentric circles around each point), and two circles have at most two common points,
we clearly have

nt
cr(G) < 2. (2) < n%t2,

Comparing the last two inequalities, we obtain, just as in the previous case that
(co/2)n, provided that;, is chosen sufficiently small.

Therefore, we can conclude thRthas at leas® (n) bad points.

Next, we estimate the number of rich lines incident to each bad point. For this, we
need the following simple lemma.

Lemmab5. LetT be a set of N tripleg;, by, ¢;) of distinct real numbers such that
a <b <c¢gfori =1,...,N, and assume that c< & for all but at most t— 1
indicesi LetW={g +b,a +¢,b+¢ |i=1...,N}].Then

N
|W|=Q<t27>.

This bound cannot be improved

Proof. Let therangeof a triple (a,b,c) € T be defined as the intervah,[c]. By

assumption, the sequen@, b1, c1, az, by, ¢y, .. ., an, by, Cn) can be partitioned into

at mostt contiguous monotone increasing subsequences. Partition the real axis into

N/(2t) open intervals so that each interval fully contains the rangésrgfies. (These

intervals are constructed from left to right. bedenote the right endpoint of the rightmost

interval constructed so far. Discard the at mdsples whose ranges containand move

to the right until we reach a pointthat lies to the right of exactlynew ranges. We add

(X, y) as a new open interval, and continue in this manner until all triples are processed.)
Let s be one of these open intervals. Each tripldinwhose range is fully contained

in s, contributes three elements¥é N s, and no two triples off contribute the same

triple toW N's, as can be easily verified. It follows tha Ns| > t%/3, or else the number

of distinct triples of its elements will be smaller tharSince the number of intervass

is N/(2t), the inequality in the lemma follows. The easy construction showing that this

result is tight is left to the reader. O

Apply Lemma 5 to the system @t (n) disjoint bad triples along the circles centered
at a fixed bad poina € B. Each pointu which participates in such a bad triple is
mapped to therientation of the rayau, i.e., to the counterclockwise angle between
the positivex-axis andau. By the construction of,, this mapping is an injection of
P, into R. There are at modt bad triples whose ranges are mapped into an interval
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containing 0, and we discard all of them. The images of the remaining bad triples form
a set ofN = Q(n) triples meeting the requirements of Lemma 5. Notice that there are
at most two orientations iV that correspond to the same rich line troumHence,
Lemma 5 implies that, for each bad pomtthe number of rich lines incident #is at
leastQ (n/t%/3).

Therefore, the numbér of incidences between bad points and rich lines, satisfies

n2
| =Q <t2?> . 1)

The same number can be estimated from above, using the following theorem of
Szemeedi and Trotter, which comes in two equivalent formulations, both stated below.

Theorem 6[12].

(a) Given n distinct points in the plapthe number L, of lines incident to at least

m > 2 points is
n® n
m3  m

(b) Given n distinct points anddistinct lines in the planghe number of point—line
incidences is

I (n, &) = O(N?3¢?3 4 n+9).
Both of these bounds are asymptotically tight
Sincet > ¢;n¥4, we havem = c;n?/t2 < (cp/c?)nY2 = O(n%?). Thus, by Theo-
rem 6(a), the numbdr, of rich lines satisfied ,, = O(n?/m3) = O(t%/n*). This, in

turn, implies, by part (b) of the same theorem, that the nurhlzéiincidences between
bad points and rich lines satisfies

| =0M*PLP+n+Lm =0 E+ﬁ+n —o(Y )
- m ™ T n2 s - \n2)”

Comparing (1) and (2), we obtain thia&= Q(n®7), as required. This completes the
proof of Theorem 1. O

Itis very likely that, if we use&-tuples in place of triples, the above argument can be
modified to give a better lower bound on the number of distinct distances determined by
a point set.
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