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Abstract. It is shown that every set ofn points in the plane has an element from which
there are at leastcn6/7 other elements at distinct distances, wherec > 0 is a constant. This
improves earlier results of Erd˝os, Moser, Beck, Chung, Szemer´edi, Trotter, and Sz´ekely.

1. Introduction

The following well-known problem is due to Erd˝os [6] (see also [9]): Givenn distinct
points in the plane, what is the minimum number of distinct distances determined by
them?

Denoting this minimum byG(n), Erdős [6] conjectured thatG(n) = Ä(n/√logn),
and showed that this bound is attained by the

√
n×√n grid. Moser [8] proved that the

number of distinct distances is at leastÄ(n2/3). Chung [3] and Chung et al. [4] improved
this bound toÄ(n5/7) andÄ(n4/5/ logc n), respectively, wherec is a small positive
constant. Finally, Sz´ekely [11] proved thatG(n) = Ä(n4/5), and that there always exists
at least one point from which there are at leastÄ(n4/5) distinct distances. Our main
result is

Theorem 1. Any set P of n points in the plane has an element from which the number
of distinct distances to the other points of P is at leastÄ(n6/7).

The proof relies on three results: (a) Beck’s theorem [2] on the minimum number of
lines connecting points in a planar point set; (b) the Szemer´edi–Trotter theorem [12] on
the number of incidences between points and lines; and (c) Sz´ekely’s method [11] for
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estimating the number on incidences using a previously known upper bound on crossing
numbers of graphs drawn in the plane. It is worth noting that these three ingredients are
related to each other. Beck’s result follows from the Szemer´edi–Trotter theorem, which,
in turn, has a very elegant proof using Sz´ekely’s method.

A topological (multi)graph is a (multi)graphG(V, E) drawn in the plane such that the
vertices ofG are represented by distinct points in the plane, and its edges by continuous
arcs between the corresponding point pairs. Any two arcs representing distinct edges
have finitely many points in common. We make no notational distinction between the
vertices (resp., edges) and the points (resp., arcs) representing them.

Unlike in the standard definition of topological graphs, we allow arcs representing
edges ofG to pass through other vertices. Such topological graphs were first employed
by Pach and Sharir [10]. Two edges of a topological graph are said to form acrossingif
they have a common point which is not an endpoint of both curves. Thus, two crossing
edges together have four distinct endpoints. Thecrossing numberof a topologicalgraph
or multigraph is the total number of crossing pairs of edges. Thecrossing numberof
an abstractgraph or multigraphG is the minimum crossing number over all possible
representations (i.e., drawings) ofG as a topological graph.

2. Proof of Theorem 1

Let P be a set ofn points in general position in the plane. Lett be the maximal number
of distinct distances measured from one point, that ist = maxp∈P |{|pq|: q ∈ P}|.
Suppose thatt = o(n) andt ≥ c1n3/4, for some constantc1 > 0. This latter assumption
follows from the earlier results [4], [5]. We apply Beck’s theorem to the point setP.

Theorem 2[2]. Given n points in the plane,at least one of the following two statements
holds:

1. There is a line incident to at least n/100points.
2. There are at leastÄ(n2) lines incident to at least two points.

LetL denote the set of all lines connecting at least two points ofP. We have

Corollary 3. There is an absolute constant c0 > 0 with the property that the number
of points in P incident to at least c0n distinct lines ofL is at least c0n, provided that
t < n/100.

Let B denote the set of points inP incident to at leastc0n lines ofL. By Corollary 3,
|B| ≥ c0n.

Fix a pointa ∈ B. Let Pa ⊂ P\{a} be a maximal set such that for each pointq ∈ Pa

the lineaq contains no other point ofPa. Consider the setCa of all circles centered at
a ∈ B that contain at least three points ofPa. Let P′a denote the set of all elements of
Pa which belong to a circle inCa. Clearly, |P′a| = Ä(n), because|Pa| = Ä(n), and
t = o(n), by assumption.
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After deleting at most two points from each circle inCa, partition the remaining points
into pairwise disjoint consecutive triples(q1,q2,q3). Clearly, the number of such triples
over all circles arounda isÄ(n).

A line ` is calledrich if ` is incident to at leastm points inP, wherem is a number to
be specified later. A triple(q1,q2,q3) is said to begoodif the bisector of at least one of
the segmentsq1q2, q1q3, or q2q3 is not rich; otherwise it is calledbad. A point p ∈ B is
good, if at least half of the triples associated with it are good, otherwise it isbad. Denote
by g the number of good points inB.

The outline of the rest of the proof is as follows. First, we choose anm so that at least
half of the points inB will be bad. Then we deduce a lower bound on the number of
rich lines incident to a fixed bad point, which then implies alower bound for the overall
number of incidences between bad points and rich lines. On the other hand, a theorem
of Szemer´edi and Trotter, mentioned in the Introduction, provides anupperbound on
the same quantity. Comparing the two bounds, the desired inequality fort will follow.

Define a topological multigraphG on the vertex setV = P, as follows. If a triple
(q1,q2,q3) is good, add to the graph one edge between a pair of points from{q1,q2,q3}
whose bisector is not rich. We generate exactly one edge for each good triple. Draw each
such edge along the circle determined by the triple.

The number of vertices ofG is |V | = n; the number of edges ofG is E = g ·Ä(n) =
Ä(gn). The graphG may have multiple edges when two points,u andv, happen to
belong to more than one good triple, associated with different points ofB (as centers of
the corresponding circles). However, the multiplicity of each edge is at mostm, because
all of these points ofB must lie on the perpendicular bisector ofu andv, which, by
assumption, is not rich.

The following lemma of [11] is a straightforward extension of a result of Ajtai et al.
[1] and of Leighton [7] to topologicalmultigraphs. As we pointed out in the Introduction,
we use a slightly nonstandard definition of topological multigraphs, which allows edges
to pass through vertices, but Sz´ekely’s proof appliesverbatimto this case as well.

Lemma 4 [11]. Let G(V, E) be a topological multigraph, in which every pair of ver-
tices is connected by at most m edges. If |E| ≥ 5|V |m, then the crossing number of G is

cr(G) ≥ β|E|3
m|V |2 ,

for an absolute constantβ > 0.

Apply Lemma 4 to the graphG defined above, with

m= c2n2

t2
,

wherec2 > 0 is a small constant. We distinguish two cases. If the condition in the lemma
is not satisfied, then

Ä(gn) = |E| < 5|V |m= 5c2n3

t2
≤
(

5c2

c2
1

)
n3/2,
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and, by choosingc2 sufficiently small, we haveg ≤ (c0/2)n. Otherwise, according to
the statement,

cr(G) ≥ βg3n3

(c2n2/t2) · n2
= βg3t2

c2n
.

On the other hand, since the edges ofG are constructed along at mostnt circles (at most
t concentric circles around each point), and two circles have at most two common points,
we clearly have

cr(G) ≤ 2 ·
(

nt

2

)
≤ n2t2.

Comparing the last two inequalities, we obtain, just as in the previous case, thatg ≤
(c0/2)n, provided thatc2 is chosen sufficiently small.

Therefore, we can conclude thatB has at leastÄ(n) bad points.
Next, we estimate the number of rich lines incident to each bad point. For this, we

need the following simple lemma.

Lemma 5. Let T be a set of N triples(ai ,bi , ci ) of distinct real numbers such that
ai < bi < ci for i = 1, . . . , N, and assume that ci < ai+1 for all but at most t− 1
indices i. Let W= {ai + bi ,ai + ci ,bi + ci | i = 1, . . . , N}. Then

|W| = Ä
(

N

t2/3

)
.

This bound cannot be improved.

Proof. Let the range of a triple (a,b, c) ∈ T be defined as the interval [a, c]. By
assumption, the sequence(a1,b1, c1,a2,b2, c2, . . . ,aN,bN, cN) can be partitioned into
at mostt contiguous monotone increasing subsequences. Partition the real axis into
N/(2t) open intervals so that each interval fully contains the ranges oft triples. (These
intervals are constructed from left to right. Letx denote the right endpoint of the rightmost
interval constructed so far. Discard the at mostt triples whose ranges containx, and move
to the right until we reach a pointy that lies to the right of exactlyt new ranges. We add
(x, y) as a new open interval, and continue in this manner until all triples are processed.)

Let s be one of these open intervals. Each triple inT , whose range is fully contained
in s, contributes three elements toW ∩ s, and no two triples ofT contribute the same
triple toW∩s, as can be easily verified. It follows that|W∩s| ≥ t1/3, or else the number
of distinct triples of its elements will be smaller thant . Since the number of intervalss
is N/(2t), the inequality in the lemma follows. The easy construction showing that this
result is tight is left to the reader.

Apply Lemma 5 to the system ofÄ(n) disjoint bad triples along the circles centered
at a fixed bad pointa ∈ B. Each pointu which participates in such a bad triple is
mapped to theorientationof the ray Eau, i.e., to the counterclockwise angle between
the positivex-axis and Eau. By the construction ofPa, this mapping is an injection of
Pa into R. There are at mostt bad triples whose ranges are mapped into an interval
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containing 0, and we discard all of them. The images of the remaining bad triples form
a set ofN = Ä(n) triples meeting the requirements of Lemma 5. Notice that there are
at most two orientations inW that correspond to the same rich line trougha. Hence,
Lemma 5 implies that, for each bad pointa, the number of rich lines incident toa is at
leastÄ(n/t2/3).

Therefore, the numberI of incidences between bad points and rich lines, satisfies

I = Ä
(

n2

t2/3

)
. (1)

The same number can be estimated from above, using the following theorem of
Szemer´edi and Trotter, which comes in two equivalent formulations, both stated below.

Theorem 6[12].

(a) Given n distinct points in the plane, the number Lm of lines incident to at least
m> 2 points is

Lm = O

(
n2

m3
+ n

m

)
.

(b) Given n distinct points and̀distinct lines in the plane, the number of point–line
incidences is

I (n, `) = O(n2/3`2/3+ n+ `).
Both of these bounds are asymptotically tight.

Sincet ≥ c1n3/4, we havem = c2n2/t2 ≤ (c2/c2
1)n

1/2 = O(n1/2). Thus, by Theo-
rem 6(a), the numberLm of rich lines satisfiesLm = O(n2/m3) = O(t6/n4). This, in
turn, implies, by part (b) of the same theorem, that the numberI of incidences between
bad points and rich lines satisfies

I = O(n2/3L2/3
m + n+ Lm) = O

(
t4

n2
+ t6

n4
+ n

)
= O

(
t4

n2

)
. (2)

Comparing (1) and (2), we obtain thatt = Ä(n6/7), as required. This completes the
proof of Theorem 1.

It is very likely that, if we usek-tuples in place of triples, the above argument can be
modified to give a better lower bound on the number of distinct distances determined by
a point set.
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[11] L. Székely, Crossing numbers and hard Erd˝os problems in discrete geometry,Combin. Probab. Comput.
6 (1997), 353–358.

[12] E. Szemer´edi and W. T. Trotter, Extremal problems in discrete geometry,Combinatorica3 (1983), 381–
392.

Received November15, 2000,and in revised form December13, 2000.Online publication April6, 2001.


