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Abstract

Recently, we have identified two astrocytic subpopulations in the cortex of GFAP-EGFP mice, in which the astrocytes are
visualized by the enhanced green–fluorescent protein (EGFP) under the control of the human glial fibrillary acidic protein
(GFAP) promotor. These astrocytic subpopulations, termed high response- (HR-) and low response- (LR-) astrocytes, differed
in the extent of their swelling during oxygen-glucose deprivation (OGD). In the present study we focused on identifying the
ion channels or transporters that might underlie the different capabilities of these two astrocytic subpopulations to regulate
their volume during OGD. Using three-dimensional confocal morphometry, which enables quantification of the total
astrocytic volume, the effects of selected inhibitors of K+ and Cl2 channels/transporters or glutamate transporters on
astrocyte volume changes were determined during 20 minute-OGD in situ. The inhibition of volume regulated anion
channels (VRACs) and two-pore domain potassium channels (K2P) highlighted their distinct contributions to volume
regulation in HR-/LR-astrocytes. While the inhibition of VRACs or K2P channels revealed their contribution to the swelling of
HR-astrocytes, in LR-astrocytes they were both involved in anion/K+ effluxes. Additionally, the inhibition of Na+-K+-Cl2 co-
transporters in HR-astrocytes led to a reduction of cell swelling, but it had no effect on LR-astrocyte volume. Moreover,
employing real-time single-cell quantitative polymerase chain reaction (PCR), we characterized the expression profiles of
EGFP-positive astrocytes with a focus on those ion channels and transporters participating in astrocyte swelling and volume
regulation. The PCR data revealed the existence of two astrocytic subpopulations markedly differing in their gene
expression levels for inwardly rectifying K+ channels (Kir4.1), K2P channels (TREK-1 and TWIK-1) and Cl2 channels (ClC2).
Thus, we propose that the diverse volume changes displayed by cortical astrocytes during OGD mainly result from their
distinct expression patterns of ClC2 and K2P channels.
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Introduction

The generation of brain edema, ultimately leading to an

intracranial pressure increase and brain herniation, markedly

alters the course and treatment of cerebral ischemia. Among brain

cell types, astrocytes have been reported to contribute predomi-

nantly to edema formation. They support neuronal function and

provide for the maintenance of ionic and neurotransmitter

homeostasis under physiological conditions; however, they may

also contribute to the worsening of brain damage under

pathological conditions. The uptake of ions and amino acids

may turn into an excessive osmolyte influx leading to the

generation of edema, which in turn contributes to further ischemic

damage. Several transporters and ion channels have been

described as participating in astrocytic swelling (for a review, see

[1]). Astrocytic Na+-dependent glutamate uptake, which is

responsible for the termination of synaptic transmission and helps

to protect neurons from the excitotoxic activity of glutamate, may

reverse as a consequence of the ionic dis-balance accompanying

energy depletion during severe ischemia and thus contribute to an

increase of extracellular glutamate concentrations [2]. Addition-

ally, K+-Cl2 (KCC) and Na+-K+-Cl2 (NKCC) co-transporters, the

major regulators of neuronal and astrocytic Cl2 and Na+

gradients, have been found to participate in cell volume changes

under pathological conditions. Increased NKCC activity has been

shown to result in Na+, K+ and Cl2 accumulation, thus markedly

contributing to astrocytic swelling [3], while KCCs, which are

responsible for ion efflux, are rather involved in regulatory volume

decrease (RVD) [4]. Nonetheless, a high extracellular concentra-

tion of K+ ([K+]o) may induce the reverse operation of KCCs and

thus contribute to cell swelling, as described in retinal Müller cells

[5]. Furthermore, the depolarization of the astrocytic membrane
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due to Na+/K+ ATP-ase inhibition results in excessive K+ and Cl2

influx via ion channels [6]. Despite the fact that a prominent role

in K+ buffering has been suggested for the astrocytic Kir4.1

channel [7,8], two-pore domain K+ (K2P) channels, especially

TWIKs and TREKs, have been shown to be responsible for glial

K+ uptake [9], and their contribution to glial volume homeostasis

was described in Müller cells [10]. The activation of K2P channels

in response to ischemia has been demonstrated in vitro by Buckler

and Honore [11] and the up-regulation of TREK-2 channels in

conjunction with extracellular glutamate clearance was demon-

strated in cultured rat astrocytes during anoxia/hypoglycemia by

Kucheryavykh and co-authors [12]. Concurrently, astrocytic

swelling is accompanied by RVD, which is also carried out by

Cl2 and K+ channels [13]. The main anion channels responsible

for Cl2 and organic osmolyte efflux are volume-regulated anion

channels (VRACs), which play a predominant role in RVD.

However, an anion efflux via VRACs has also been shown to

contribute to further ischemic brain damage [14,15] and

moreover, VRACs have been reported to provide the anion

influx that results in neuronal swelling [16].

In our recent in situ studies we have demonstrated that cortical

astrocytes do not respond uniformly to hypoosmotic stress [17,18]

and that two differently responding groups of astrocytes – high

response- (HR-) astrocytes and low response- (LR-) astrocytes – are

present in the cortex of GFAP/EGFP mice [19] based on the

volume changes evoked by oxygen-glucose deprivation (OGD)

[20]. In the present study, we aimed to elucidate the basic

mechanisms potentially underlying the different ability of the two

astrocytic populations to regulate their volume in response to

OGD. We have focused on the role of chloride and potassium

channels/transporters and excitatory amino acid transporters in

astrocytic swelling during OGD. For the quantification of cell

volume, three-dimensional confocal morphometry has been

employed. Moreover, we have used real-time, single-cell quanti-

tative PCR (qPCR) to explore the gene expression profiles of

cortical GFAP/EGFP astrocytes with a focus on those ion

channels and transporters participating in astrocyte swelling and

volume regulation. We have used a similar approach to that of

Stahlberg and co-authors [21]; they have identified astrocytic

subpopulations in the mouse brain using single-cell qPCR

profiling.

Materials and Methods

Ethics Statement
All procedures involving the use of laboratory animals were

performed in accordance with the European Communities

Council Directive 24 November 1986 (86/609/EEC) and animal

care guidelines approved by the Institute of Experimental

Medicine ASCR Animal Care Committee on April 17, 2009;

approval number 85/2009.

Confocal 3D morphometry
Solutions. Artificial cerebrospinal fluid (ACSF) solution

contained (in mM): NaCl 122.0, KCl 3.0, CaCl2 1.5, MgCl2
1.3, Na2HPO4 1.25, NaHCO3 28.0, D-glucose 10.0 (pH 7.4, in

95% O2/5% CO2). Osmolality was confirmed to be 30065

mOsmol/kg with a vapor pressure osmometer (Vapro 5520,

Wescor Inc., Logan, USA). Oxygen–glucose deprivation (OGD)

was achieved by saturating glucose-free ACSF with 5% O2, 5%

CO2 and 90% N2 (ACSFOGD). All inhibitors and their

concentrations are listed in Table 1. DMSO, ethanol and

methanol, which were used for the preparation of inhibitor stock

solutions, did not affect astrocyte volume changes at their final

Table 1. List of used inhibitors.

c (mM) Targeted proteins in astrocytes

Transporters

DIOA 100** KCC [4]

[(dihydroindenyl)oxy]alkanoic acid

Bumetanide 100** NKCC [48]

3-(Aminosulfonyl)-5-(butylamino)-4-phenoxybenzoic acid

DL-TBOA 100* EAAT1, 2 [53]

DL-threo-b-benzyloxyaspartic acid

Cl2 channels

NPPB 100* Cl2 channels, VRACs [24]

5-Nitro-2-(3-phenylpropylamino)benzoic acid

Tamoxifen 30*** VRACs [24]

(Z)-1-(p-Dimethylaminoethoxyphenyl)-1,2-diphenyl-1-butene

DCPIB 30* VRACs [24]

4-(2-butyl-6,7-dichloro-2-cyclopentylindan-1-on-5-yl)oxybutyric acid

K+ channels

BaCl2 100 Kir channels [26]

BaCl2 1000 Kir, K2P channels [27]

Quinine 200** K2P channels [27]

KCC – K+-Cl2 co-transporter, NKCC – Na+-K+-Cl2 co-transporter, EAAT – excitatory amino acid transporter, VRAC – volume-regulated anion channel, K2P – two-pore
domain potassium channel, Kir - inwardly rectifying potassium channel.
Stock solutions were dissolved at 1,0006 final concentration in DMSO (*); ethanol (**) or methanol (***). BaCl2 was dissolved at 1 mM concentration in double-distilled
H2O (ddH2O).
doi:10.1371/journal.pone.0029725.t001
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concentrations (data not shown). The majority of chemicals,

including inhibitors, were purchased from Sigma-Aldrich (St.

Louis, MO, USA). DL-TBOA was purchased from Tocris

Bioscience (Bristol, UK).

Brain slice preparation. Quantification of astrocyte volume

changes was carried out in acute brain slices of GFAP/EGFP mice

[19]. Thirty to forty-day-old male/female mice were anesthetized

with isoflurane followed by decapitation. Brains were dissected out

and placed into ice-cold oxygenated ACSF. Transverse slices

(400 mm) were cut using an HM650V vibratome (MICROM

International GmbH, Waldorf, Germany). The slices were kept in

continuously oxygenated ACSF, at room temperature (23–25uC),

for at least 1 hour before starting experiments. To estimate the

effect of each inhibitor on astrocytic swelling evoked by OGD, a

single astrocyte was recorded in one slice and slices from 2–3 mice

were used for each inhibitor.

Cell volume measurement and quantification. Changes

in total astrocytic volume were measured and quantified using

previously described method [17,18,20]. The slices were perfused

with ACSF or ACSFOGD (perfusion rate ,5 ml/min). To examine

the effect of inhibitors on astrocyte volume changes, they were

applied during 40-minute OGD. All experiments were performed at

room temperature (23–25uC). For cell volume quantification (Fig.

S1) we have selected only brightly fluorescent cells at an

approximate distance of ,30 mm from the slice surface. The

astrocytes were recorded as a set of two-dimensional (2D) sectional

images with a resolution of 102461024 pixels using a Leica TCS SP

system confocal microscope (Leica Germany) with a Leica 406
water immersion objective (0,8) HCX APO (Leica, Germany).

EGFP was excited by an Ar laser set at 488 nm, and the emitted

signal was recorded over the range of 510–552 nm using a TD488/

543/633 filter. Each three-dimensional (3D) image of the cell was

sectioned into 70–80 consecutive 2D images at a uniform spacing of

1 mm. Data were collected at 10 minute intervals. Image processing

and morphometric measurements were performed using the

program CellAnalyst developed at the Department of Cellular

Neurophysiology, Institute of Experimental Medicine, Prague,

Czech Republic [18].

Statistics. Changes in total astrocyte volume are presented as

the mean 6 SEM. Statistical significance was determined by a

two-tailed unpaired Student’s t-test. Differences between the

groups were considered statistically significant when p,0.05,

very significant p,0.01, and extremely significant p,0.001.

Single-cell gene expression profiling
Preparation of cell suspensions from the cortex of GFAP/

EGFP mice. GFAP/EGFP transgenic mice (30 days old) were

deeply anesthetized with sodium pentobarbital (PTB, 100 mg/kg,

i.p.), and perfused transcardially with cold (4–8uC) isolation buffer

containing (in mM): NaCl 136.0, KCl 5.4, Hepes 10.0, glucose

5.5, osmolarity 29063 mOsmol/kg. The forebrain was isolated by

the removal of the olfactory lobes, cerebellum, and midbrain/

hindbrain structures by dissection. To isolate the cerebral cortex,

the brain was sliced in 1 mm coronal sections using a vibrating

microtome HM650V (MICROM International GmbH, Walldorf,

Germany), and the cerebral cortex was carefully dissected away

from the ventral white matter tracks. The tissue was incubated

with continuous shaking at 37uC for 90 minutes in 5 ml of a

papain solution (20 U/ml) and 0.2 ml DNAase (both

Worthington, Lakewood, NJ) prepared in isolation buffer. After

papain treatment the tissue was mechanically dissociated by gentle

trituration using a 1 ml pipette. Dissociated cells were layered on

top of 5 ml of Ovomucoid inhibitor solution (Worthington) and

harvested by centrifugation (1406 g for 6 minutes). This method

routinely yielded ,1.5–2 million cells per mouse forebrain.

Collection of single EGFP-positive cells. Dissociated cells

were sorted using flow cytometry (BD FACSCalibur); they were

kept on ice throughout the sorting procedure. Cell aggregates were

removed by filtering with a 30 nm cell strainer (Becton Dickinson,

USA). The flow cytometry instrument was manually calibrated to

deposit single cells in the centre of each collection tube. Propidium

iodide was added to the suspension of cells for checking viability.

Single cells were collected into 96-well plates (Life Technologies,

Czech Rep.) containing 5 ml nuclease-free water with bovine

serum albumin (1 mg/ml, Fermentas, Biogen, Czech Rep.) and

20 U RNAseOut (Life Technologies, Czech Rep.) per well. The

plates were then placed on a pre-cooled rack. The astrocytes were

collected based upon their positivity for EGFP and their viability.

Plates with collected cells were immediately frozen at 280uC.

cDNA synthesis. A modified protocol of A. Stahlberg [21]

was used for cDNA synthesis. SuperScript III RT (Life

Technologies, Czech Rep.) was used for reverse transcription.

Lysed single cells in 5 ml water containing 0.5 mM dNTP

(Promega, Germany), 1.0 mM oligo(dT15) (Invitrogen) and

1.0 mM random hexamers (Invitrogen) were incubated at 70uC
for 5 min. 50 mM Tris–HCl, 75 mM KCl, 3 mM MgCl2, 5 mM

dithiothreitol, 20 U RNaseOut and 100 U SuperScript III (all

Invitrogen; final concentrations) were added to a final volume of

10 ml. Reverse transcription was performed at 25uC for 5 min,

50uC for 60 min, 55uC for 10 min and terminated by heating to

70uC for 15 min. All samples were diluted to 40 ml with water

before qPCR.

Primer design and optimization of assays. Primers were

designed using BeaconDesigner software (version 7.91, Premier

Biosoft International). All primers except those for Cspg4 and Nkcc1

were designed to span an intron to avoid amplification of genomic

DNA. BLAST (Basic Local Alignment Search Tool) searches

revealed no pseudogenes. The primer sequences are shown in

Table S1. All assays of single cells were optimized so as to not

generate primer dimers before cycle 45, to have a PCR efficiency

of at least 90%, and to amplify all known splice forms documented

by the National Center for Biotechnology Information (NCBI).

Calibration curves with purified PCR products (QIAquick PCR

Purification Kit; Qiagen, Germany) were used to establish the

linearity of the assays. The formation of the correct PCR products

was confirmed by electrophoresis on 20 g/L agarose gels for all

assays and by melting-curve analysis of all samples. Five individual

cells per assay were tested, and no genomic DNA amplification

was observed.

qPCR. A Biorad CFX384 (Biorad, Czech Rep.) was used for

all qPCR measurements. To each reaction (10 ml) containing iQ

SYBR Green Supermix (BioRad) and 300 nM of each primer

(EastPort, Czech Rep.), we added 3 ml diluted cDNA. The

temperature profile was 95uC for 3 min followed by 50 cycles of

amplification (95uC for 15 s, 60uC for 15 s and 72uC for 20 s). All

samples were analyzed by melting curve analysis.

Data processing and statistics. For all assays the limit of

detection (LOD) was assumed to be the highest Cq (quantification

cycle) value measured reflecting the expected product based on

melt curve analysis. All Cq values that were above the limit of

detection and hence were reflecting the formation of aberrant

products, and any missing data, were replaced by the Cq at the

limit of detection +1. The correction was performed separately for

each gene and effectively corresponds to assigning a concentration

to the off-scale measurements that is 50% of the concentration we

reliably detect. Cq values were converted to relative quantities and

transformed to a log scale [22].
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Dendrograms, principal component analysis (PCA) and Koho-

nen self-organizing maps were calculated using GenEx software

(ver. 5.3, MultiD, Sweden). The expression of each gene was

mean-centred for profiling analysis with multivariate methods.

Dendrograms were calculated using Ward’s algorithm and

Euclidean distance measure. Spearman correlation coefficients

were calculated for all gene pairs. Because of the significant

number of off-scale data that were corrected, the distribution of

data was not necessarily Gaussian, and non-parametric statistical

tests were used to assess significance. The expression levels

measured in groups of cells were compared using the non-

parametric Kruskal-Wallis test with Dunn’s post-test. For

Kohonen self-organizing maps (SOMs) and potential curve

analysis, autoscaled expression values were used to give all genes

equal weight in the clustering algorithms. The parameters used for

the Kohonen SOMs were: 3x1 map, 0.10 learning rate, 2–3

neighbors and 10000 iterations. The calculated clusters did not

depend on the parameters’ settings.

Results

Astrocyte heterogeneity has been described previously as

morphological differences, distinct functional properties and

variations in the expression of receptors, ion channels and

transporters [23]. In our previous study [20] we described two

astrocytic subpopulations in the cortex of GFAP/EGFP mice

differing in their volume changes induced by OGD. One

subpopulation, referred to as high response-astrocytes (HR-

astrocytes), markedly increased their total cell volume when

exposed to OGD, while only small volume changes were evoked in

the second subpopulation, referred to as low response-astrocytes

(LR-astrocytes). Both subpopulations were morphologically iden-

tical, displayed passive currents and expressed EAAT1 and

EAAT2 transporters. Here, we focus on elucidating the differences

between these two subpopulations that might originate from the

diverse functioning/expression of ion channels and transporters

that are involved in astrocytic swelling and cell volume regulation.

We have employed a wide range of transporter- and ion channel-

inhibitors (Table 1) to study their effects on astrocyte volume

changes in situ evoked by OGD.

Astrocyte swelling evoked by oxygen-glucose
deprivation

To examine the effect of inhibitors on acute astrocytic swelling,

brain slices were exposed to 40-minute OGD. The values of total

astrocyte volume obtained during 40-minute OGD in the absence

of any inhibitor were used as control values and compared to those

obtained in the presence of inhibitors. The astrocyte volume at

t = 0 was set to 100%, and the volume changes were expressed

relative to this baseline as an increase in percentage. HR- and LR-

astrocytes were classified using the same criteria as described

previously [20]. Briefly, if the total cell volume increase was less

than 10% (LR-astrocytes), the relative changes in total volume, cell

soma volume and the volume of the processes were similar. If the

total cell volume increase was greater than 10% (HR-astrocytes),

the swelling of the cell processes exceeded the swelling of the soma.

The total cell volume (V) of HR-astrocytes (n = 13) increased to

122.161.4% after 20 minutes and to 135.962.6% after 40 min-

utes of OGD. LR-astrocytes (n = 8) increased their volume to

108.460.8% after 20 minutes and to 117.662.1% after 40 min-

utes of OGD (Fig. 1, 2, 3 top). The effects of inhibitors were

studied as follows: brain slices were first exposed to OGD alone for

20 minutes, followed by a 20 minute application of ACSFOGD

together with an inhibitor (Fig. S2). Using this approach, an

individual cell could be classified as either an HR- or LR- astrocyte

based on its volume changes during the first 20 minutes. In order

to evaluate the effect of inhibitors on astrocytic swelling, volume

changes were evaluated in each cell individually and expressed as a

percent cell volume increase/decrease related to the volume

obtained after the first 20 minutes of OGD, which was set as 0%

(Fig. 1, 2, 3 bottom).

Inhibition of glutamate and K+-Cl2 transporters reduces
the astrocytic swelling induced by OGD in both
subpopulations, while inhibition of Na+-K+-Cl2

co-transporters affects only HR-astrocytes
The disruption of ionic and excitatory amino acid (EAA)

homeostasis that occurs during cerebral ischemia results in

enhanced glutamate/K+ uptake by astrocytic transporters, leading

to marked volume changes in astrocytes during ischemia [1]. In

order to determine whether these transporters underlie the

differences in volume changes between HR-/LR-astrocytes, we

tested the effect of DL-TBOA, an inhibitor of the excitatory amino

acid transporters EAAT1 and EAAT2, bumetanide, an inhibitor of

Na+-K+-Cl2 co-transporters (NKCCs), and DIOA, an inhibitor of

K+-Cl2 co-transporters (KCCs), on the astrocyte swelling evoked by

OGD (for concentrations see Table 1). The application of DL-

TBOA led to a significant volume decrease in both astrocytic

subpopulations (Fig. 1A); however, the course of inhibition was

slightly different. While HR-astrocyte swelling remained unaffected

during the first 10 minutes, it decreased by 6.9% after 20 minutes of

ACSFOGD and DL-TBOA co-application (n = 6). In LR-astrocytes

swelling was reduced already after 10 minutes, and after 20 minutes

the swelling was reduced by 10.4% (n = 6). Similarly, the inhibitor of

KCCs - DIOA - inhibited cell swelling in both astrocyte groups

(Fig. 1B). A 20 minute application of ACSFOGD and DIOA reduced

cell swelling by 7.1% in HR-astrocytes (n = 9) and by 10.2% in LR-

astrocytes (n = 9). On the other hand, the inhibition of NKCCs by

bumetanide led to the reduction of swelling in HR-astrocytes (by

7.0% after 20 minute ACSFOGD and bumetanide co-application;

n = 10), while in LR-astrocytes the application of bumetanide did

not significantly alter the extent of cell swelling (n = 10; Fig. 1C). In

summary, the ion influx via NKCCs significantly contributed to

HR-astrocyte swelling during OGD, while it was not involved in the

volume changes observed in LR-astrocytes.

Inhibition of volume-regulated anion channels or two-
pore domain K+ channels during OGD reveals differences
between HR- and LR-astrocytes

Since in many cell types, including astrocytes, VRACs are the

predominant channels activated by swelling [13], we have

examined the effects of three VRAC inhibitors – NPPB, tamoxifen

and DCPIB (for concentrations see Table 1). A non-selective

inhibitor of anion channels, NPPB had an opposite effect on the

two astrocytic subpopulations (Fig. 2A). The swelling of HR-

astrocytes was decreased by 11.6% after 20 minutes of ACSFOGD

and NPPB co-application (n = 6), while in LR-astrocytes the

swelling was first reduced by 4.2% after 10 minutes and then it

rather increased (n = 9). Similarly, tamoxifen and DCPIB also had

a diverse effect on HR-/LR-astrocytes. Tamoxifen reduced the

HR-astrocyte swelling by 6.2% after 20 minutes of its application

(n = 10) and the DCPIB application led to the swelling reduction of

9.0% after 20 minutes (n = 8). On the other hand, the LR-

astrocyte swelling was not appreciably affected by Tamoxifen

(Fig. 2B), whereas DCPIB application led to their additional

swelling (Fig. 2C). Moreover, the block of HR-astrocyte swelling

by NPPB was more effective than that induced by the other
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inhibitors, which is in accordance with the lower specificity of the

inhibitor as reported previously by Abdullaev and co-authors [24],

suggesting that more types of chloride channels are involved in

HR-astrocyte swelling. In summary, DCPIB, which is currently

the most selective inhibitor of VRACs known, reduced the swelling

induced by OGD in HR-astrocytes, while in LR-astrocytes this

inhibitor caused their additional swelling.

In view of previous findings that the main K+ channels expressed

in mature astrocytes are Kir4.1 and two-pore domain channels

[25,26], we have examined the effect of BaCl2 and quinine (for

concentrations see Table 1) on the volume changes of HR-/LR-

astrocytes during OGD. The application of 100 mM BaCl2, which

has been shown to preferentially inhibit Kir channels [26], led to an

additional swelling after 20 minutes of OGD in both subpopulations

of astrocytes. The swelling increased by 6.6% in HR-astrocytes

(n = 8) and by 7.7% in LR-astrocytes (n = 10; Fig. 3A). Conversely,

1 mM BaCl2, used as a blocker of both Kir and K2P channels [27],

completely inhibited the swelling of HR-astrocytes (9.9% reduction

after 20 minutes; n = 7), while in LR-astrocytes it rather led to an

additional swelling (not significant, n = 13; Fig. 3B). Equally, the

application of quinine slightly reduced the swelling of HR-astrocytes

(not significant; n = 5), while markedly increased the swelling of LR-

Figure 1. Inhibitors of glutamate transporters and K+-Cl2 co-transporters reduce the OGD-induced swelling in both astrocytic
subpopulations. The effect of 100 mM DL-TBOA, an inhibitor of excitatory amino acid transporters (A), 100 mM DIOA, an inhibitor of K+-Cl2 co-
transporter (B), and 100 mM bumetanide, an inhibitor of Na+-K+-Cl2 co-transporter (C). A–C top: Time course of volume changes in HR-astrocytes
(filled circles) and LR-astrocytes (empty circles) during 40-minute OGD (control) and during 20-minute OGD followed by 20-minute OGD with the
application of an inhibitor in HR-/LR-astrocytes (filled/empty triangles). A–C bottom: The effect of inhibitors was evaluated in each individual cell
and expressed as the percent cell volume increase/decrease related to the maximal volume after 20-minute OGD, which was set as 0%. Note that the
application of DL-TBOA and DIOA led to a swelling reduction in both HR- and LR- astrocytes, while bumetanide only affected the swelling in HR-
astrocytes. Asterisks indicate significant differences from controls (p,0.05 (*, significant), p,0.01 (**, very significant), p,0.001 (***, extremely
significant)).
doi:10.1371/journal.pone.0029725.g001
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astrocytes by 11.5% after 20 minutes (n = 7; Fig. 3C). In conclusion,

the inhibition of Kir channels revealed that they contribute

predominantly to the efflux of K+ in both astrocytic subpopulations.

On the other hand, the inhibition of K2P channels disclosed their

participation in K+ uptake in HR-astrocytes, while in LR-astrocytes

they rather contribute to K+ efflux.

The presence of two distinct populations is not linked to
gender or location in the cortical layers

Since the sensitivity of astrocytes to OGD might be influenced

by their location within the CNS, we quantified the incidence of

HR-/LR- astrocytes based on their position in the cortical layers.

The distribution of astrocytes between the two groups in the

different cortical layers was as follows: I layer – 46% HR, 54% LR

(n = 46), II–III layers – 41% HR, 59% LR (n = 113), IV–VI layers

– 48% HR, 52% LR (n = 133). Although females have been shown

to be more resistant to ischemic injury than males in clinical

studies as well as in animal models [28], gender does not underlie

the existence of two astrocytic groups with a different sensitivity to

ischemic conditions. In females, 45% of measured cells were

classified as HR- and 55% as LR-astrocytes (total number of cells

n = 193); similarly in males, 49% of cells belonged to HR- and

51% to LR- astrocytes (n = 168). In conclusion, neither the

location of astrocytes in the cortical layers, nor the gender of the

Figure 2. Inhibitors of Cl2 channels differently affect OGD-induced swelling in HR-and LR-astrocytes. The effect of 100 mM NPPB, a non-
specific inhibitor of chloride channels (A), 30 mM Tamoxifen (B) and 30 mM DCPIB (C), inhibitors of volume regulated anion channels. A–C top: Time
course of volume changes in HR-astrocytes (filled circles) and LR-astrocytes (empty circles) during 40-minute OGD (control) and during 20-minute
OGD followed by 20-minute co-application of ACSFOGD plus an inhibitor in HR-/LR-astrocytes (filled/empty triangles). A–C bottom: The effect of the
inhibitors was evaluated in each individual cell and expressed as the percent cell volume increase/decrease related to the maximal volume after 20-
minute OGD, which was set as 0%. Note that in HR-astrocytes the application of VRAC inhibitors (Tamoxifen and DCPIB) reduced the swelling induced
by OGD, while in LR-astrocytes the application of DCPIB resulted in an additional swelling. Asterisks indicate significant differences from controls
(p,0.05 (*, significant), p,0.01 (**, very significant), p,0.001 (***, extremely significant)).
doi:10.1371/journal.pone.0029725.g002
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mice underlies the presence of two astrocytic populations differing

in their response to OGD (Fig. S3).

Single-cell gene expression profiling reveals astrocyte
heterogeneity in the cortex of GFAP/EGFP mice

We have also considered that the different abilities of astrocytes

to regulate their volume might originate from distinct cellular

phenotypes characterized by ion channel/transporter expression

profiles. Based on pharmacological analyses, we have selected

genes encoding astrocytic channels and transporters that could be

responsible for the divergent volume regulation in cortical

astrocyte subpopulations and performed quantitative single-cell

PCR analyses. EGFP-positive cells were collected using fluores-

cence-activated cell sorting (FACS). Collected brightly fluorescent

astrocytes expressed high mRNA levels of Eaat1, Eaat2 and Aqp4,

which code the typical astrocytic markers: EAAT transporters 1

and 2 and AQP4 water channels [29]. EGFP-positive cells

expressing genes typical of NG2 glia, namely Pdgfr and Cspg4

(coding PDGFa receptors and chondroitin sulfate proteoglycan 4),

were excluded from the analyses. The first round of screening, in

which all genes listed in Table S1 were tested, revealed significant

differences in gene expression among cortical astrocytes. For

further analyses, we have chosen 16 genes (Table S1) that showed

marked differences in their expression levels during the first round

Figure 3. Inhibitors of K+ channels have an opposite effect on HR-/LR-astrocytes when applied during OGD. The effect of 100 mM BaCl2
(A), an inhibitor of inwardly rectifying potassium channels, 1 mM BaCl2 (B) and 200 mM Quinine (C), inhibitors of two-pore domain potassium
channels. A–C top: Time course of volume changes in HR-astrocytes (filled circles) and LR-astrocytes (empty circles) during 40-minute OGD (control)
and during 20-minute OGD followed by 20-minute co-application of ACSFOGD plus an inhibitor in HR-/LR-astrocytes (filled/empty triangles). A–C
bottom: The effect of inhibitors was evaluated in each individual cell and expressed as the percent cell volume increase/decrease related to the
maximal volume after 20-minute OGD, which was set as 0%. Note that the application of 1 mM BaCl2 or Quinine inhibited swelling in HR-astrocytes,
while in LR-astrocytes it had the opposite effect. In contrast, the application of 100 mM BaCl2 had the same effect in both groups of astrocytes.
Asterisks indicate significant differences from controls (p,0.05 (*, significant), p,0.01 (**, very significant), p,0.001 (***, extremely significant)).
doi:10.1371/journal.pone.0029725.g003

Distinct Volume Regulation in Cortical Astrocytes

PLoS ONE | www.plosone.org 7 January 2012 | Volume 7 | Issue 1 | e29725



of screening. The expression profiling was performed in two

independent experiments (I and II). In experiment I, the

expression profiles of Nkcc1, Eaat1-2, Vdac1-3, Aqp4, Clcn2 and

Kcc1 were determined in 103 astrocytes. The numbers of astrocytes

positive for individual genes are listed in Table S2. At first, we

looked for correlations between the genes using Spearman’s

correlation. The correlation coefficient is a value between 21 and

1, where 1 reflects a perfect positive correlation, 21 reflects a

perfect negative correlation and 0 indicates no correlation.

Significant positive correlations were found between Eaat1 –

Eaat2, Eaat1 – Aqp4, Eaat1 – Vdac1, 2, 3, Eaat2 – Aqp4 and Eaat2 –

Vdac2. The correlation coefficients for genes tested in experiment I

are listed in Table S4. We have employed three independent

analyses: principal component analysis (PCA) that enables the

visualization of multidimensional data in a two- or three-

dimensional plot [30], hierarchical clustering and Kohonen SOMs

(Fig. 4 and 5). Based on these three independent mathematical

algorithms, we have identified two subpopulations of astrocytes –

subpopulation 1 and subpopulation 2 – that differ in their gene

expression profiles. In experiment I (Fig. 4), both subpopulations

expressed comparable levels of Eaat1-2, Aqp4, Nkcc1, Kcc1 and

Vdac1-3; however, in subpopulation 2 a markedly reduced

expression of Clcn2 was detected. In experiment II, the expression

of Eaat1-2, Kcnj2, 10, 16, Kcnk1, 2, 10 and Clcn2 was measured in

52 individual astrocytes. The numbers of astrocytes positive for

individual genes after dividing the cells into two astrocytic

Figure 4. Experiment I: gene expression profiling of distinct astrocytic subpopulations. A: Bar plot with SEM for all the expressed genes;
significant differences are indicated with asterisks (p,0.05 (*), p,0.01 (**), p,0.001 (***). B: Principal component analysis. The identification of 2
astrocytic subpopulations is along the first principal component, which accounts for most of the variation in the measured data. C: Clustering of
astrocytes using Kohonen SOMs. The expression levels of all genes were mean-centered. Each dot represents one cell. D: Dendrogram based on all
astrocytic genes. The y-axis shows the distance between groups.
doi:10.1371/journal.pone.0029725.g004
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subpopulations are listed in Table S3. In order to compare mRNA

levels from independent experiments and to follow the same

astrocytic subpopulations that were identified in experiment I, we

have analyzed Eaat1, Eaat2 and Clcn2 in both experiments.

Significant positive correlations were found between Eaat1 – Eaat2

and Eaat2 – Kcnj10. Interestingly, significant negative correlations

were found between Kcnk2 – Kcnk1 and Clcn2 – Kcnk1, which means

that the majority of cells expressing Kcnk1 (the gene encoding

TWIK-1) do not express Kcnk2 and Clcn2 (encoding TREK-1 and

ClC2 channels). The Spearman correlation coefficients for the

genes tested in experiment II are listed in Table S5. In experiment

II (Fig. 5), in addition to Clcn2, Kcnj10, Kcnk1 and Kcnk2 were also

identified as genes separating the two astrocytic subpopulations.

While Kcnj10 and Kcnk1 were highly expressed in subpopulation 2,

their expression in subpopulations 1 was significantly lower. On

the other hand, Kcnk2 was highly expressed in subpopulation 1,

while it was almost absent in subpopulation 2.

In summary, we found two astrocytic subpopulations in the

cortex of GFAP/EGFP mice related to distinct expression profiles

of Clcn2, Kcnj10 and Kcnk1, 2 (genes encoding ClC2, Kir4.1,

TWIK-1 and TREK-1).

Discussion

In the present study we have demonstrated that the two

previously described cortical astrocytic populations – HR- and

Figure 5. Experiment II: gene expression profiling of distinct astrocytic subpopulations. A: Bar plot with SEM for all the expressed genes;
significant differences are indicated with asterisks (p,0.05 (*), p,0.01 (**), p,0.001 (***). B: Principal component analysis. The identification of 2
astrocytic subpopulations is along the first principal component, which accounts for most of the variation in the measured data. C: Clustering of
astrocytes using Kohonen SOMs. The expression levels of all genes were mean-centered. Each dot represents one cell. D: Dendrogram based on all
astrocytic genes. The y-axis shows the distance between groups.
doi:10.1371/journal.pone.0029725.g005
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LR-astrocytes – respond differently to Cl2 and K+ channel

inhibitors when applied during OGD. In accordance with the

pharmacological experiments, quantitative single-cell PCR profil-

ing revealed that cortical astrocytes are heterogeneous with respect

to the gene expression profiles of the ion channels/transporters

that participate in their volume regulation. We distinguished

subpopulation 1, which is characterized by high gene expression

levels of Cl2 channels and K+ channels, namely ClC2 and TREK-

1, and subpopulation 2, displaying high gene expression levels of

K+ channels – Kir4.1, TWIK-1. As we hypothesize that the

diverse HR- and LR-astrocyte swelling might be a consequence of

different gene expression levels for ClC2 and TREK-1, both

contributing strongly to astrocyte volume regulation, we propose a

correlation of subpopulation 1 with LR-astrocytes and subpopu-

lation 2 with HR-astrocytes. Their proposed correlation with the

HR-/LR- classification scheme is summarized in Figure 6.

The most striking dissimilarity between HR- and LR- astrocytes

was found during the inhibition of K2P channels by 1 mM BaCl2
and 200 mM quinine. Barium chloride (1 mM), which was shown

to block the inwardly rectifying K+ channel TWIK-1 [27],

markedly reduced the swelling of HR-astrocytes, thus suggesting

that TWIK-1 channels contribute to K+ influx into HR-astrocytes.

In contrast, quinine, which inhibits the outwardly rectifying K2P

channel TREK-1, increased the swelling of LR-astrocytes, thus

implying that K2P channels provide K+ extrusion in LR-astrocytes.

Since polymodal TREK channels are activated by mechanical

stress/cell swelling, their role in RVD is highly possible [31].

These data are also in agreement with previous studies of

Skatchkov and co-authors [10] in retinal Müller glia. Moreover,

our quantitative single-cell PCR analysis revealed distinct

astrocytic subpopulations: subpopulation 1 expressing extremely

high levels of Kcnk2 (a gene for TREK-1) and subpopulation 2

expressing high levels of Kcnk1 (a gene for TWIK-1). Combining

our pharmacological and PCR data, we propose that TREK-1

channels are uniquely expressed in LR-astrocytes and thus

contribute to their efficient cell volume regulation during OGD

by providing K+ efflux. On the other hand, HR-astrocytes strongly

express TWIK-1, which is responsible for enhanced K+ uptake

and their swelling. A similar heterogeneity in K2P channel

expression was demonstrated in hippocampal astrocytes [26].

Unequal TWIK-1/TREK-1 expression levels might originate

from the local environment of each astrocyte in the cortex, as

proposed in Fig. 7. We hypothesize that HR-astrocytes comprise

cells locally exposed to a high extracellular K+ concentration

([K+]o), thus predominantly expressing inwardly rectifying chan-

nels for effective K+ uptake. LR-astrocytes, in contrast, might

receive K+ as a consequence of spatial buffering and release it into

the ECS. Apparently, K2P channels play an important role during

ischemia as demonstrated by Kucheryavykh and co-authors [12],

who showed the involvement of TREK-2 channels in response to

anoxia/hypoglycemia in cultured rat astrocytes. Our present

findings demonstrate the involvement of TREK-1 rather than

TREK-2 in astrocytic swelling during OGD; however, such

discrepancies might originate from the different properties of

cultured astrocytes isolated from 1-day-old rats [12] and those in

brain slices of 30-day-old mice, and moreover, from employing

different models of brain injury. Nonetheless, in our recent work,

Pivonkova and co-authors [25] described the increased expression

of TREK-1 in hippocampal astrocytes in the CA1 region following

global cerebral ischemia in vivo.

Furthermore, we have demonstrated that in HR- and LR-

astrocytes the inhibition of Kir channels led to additional cell

swelling, which suggests that Kir channels contribute rather to K+

efflux than K+ uptake after 40 minute OGD. This is in line with

data demonstrating the participation of Kir4.1 in RVD

[32,33,34,35]. In contrast to the comparable effect of a Kir

channel inhibitor (100 mM BaCl2) on the extent of cell swelling in

both astrocytic subpopulations, we found a significantly increased

expression of Kcnj10 (encoding Kir4.1) in subpopulation 2 that

comprises HR-astrocytes. In general, an astrocyte is considered as

a multifunctional unit in which the role of Kir channels can differ

in the various plasma membrane regions of a given cell, providing

K+ uptake at sites facing the synapses and K+ release from

astrocyte endfeet that contact blood vessels [36]. Based on this

assumption, changes in total astrocytic volume thus reflect both K+

uptake as well as K+ release. As blocking Kir4.1 channels by

100 mM barium resulted in a similar effect on LR- and HR-

Figure 6. Two astrocytic subpopulations differing in the gene
expression levels of K+/Cl2 channels. We propose a correlation of
subpopulation 1 with LR-astrocytes and subpopulation 2 with HR-
astrocytes due to the diverse gene expression levels for ClC2 and TREK-
1, which are responsible for K+ and Cl2 efflux and thus contribute to cell
volume regulation. Ion channels outlined with dashed line indicate their
low gene expression levels. Arrows indicate the proposed direction of
ion/EAA fluxes through the channels/transporters during OGD based on
the effect of the relevant inhibitors. AQP4 – aquaporin channel (subtype
AQP4), ClC2 - chloride channel (subtype ClC2), EAAT – excitatory amino
acid transporter (subtypes EAAT1 and EAAT2), HR – high response
astrocyte, TWIK1 and TREK1 – two-pore domain potassium channels
(subtypes TWIK-1, TREK-1), KCC1 – K+-Cl2 co-transporter (subtype
KCC1), Kir4.1 – inwardly rectifying potassium channel, LR – low response
astrocyte, NKCC1 – Na+-K+-Cl2 co-transporter (subtype NKCC1).
doi:10.1371/journal.pone.0029725.g006
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astrocyte volume, we suggest that in both types of astrocytes the

proportion of Kir4.1 channels that provide K+ uptake (causing

astrocytic swelling) and those providing K+ release (causing

astrocytic shrinkage) are comparable. This might ultimately lead

to the similar impact of Kir4.1 inhibition on astrocyte volume

despite the observed differences in Kcnj10 expression between the

two subpopulations. We hypothesize that the high expression of

Kcnj10 in HR-astrocytes may mirror the increased requirements for

Kir4.1 channel densities on HR-astrocyte membranes as these cells

might be exposed to higher local extracellular concentration of K+

than are LR-astrocytes, thus providing significantly greater K+

uptake/K+ release. This accords well with our previous findings, in

which we described the presence of cortical astrocytes differing in

Kir4.1 levels based on immunohistochemistry [20]. Nonetheless, a

detailed analysis of different cellular compartments, such as

astrocytic processes in the vicinity of neuronal synapses or those

neighboring blood vessels, might elucidate the relative contribution

of K+ influx and efflux to astrocyte volume with respect to the local

uptake/release provided by Kir4.1 channels. Additionally, both

types of astrocytes express Kcnj16 (encoding Kir5.1), and thus the

ratio between the Kir4.1 homomer and the Kir4.1/Kir5.1

heteromer might play an important role in K+ uptake as well

[36]. Finally, we also cannot exclude the possibility that 100 mM

barium may not have been sufficient to fully block the K+ fluxes

carried by Kir4.1 in brain slices that are 400 mm thick.

Similarly to K2P channel inhibition, we found significant

diversity between HR- and LR-astrocytes when chloride channels

were inhibited using three different inhibitors. The inhibition of

VRACs by tamoxifen and DCPIB led to a marked reduction of

swelling in HR-astrocytes, which is in contrast to the proposed role

of VRACs in RVD [37,38]. Nevertheless, these channels have

been shown to be responsible for chloride influx leading to

persistent neuronal swelling during a prolonged excitotoxic insult

[16]. On the other hand, in LR-astrocytes the application of

Tamoxifen during OGD caused no volume changes. Nevertheless,

when DCPIB, so far the most specific known inhibitor of VRACs,

was applied, a significant increase in astrocyte volume was

detected. We hypothesize that LR-astrocytes efficiently regulate

their volume by VRACs, while HR-astrocytes might be more

ischemia-affected cells, in which volume regulation is suppressed.

As expected, the application of NPPB, a non-selective anion

channel blocker, led to the inhibition of swelling in both HR- and

LR-astrocytes during OGD, demonstrating that different chloride

channel types might be responsible for Cl2 movement leading to

astrocytic swelling during OGD. Since the molecular structure of

VRACs has not yet been characterized [39], we performed gene

expression profiling of anion/chloride channels possibly involved

in astrocytic volume changes, such as plasmalemmal voltage-

dependent anion channels (VDAC1-3) and chloride channels

ClC2-10. Interestingly, we found marked differences in the

expression levels of Clcn2 (a gene for the ClC2 channel), which

has been reported to be activated by cell swelling [39]. Clcn2 is

highly expressed only in astrocytic subpopulation 1 (comprising

LR-astrocytes), thus possibly contributing to their increased ability

to regulate their cell volume.

Since it has been demonstrated that some ion channels are co-

expressed in certain regions of the astrocytic plasma membrane,

such as the endfeet [8,26,27,40], the importance of membrane

protein interactions that might occur between different membrane

units devoted to extracellular K+ buffering and water homeostasis

should also be considered. Kir channels and AQP4 water channels

are among the first candidates for such interactions (specifically

Kir4.1), as demonstrated previously [41,42]; however, regulatory

volume decrease and volume homeostasis in astrocytes can also

involve the co-localization/interaction of transient receptor

potential vanilloid-4 (TRPV4) channels and AQP4 water channels

occurring in a Ca2+2dependent manner, as demonstrated by

Benfenati and co-authors [43]. Despite the fact that we found

comparable Aqp4 expression in both astrocytic subpopulations, our

preliminary data also revealed marked differences in Trpv4 levels

in cortical astrocytes of EGFP/GFAP mice (unpublished data), a

finding that accords well with a previously published study on

primary cultures of cortical astrocytes in which only a certain

subpopulation of astrocytes (,60%) responded to a TRPV4

agonist or hypoosmotic stress [44]. However, further studies are

necessary to clarify the role of TRPV4 channels in the diverse

volume regulation of the two astrocytic subpopulations.

Finally, the inhibition of Na+-K+-Cl2 co-transporter also

revealed differences between the two astrocytic populations. In

HR-astrocytes we observed a marked reduction of swelling

following bumetanide application during OGD, while the volume

of LR-astrocytes remained unaffected. Our observations in HR-

astrocytes are in agreement with those describing the involvement

of NKCCs in astrocyte swelling and their contribution to cytotoxic

edema [45–49]. The absence of a bumetanide effect on volume

changes in LR-astrocytes might be explained by low NKCC

protein levels, which were described by Yan and co-authors [50].

They found only a weak expression of NKCC1 in adult rat cortical

astrocytes, while stronger expression was detected in perivascular

astrocytes. Nevertheless, our PCR analysis did not reveal

significant differences in the gene expression levels of Nkcc1

among cortical astrocytes, and the overall expression levels were

quite low in both astrocytic subpopulations.

No differences between LR- and HR-astrocytes were found

during the inhibition of K+-Cl2 co-transporters or the Na+-

dependent glutamate transporters EAAT1 (GLAST) and EAAT2

(GLT-1). KCC co-transporters contribute to the OGD-induced

cell swelling in both subpopulations and accordingly no differences

in the gene expression levels were found between subpopulation 1

Figure 7. Proposed K+ movement from HR- to LR-astrocytes
during OGD. HR-astrocytes exposed to higher [K+]o take up K+ (by K2P

channels or co-transporters), which is either released via Kir channels or
redistributed through the astrocytic syncytium and then extruded by Kir
and K2P channels in LR-astrocytes. HR – high response astrocyte, LR –
low response astrocyte, N – neuron, K2P – two-pore domain potassium
channel, Kir – inwardly rectifying potassium channel, GJ – gap junction.
doi:10.1371/journal.pone.0029725.g007
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and 2. The participation of KCCs in K+/Cl2 uptake under

pathological conditions has been suggested previously in studies

performed in the chicken retina [5]. Similarly, a block of

glutamate co-transporters did not reveal differences between

HR- and LR-astrocytes. In both HR- and LR-astrocytes,

glutamate transporters contribute to the cell volume increase,

which is in accordance with previous studies [51,52].

We have proposed that differences in the extent of astrocytic

swelling during OGD may be due to distinct ion channel and

transporter expression. However, the possibility that HR- and LR-

astrocytes face high/low [K+]o and excitatory amino acid

concentrations that could trigger distinct mechanisms of cell

swelling and cell volume regulation has to be also considered.

Although we have shown that their location in the cortical layers

does not affect the extent of volume changes during OGD, we

cannot rule out that the different volume regulation of astrocytes

might partially correlate with their contact with different types of

synapses or neurons with different sensitivity to ischemia. Since the

application of inhibitors on acute brain slices unquestionably

affects all cell types, we cannot overlook their inhibitory effect on

neurons. As the inhibition of EAATs, KCCs, VRACs and K+

channels led to the reduction of HR-astrocyte swelling, we suggest

that the effect of the inhibitors might be partially achieved by a

block of K+ and EAA efflux from neurons, resulting in decreased

astrocytic uptake.

Taken together, our results describe astrocytic subpopulations

differing in their gene expression levels of K+ and Cl2 channels,

which participate in astrocyte swelling as well as their volume

regulation. To the best of our knowledge, this is the first study

showing astrocyte heterogeneity in the cortex with respect to

distinct expression profiles of K+ and Cl2 channels. Additionally,

these findings support our earlier hypothesis that HR- and LR-

astrocytes differentially regulate their volume during OGD based

on their different expression levels of ion channels/transporters.

Supporting Information

Figure S1 3D-confocal morphometry of GFAP/EGFP
astrocytes. An EGFP-labeled astrocyte sectioned into a uniformly

spaced (1 mm) set of 2D parallel images [29]. The cell surface was

found in each image using an edge-detecting algorithm, and the

area of the image surrounded by the edge was calculated for each

image (bottom). For the cell soma volume (highlighted by full line)

and the total cell volume (highlighted by dotted line) calculations,

the area of interest was chosen for each individual cell.

(TIF)

Figure S2 Scheme of the experimental sequence for
measuring astrocyte volume changes during OGD.
Superimposed confocal images of an EGFP-labeled cortical

astrocyte in ACSF, during 20-minute OGD and during a 20-

minute co-application of ACSFOGD and inhibitor. The volume

changes were quantified every 10 minutes.

(TIF)

Figure S3 Distribution of two astrocyte populations in
the cortex of GFAP/EGFP mice related to gender or their
location in the cortical layers. A: Percent ratio of HR-

(black)/LR- (white) astrocytes in the cerebral cortex of female

(n = 193; left) and male (n = 168; right) mice. B: Percent ratio of

HR-(black)/LR- (white) astrocytes in cortical layers I (n = 46), II–

III (n = 113) and IV–VI (n = 133).

(TIF)

Table S1 Sequences of primers used for quantitative
single-cell PCR. Genes used for analyses in experiments I and II

are in bold.

(DOC)

Table S2 Number of cells positive for individual genes –
experiment I.

(DOC)

Table S3 Number of cells positive for individual genes –
experiment II.

(DOC)

Table S4 Experiment I - Spearman correlation coeffi-
cients. Significant correlations are in bold.

(DOC)

Table S5 Experiment II - Spearman correlation coeffi-
cients. Significant correlations are in bold.

(DOC)
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