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Distinct gut microbiome patterns 
associate with consensus molecular 
subtypes of colorectal cancer
Rachel V. Purcell  1, Martina Visnovska2, Patrick J. Biggs3, Sebastian Schmeier  2 &  

Frank A. Frizelle1

Colorectal cancer (CRC) is a heterogeneous disease and recent advances in subtype classification have 
successfully stratified the disease using molecular profiling. The contribution of bacterial species to CRC 
development is increasingly acknowledged, and here, we sought to analyse CRC microbiomes and relate 

them to tumour consensus molecular subtypes (CMS), in order to better understand the relationship 

between bacterial species and the molecular mechanisms associated with CRC subtypes. We classified 
34 tumours into CRC subtypes using RNA-sequencing derived gene expression and determined relative 
abundances of bacterial taxonomic groups using 16S rRNA amplicon metabarcoding. 16S rRNA 
analysis showed enrichment of Fusobacteria and Bacteroidetes, and decreased levels of Firmicutes and 

Proteobacteria in CMS1. A more detailed analysis of bacterial taxa using non-human RNA-sequencing 
reads uncovered distinct bacterial communities associated with each molecular subtype. The most 
highly enriched species associated with CMS1 included Fusobacterium hwasookii and Porphyromonas 

gingivalis. CMS2 was enriched for Selenomas and Prevotella species, while CMS3 had few significant 
associations. Targeted quantitative PCR validated these findings and also showed an enrichment of 
Fusobacterium nucleatum, Parvimonas micra and Peptostreptococcus stomatis in CMS1. In this study, we 
have successfully associated individual bacterial species to CRC subtypes for the first time.

Colorectal cancer (CRC) is one of the most common cancers, as well as one of the cancers with the highest mor-
tality worldwide1. CRC is a highly heterogeneous disease, with varying clinical outcomes, response to therapy, 
and morphological features. �erefore, classi�cation into clinically useful and reproducible subtypes has been 
a goal within the research community for many years. Studies of molecular features, such as BRAF, KRAS and 
TP53 mutation status, microsatellite instability (MSI), CpG island methylator phenotype (CIMP), somatic copy 
number alterations (SCNA), and activation of various molecular pathways such as WNT and MYC, have been 
used with some success to stratify CRC into subgroups2–7. �e advent of large-scale sequencing technologies has 
recently facilitated the development of a Consensus Molecular Subtyping (CMS) system for CRC based solely 
on tumour gene expression8. �e strong association of these CMS subtypes with distinct molecular features and 
pathway activation provides an indication of potential mechanisms underlying the disease.

Most CRCs are sporadic and follow a pattern one would expect from a yet unidenti�ed environmental source. 
�e human colon plays host to a vast and complex microbial community of <1012 microorganisms9, and a grow-
ing body of evidence points to a role for gut microbial dysbiosis in the development of CRC10. Comparison of 
faecal microbiomes from CRC patients and healthy controls11–14 has identi�ed particular bacterial species that are 
enriched in CRC, and analysis of tumour, adenoma, and matched normal tissue from the same patients found that 
changes in local communities of potentially interacting bacterial taxa are associated with di�erent disease states14, 

15. Correlations between particular cancer mutations and changes in microbial communities, and transcrip-
tional remodelling associated with speci�c bacteria have recently been described in CRC16, 17. However, a global 
investigation of the association of tumour gene expression with tumour metagenomics has yet to be described. 
Identi�cation of speci�c species or bacterial communities associated with CRC subtypes could facilitate improved 
screening and diagnostics, and understanding the underlying pathogenic mechanisms will pave the way for the 
development of targeted interventions, such as microbiome modulation and vaccines for CRC prevention.
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Here, we looked at gene expression and related CMS subtypes of a cohort of 34 CRC patients using data derived 
through RNA-sequencing, and use both bacterial 16S rRNA gene analysis and interrogation of non-human RNA 
sequences from tumour tissue to establish metagenomic pro�les for each tumour sample. �e combination of 
tumour transcriptomics and metagenomics has allowed us to identify bacterial species with potential roles in the 
mechanisms underlying particular molecular subtypes of CRC.

Materials and Methods
Patient cohort and samples. Colorectal cancer tumour samples were collected from 34 patients during 
surgical resection of previously untreated tumours. Samples were collected with patients’ written, informed con-
sent, and this study was carried out with approval from the University of Otago Human Ethics Committee (ethics 
approval number: H16/037), and all experiments were performed in accordance with relevant guidelines and 
regulations.

Twenty of the patients were female, and patient ages at the time of surgery ranged from 44–88 years (mean age, 
74 years, see Table 1). One tumour sample was from the rectum, 21 tumours were from the right side of the colon, 
and 12 from the le� side. One sample was of a large colorectal adenoma, not an adenocarcinoma. Histologically, 
four tumours were described as well di�erentiated, 20 were moderately and nine were poorly di�erentiated. Two 
tumours showed signet-ring histology and three were mucinous type. Postoperative staging showed that �ve 
tumours were stage 1, 14 and 13 tumours were stage 2 and 3, respectively, while only one tumour was stage 4. 
Patient characteristics are given in more detail in Table 1.

Nucleic acid extraction. Samples were immediately frozen in liquid nitrogen and initially stored at −80 °C. 
�ey were subsequently transferred to RNAlater ICE™ (Qiagen), and stored at −20 °C, prior to nucleic acid 
extraction. DNA and RNA were extracted each from <20 mg of tumour tissue following tissue disruption 
using a Retsch Mixer Mill. For the extractions, DNeasy Blood and Tissue Mini Kit (Qiagen) and RNEasy Plus 
Mini Kit (Qiagen) were used. DNA extraction included overnight incubation with proteinase K, and treatment 
with RNAse A. Puri�ed nucleic acids were quanti�ed using the NanoDrop 2000c spectrophotometer (�ermo 
Scienti�c, Asheville, NC, USA), and stored at −80 °C. Nucleic acids were extracted from all tumour samples in a 
single batch by one operator, to avoid inter-batch variation.

RNA sequencing. Sample preparation, including library creation and ribosomal RNA depletion (with 
RiboZero Gold) was carried out using Illumina TruSeq V2 reagents. RNA-sequencing was carried out using the 
Illumina HiSeq. 2500 V4 platform to produce 125 bp long paired end reads. �e libraries were sequenced on two 
lanes of the HiSeq instrument. To avoid technical biases caused by sequencing the libraries on di�erent lanes, 

Patients (n)

Age

        44–88 years

        Mean = 74 years

Gender

        Males 14

        Females 20

Site

        Right 21**

        Le� 12

        Rectum 1

Stage*

        1 5

        2 14

        3 13

        4 1

Di�erentiation

        Well 4

        Moderate 20

        Poor 9

Histology

        Signet-ring cell 2

        Mucinous 3

        Lymphovascular invasion 16

        Extramural venous invasion 7

        Perineural invasion 5

        Lymph node positivity 13

Table 1. Patient cohort characteristics. *Post-operative; **including one large adenoma; n, number of patients.
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each sample library was split equally to the two lanes. Sequences from the two lanes were merged for each sample 
during the data processing phase.

Quality control and gene expression quantification. In order to calculate a gene expression pro�le 
for each sequenced sample and later on to classify the samples into CMS subtypes, the raw sequenced reads were 
processed in the following way: First, low quality segments of reads as well as remnants of adapter sequences 
were removed and very short reads were discarded. Second, the reads passing the previous step were mapped to 
a reference human genome sequence and a read count for every annotated gene was calculated for each sample. 
�e read counts were later transformed to gene expression pro�le expressed by a measure ‘transcripts-per-million’ 
(TPM). Last, the CMS classi�er8 was used to assign a molecular subtype of the disease to each sample based on 
the gene expression pro�les.

Adapter sequences were removed using utility fastq-mcf (v1.1.2.537) from EA Utils18. Next, SolexaQA++ 
(v3.1.6)19 was used to trim low-quality segments of the reads and only su�ciently long reads were kept for further 
analysis. At the �rst step SolexaQA++ dynamictrim stored for each read only the longest continuous segment, 
such that the probability of a base being called in error was less than 0.01. A�erwards, segments shorter than 
50 bp were discarded using SolexaQA++ lengthsort.

�e human genome reference sequence GRCh38 and HAVANA annotation were used as the reference genome 
to map the cleaned reads to using the STAR (v2.5.2b) mapping tool20. A�er the mapping stage, reads from two 
sequencing lanes were merged together using samtools merge (v1.3.1)21. Later, a read count table was created 
using htseq-count (v0.6.1p1)22 for each sample and the raw read counts were transformed to TPM values using R 
and Bioconductor package DESeq. 2 (v1.10.1)23.

CMS classification. �e CRC Subtyping Consortium created the consensus molecular subtype (CMS) classi-
�cation by utilizing six previously established classi�cation systems. Patients’ gene expression pro�les (n = 3962) 
were collected from various public and proprietary datasets. �e pro�les were classi�ed due to each of the pre-
viously known systems and a graph of relationships among subtypes of the various classi�cation systems was 
used in a Markov Cluster Algorithm to identify a number of consensus subtypes. A smaller set of core consensus 
patient data (n = 3104) and their gene expression pro�les were used to train the Random Forest based CMS 
classi�er.

Besides the random forest classi�er, the authors made a Single Sample Predictor (SSP) method available in the 
CMS classi�er (v1.0.0, https://www.synapse.org/#!Synapse:syn4961785) R package, and this method was used to 
classify our samples into molecular subtypes of colorectal cancer. �e SPP method is less sensitive to di�erences 
in normalisation techniques used during the data processing and in terms of its performance comparable to the 
random forest classi�er.

In order to classify a sample to one of the four subtypes, the SSP method calculates similarity of the sample to 
a centroid of each subtype. If the sample shows acceptable level of similarity to exactly one of the centroids, the 
subtype corresponding to the centroid is assigned to the sample undergoing the classi�cation. Similarity between 
two gene expression pro�les is calculated as Pearson’s correlation of log2 scaled values from the pro�les. A sample 
is considered to be similar to a centroid if the correlation is at least 0.15. In order for a sample to be classi�ed, a 
correlation to the most similar centroid has to be higher by 0.06 than a correlation to the second most similar 
centroid. �ese values are set by default in the SSP method. Centroid genome expression pro�les are hard-coded 
in the method as information from the random forest classi�er and the training data were used to calculate the 
values.

Metabarcoding by 16S rRNA. Libraries containing 16S rRNA were prepared with 20 ng of DNA for each  
sample using primer pairs flanking the V3 and V4 regions of the 16S rRNA gene (16SF_V3: 5′-TATG 
GTAATTGGCCTACGGGAGGCAGCAG-3′ and 16SR_V4: 5′-AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT
-3′), and Illumina sequencing adaptors and barcodes added using limited cycle PCR (40 cycles). Amplicon sequencing 
was carried out using the Illumina MiSeq platform, and paired end reads of length 250 bp were generated.

During data processing, short overlapping forward and reverse reads coming from the same fragment were 
joined together by FLASh (v1.2.11)24 to form overlapped sequences of the V3-V4 16S region. A�er joining, the 
resulting fragments were trimmed that the probability of a base being called in error was less than 0.01, and 
minimal length of a fragment was at least 50 bp. �is step was done by SolexaQA++ (v3.1.5). Next, chimeric 
sequences were removed by the QIIME (v1.9)25 scripts identify_chimeric_seqs.py and �lter_fasta.py. A collection 
of sequences suitable for further QIIME analysis was thus obtained. Later on, the script pick_de_novo_otus.py 
was used to identify de novo operational taxonomic units (OTUs) and to link the OTUs to the available bacterial 
taxonomy. Taxa were then summarized for various metadata classes (e.g. CMS, tumour location, etc.) using sum-
marize_taxa_through_plots.py.

Taxonomic classification of RNA-sequencing reads using Kraken. All NCBI Refseq bacterial 
genomes with “Complete Genomes”- or “Chromosome”-level genomes were downloaded from NCBI FTP 
site (�p://�p.ncbi.nlm.nih.gov/genomes/refseq/bacteria/) based on information in the “assembly_summary.
txt” �le as of 19th January 2017. A list of the genomes can be accessed in Supplementary Table S1. Additional 
genomes known to play role in CRC were added disregarding their genome status (see Supplementary Table S2). 
Using the genome fasta-�les, a new Kraken database (https://ccb.jhu.edu/so�ware/kraken/) was created using 
“kraken-build–build” with default parameters26. �e resulting Kraken database had a size of ~131 GB.

All RNA-seq reads that were unable to be mapped to the human reference genome (GRCh38) were extracted 
per sample and were used as input to Kraken (v0.10.6) using our custom Kraken database for taxonomic classi�-
cation. �is resulted in each read being classi�ed into a bacterial taxa (reads that Kraken could not assign into a 

https://www.synapse.org/#!Synapse:syn4961785
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/
http://S1
http://S2
https://ccb.jhu.edu/software/kraken/
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taxa were excluded from further analysis). Number of reads per taxa were counted and bacterial abundances per 
CRC sample were calculated. We visualized bacterial abundances per CRC subtype, by combining all reads of all 
samples of a CRC subtype and those reads were input to Krona (v2.7). Interactive plots are available at https://
crc.sschmeier.com.

Differential bacterial abundances in CMS subtypes. To identify bacterial strains that are enriched or 
depleted in one CMS subtype compared to all other subtypes, we employed a strategy similar to common di�er-
ential expression analyses. We term this approach “di�erentially expressed taxa”. Using edgeR Bioconductor pack-
age (v3.14.0)27, we identi�ed bacterial taxa whose abundances are considerably di�erent among CMS subtypes.

In this analysis, for each CRC sample we used the assigned CMS subtype together with a list of bacterial taxa 
identi�ed by Kraken and corresponding read counts per taxa as input data. We treated all samples of a certain 
CMS subtype as replicates belonging to the subtype. We ran di�erential analysis of each CMS subtype against all 
the other classi�ed samples (more information can be found at https://gitlab.com/s-schmeier/crc-study-2017). 
�is resulted in bacterial taxa that are enriched (or depleted) in a subtype as compared to all other subtypes. We 
performed this analysis on the species-level taxa for all CMS subtypes.

Quantitative PCR. Levels of the Porphyromonas gingivalis, Bacillus coagulans, Selenomas sp., F. nucleatum, 
P. stomatis, P. micra and the reference gene, prostaglandin transporter (PGT)28 were simultaneously measured 
from genomic DNA extracted from CRC tumour samples, using qPCR on a LightCycler®480 thermocycler 
(Roche Diagnostics, Indianapolis, IN, USA), as previously described29. Primers were designed using the Primer3 
online primer design tool (http://bioinfo.ut.ee/primer3/, except for F. nucleatum primers, which are from a pre-
vious publication. All primers were checked for speci�city using Blast (https://blast.ncbi.nlm.nih.gov/Blast.cgi). 
Primers for each gene are given in Supplementary Table S3. Genomic DNA from puri�ed bacterial samples were 
used as positive controls (DSMZ, Germany). �e levels of each of the bacterial species in each DNA sample were 
calculated as a relative quanti�cation (RQ). Calculations were made using 2−∆Ct, where ∆Ct is the di�erence in 
Ct values between the gene target of interest and reference gene for a given sample.

Differential gene expression analysis. We used count tables from the RNA sequencing mapping and 
counting procedure (see above), in addition to the CMS subtype information produced through the CMS classi-
�cation step, and ran a di�erential expression analysis for all genes. We used each sample within a given subtype 
as a replicate of that subtype, and ran edgeR (v3.14.0) to compare each subtype against all other samples not in 
the CMS subtype, e.g. samples in CMS1 against all other classi�ed samples (samples in CMS2 plus CMS3). We 
extracted genes that are up- or down-regulated, using a Benjamini and Hochberg false-discovery rate (FDR)30 
adjusted P-value (<0.1), and a log2 fold-change greater or smaller than zero (more information can be found at 
https://gitlab.com/s-schmeier/crc-study-2017).

Gene-set enrichment analysis. We used gene-sets per CMS subtype, and the type of expression (i.e. up- or 
down-regulation) as input, and calculated a P-value for enrichment of the gene-set in biological categories, using 
Fisher’s exact test for count data (“�sher.test” method in R). All P-values were adjusted for multiple testing using 
the false-discovery adjustment method from Benjamini & Hochberg, using R-method “p.adjust” (more informa-
tion can be found at https://gitlab.com/s-schmeier/crc-study-2017). �e biological categories and corresponding 
gene-sets used in the analysis were extracted from MSigDB31 (version 5.2). We sub-selected the following cate-
gories for the analysis: KEGG, REACTOME, BIOCARTA, PID, HALLMARK GENES, and Gene Ontology (GO) 
biological processes. �e background set of genes for each gene-set enrichment analysis (GSEA) test was all genes 
associated with any of the above categories.

Ethics approval and consent to participate. Samples were collected with patients’ written, informed 
consent, and this study was carried out with approval from the University of Otago Human Ethics Committee 
(ethics approval number: H16/037).

Availability of data and material. �e datasets used and/or analysed during the current study are availa-
ble from the corresponding author on reasonable request.

Results
Classification of CRC samples into consensus molecular subtypes. Reads generated by RNA-
sequencing were quality checked, mapped to the human reference genome, and gene expression was quanti�ed 
based on the number of reads mapped to particular transcript models. �e RNA from one tumour sample was too 
degraded to carry out RNA-sequencing, leaving 33 samples. Gene expression pro�les from each patient were used 
as input data to the publicly available CMS subtype classi�er8 (see Materials and Methods). �e CMS subtype for 
each sample based on the classi�cation was recorded. Five CRC samples were designated as unclassi�ed. �e pro-
portion of CRC samples in each subgroup is shown in Table 2, compared with that seen in the CMS classi�cation 
by the CRC subtyping consortium8.

Biological features of CMS subtypes. In order to validate the CMS classi�cation approach, we identi�ed 
di�erentially expressed genes (DEGs) for groups of samples belonging to each subtype (CMS) by comparing the 
samples of a subtype against all other samples not belonging to that subtype. We did this for all subtypes in which 
we classi�ed our samples (CMS1, CMS2, and CMS3). We split the resulting DEG into up- and down-regulated 
genes and ran gene-set enrichment analysis (GSEA) with each individual set of genes to identify categories in 
which these genes are enriched (see Materials and Methods). Although we were not able to exactly reproduce 
the methodology used in the publication describing the original classi�cation8, the enriched biological categories 

https://crc.sschmeier.com
https://crc.sschmeier.com
https://gitlab.com/s-schmeier/crc-study-2017
http://bioinfo.ut.ee/primer3/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://S3
https://gitlab.com/s-schmeier/crc-study-2017
https://gitlab.com/s-schmeier/crc-study-2017


www.nature.com/scientificreports/

5SCIENTIFIC REPORTS | 7: 11590  | DOI:10.1038/s41598-017-11237-6

per CRC subtype in our data closely follow the originally identi�ed categories, con�rming that our approach for 
classifying the CRC samples was successful (see Table 2 for a summary of results and Supplementary Table S4 for 
complete GSEA results).

Strikingly, most highly ranked categories for up-regulated DEGs of CMS1 show clear immunological signa-
tures, e.g. immune response, interferon-γ response, in�ammatory response, TNFα signalling through NFκβ and 
cytokine-mediated signalling. Downregulated DEGs in CMS1 are involved in pathways associated with digestion, 
metabolism and the negative regulation of morphogenesis.

Up-regulated DEGs of CMS2 show signi�cant enrichment in cell-cycle signatures, e.g. DNA damage check-
point, DNA replication and synthesis and cell cycle regulation. DEGs associated with Myc signalling were also 
enriched, although statistical signi�cance was not reached. However, no enrichment of Wnt-associated signalling 
was found in CMS2 in our cohort. Interestingly, the down-regulated DEG in CMS2 show a greater number of 
signi�cantly enriched categories, especially those associated with immunological signatures, which agrees with 
the observation made in the study by Guinney et al.8.

GSEA of our designated CMS3 samples showed many highly signi�cant categories associated with metab-
olism, e.g. lipid and steroid metabolism, amongst others. Interestingly, we found that many down-regulated 
DEGs are enriched in cell-cycle related categories, and those involved in DNA replication, synthesis and damage 
checkpoints.

Despite di�erences in the methodology of the analysis, as well as in the biological categories used, overall, we 
recovered many similar biological signatures through GSEA of our DEG groups per subtype, suggesting that the 
originally proposed classi�cation system is appropriate, and our analysis produced comparable results.

Insights into 16S rRNA metabarcoding data. Metabarcoding analysis of microbial communities local-
ized on tumour tissue samples based on the V3-V4 hypervariable region of the 16S rRNA gene was carried out 
using QIIME. Representative sequences were identi�ed for each operational taxonomic unit (OTU), and these 
sequences were used to assign taxonomy to each OTU using the Greengenes reference OTU database. Relative 
abundances of taxonomic groups in each CRC sample was calculated on various taxonomic levels (from phyla to 
genera), and the bacterial phyla present on average with abundance over 1% are listed for each sample from our 
cohort in Table 3.

It can be seen that the samples di�er remarkably already in abundances at the level of bacterial phyla. In 
Fig. 1, we show the relative abundances for various groups of samples from our cohort. As for CMS subtypes, 
visible di�erences are in enrichment of Fusobacteria and Bacteroidetes, and decreased levels of Firmicutes and 
Proteobacteria in CMS1, compared to CMS2 and CMS3 (Fig. 1a).

Analysis of di�erences in taxonomic abundances between samples based on other clinicopathological variants, 
such as tumour di�erentiation (Fig. 1b) and tumour location (Fig. 1c) also showed changes at the phylum level; 
decreased levels of Fusobacteria and Firmicutes, and increased abundance of Proteobacteria and Bacteroides were 
seen with decreasing tumour di�erentiation, while right-sided tumours had increased Fusobacteria compared to 
le�-sided tumours.

Taxonomic investigation of non-human RNA-seq reads per CMS subtype. Although 16S rRNA 
analysis allowed us to identify changes in bacterial communities at the phylum level between CRC subtypes, it 
did not give us resolution to the species level. In order to identify bacteria that may be associated with particu-
lar molecular subtypes at the species level, we performed a taxonomic investigation of non-human RNA-seq 
reads using Kraken26 (see Materials and Methods). To validate the consistency of the two approaches, we com-
pared phylum and genus level abundances derived through 16S rRNA analysis or separately derived through 
non-human mapped RNA-seq reads using Kraken26. When correlating the phylum-level abundances derived 
through 16S rRNA metabarcoding with the abundances derived through Kraken for each CRC sample, we see 
a high correlation of 85% (Fig. 2b). At the genus level, there was an overall lower, but still high correlation as 
compared to phylum level, showing a reasonable agreement between the 16S rRNA and the RNA-seq Kraken 
approach (see Fig. 2a). However, it should be noted that the number of genera that appear in both 16S rRNA and 
Kraken-derived data is quite low (76 genera, and only 13 on the phylum level); it is possible that using RNA-seq 
derived bacterial abundances is more sensitive in detecting taxa than 16S rRNA sequencing, as has been shown 
previously for whole shotgun sequencing compared to 16S rRNA sequencing32.

CMS1 MSI immune CMS2 Canonical CMS3 Metabolic CMS4 Mesenchymal Unclassi�ed

CMS study8

14% 37% 13% 23%

13%Immune in�ltration 
and activation

Wnt and Myc 
activation

Metabolic deregulation
Stromal in�ltration, TGFβ 
activation, angiogenesis

�is study

18% 39% 27%

0% 15%Immune in�ltration 
and activation

Cell cycle signatures 
and Myc activation

Metabolic deregulation

Table 2. Comparison of proportion of patients in each consensus molecular subtype (CMS) and unclassi�ed 
(UC) tumours from this study and the original classi�cation study by the CRC subtyping consortium8, and 
enriched molecular pathways associated with subtypes from both studies.

http://S4
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Analysis of bacterial taxa for each molecular subtype uncovered distinct bacterial communities associated 
with each CMS subtype (Fig. 3 and also https://crc.sschmeier.com for interactive Krona plots). Table 4 shows the 
15 most highly enriched genera for each CMS subtype (for a complete list of genera see Supplementary Table S5).

Analysis of Kraken-derived data at the species level revealed that among the highest enriched bacterial species 
associated with CMS1 were Fusobacterium hwasooki (previously F. nucleatum) and Porphyromonas gingivalis, 
both known oral pathogens with putative roles in CRC development. P. gingivalis is also known to synergisti-
cally promote extra-gastrointestinal infections through co-occurrence with Treponema denticola and Tannerella 
forsythia, both of which are also strongly associated with CMS1. CMS2 had highly enriched Selenomonas and 
Prevotella species, while there were only a few bacterial species signi�cantly associated with CMS3. Of particular 
interest to this study was the strong association of oral pathogens and bacteria capable of forming bio�lms with 
CMS1. Taken together, the strong immunological and in�ammatory signatures associated with this CRC subtype, 
and the known mechanisms of actions of some of these bacteria in extra-gastrointestinal infections, provides a 
plausible link between the co-occurrence of certain oral bacteria and the development of CMS1 type CRC.

Validation of bacterial species in CMS using qPCR. �ree bacterial species were chosen for qPCR 
validation of CMS subtypes using genomic DNA samples extracted from the CRC tumours. �e species were 
chosen based on their high enrichment in a CMS and corresponding low association with the other CMS sub-
types. Primer design and commercial availability of bacterial genomic DNA for use as positive controls were also 
factors in choosing validation targets. Porphyromonas gingivalis, Selenomonas sp. and Bacillus coagulans were 
chosen due to their strong associations with CMS 1, 2 and 3, respectively. �ree further bacteria were targeted 

Sample Firmicutes Bacteroidetes Proteobacteria Fusobacteria

CRC1 49.18 41.13 4.56 1.67

CRC2 29.84 41.03 5.27 17.98

CRC3 50.12 1.05 46.57 0.01

CRC4 60.56 25.04 12.87 0.79

CRC5 62.8 28.87 7.34 0.27

CRC6 27.31 56.49 15 0.02

CRC7 31.98 60.06 5.39 2.11

CRC8 69.09 27.25 2.49 0

CRC9 15.3 60.37 2.7 20.95

CRC10 61.35 24.89 10.58 1.41

CRC11 35.13 51.33 6.48 0

CRC12 58.67 38.42 1.3 1.13

CRC13 76.32 18.58 2.12 2.01

CRC14 37.57 20.7 39.93 1.11

CRC15 54.01 38.21 4.93 0.71

CRC16 34.76 33.92 19 11.98

CRC17 64.94 29.15 5.44 0

CRC18 72.84 20.91 4.48 0

CRC19 69.78 19.28 6.69 3.87

CRC20 52.87 35.38 10.35 0

CRC21 42.27 49.98 5.64 0.93

CRC22 55.03 38.91 6 0

CRC23 56.36 33.36 7.55 1.29

CRC24 66.36 27.06 5.04 0.22

CRC25 53.77 12.03 0.34 33.65

CRC26 71.38 26.3 0.45 0.17

CRC27 11.06 84.94 0.91 3.09

CRC28 58.42 28.99 10.37 0

CRC29 35.78 61.23 1.93 0.84

CRC30 36.48 59.52 1.08 1.05

CRC31 66.55 6.46 2 23.92

CRC32 63.53 22.22 9.24 0.01

CRC33 30.18 51.72 11.12 6.66

CRC34 15.86 80.23 0.85 0.36

Average (%) 49.34 36.91 8.12 4.07

SD 17.92 19.39 9.97 8.05

Table 3. Phyla of bacteria present in each sample, with abundance >1%, as per 16S rRNA analysis. SD; 
standard deviation..

https://crc.sschmeier.com
http://S5
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Figure 1. Relative abundance of bacterial phyla in samples grouped by (a) consensus molecular subtype (CMS), 
(b) histological tumour di�erentiation, and (c) location of tumour.

Figure 2. (a) Spearman’s rank correlation for abundances of 76 genera derived through 16S rRNA 
metabarcoding amplicon sequencing and Kraken analysis of RNA sequencing data for each CRC samples. 76 
genera that appear in both methods were used. (b) Spearman’s rank correlation for abundances of 13 phyla 
derived through 16S rRNA metabarcoding amplicon sequencing and Kraken analysis of RNA sequencing data 
for each CRC samples. �irteen phyla that appear in both methods were used. Dashed lines indicate the average 
correlation over all samples.
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due to their known or putative roles in CRC development: the oral pathogens, F. nucleatum, Parvimonas micra 
and Peptostreptococcus stomatis. Relative levels of each species was calculated using ∆Ct method, with PGT as a 
reference gene (See Material and Methods). �e relative expression values are given in Supplementary Table S6. 
Relative expression levels were calculated for each molecular subtype compared to the other subtypes and 
fold-change values generated based on average expression in samples of a subtype to the average expression in 
all other samples (Fig. 4). High abundances of P. gingivalis and Selenomonas sp. were strongly correlated with 
CMS1 and CMS2, respectively, validating our �ndings generated from the Kraken analysis for these two subtypes. 
�e expression of B. coagulans was less signi�cantly associated with CMS3 than �ndings from Kraken analysis 
suggested. In addition, increased abundances of the oral pathogens, F. nucleatum, P. micra and P. stomatis were 
associated with CMS1.

Discussion
�e two main objectives of our study were the validation of molecular subtypes of CRC using published classi-
�ers in an independent CRC cohort, and particularly the examination of di�erences in bacterial communities 
associated with di�erent molecular subtypes of CRC. For the �rst aim, our study found similarities between 
our cohort and the original classi�cation study of Guinney et al.8 that classi�ed CRCs into consensus molecular 
subtypes. We found similar proportions of tumours classi�ed as CMS1 and CMS2, in addition to unclassi�a-
ble tumours. However, none of the tumours in our study were classi�ed as CMS4, and there was an increased 
proportion of CMS3 in our cohort compared to that used in the study of Guinney et al.: 30% compared to 13%. 
Several reasons might contribute to the observed di�erences. First, the small number of patients (33) in our study 

Figure 3. Krona plots of for each CMS showing relative abundance of bacterial taxa at the genus level. 
Interactive versions of these Krona plots can be further interrogated at https://crc.sschmeier.com.

http://S6
https://crc.sschmeier.com
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may have resulted in the absence of CMS4 patients from our cohort; the CRC subtyping consortium used 3104 
patients’ samples in their study. Furthermore, di�erences in analytical methods used on RNA-sequencing data 
might be a contributing factor. We were unable to exactly replicate the methodology of the original CRC subtyp-
ing consortium study for several reasons. First, the original study made use of data from �e Cancer Genome 
Atlas (TCGA, http://cancergenome.nih.gov/), which since then have been updated based on new computational 
technologies. Second, the original study included microarray based datasets and not only data derived through 
RNA-sequencing. Nevertheless, we tried to follow the original methodology as closely as possible, but some of 
the di�erences we observed might be attributed to the changes we introduced. In addition, several studies have 
recently highlighted the issue of the confounding in�uence of intra-tumoural heterogeneity when using molec-
ular classi�cation33, 34. Indeed, a recent study by Li et al., analyzing single cells, has shown that EMT-associated 
genes, a hallmark of CMS4, are only upregulated in cancer-associated �broblasts33. �ese �ndings suggest that 
CMS4 may not exist as a subtype of CRC per se, rather it may be a re�ection of the stromal cells associated with a 
given tumour. �is research area is still under active development and we believe our study provides some impor-
tant insights into CRC subtyping and associated microbiomes.

Gene-set enrichment analysis showed very similar �ndings to those described by the CRC subtyping con-
sortium. �is is encouraging, as we used a slightly di�erent method to analyse associated biological categories 
to CRC subtypes (see Materials and Methods). �e strong immune signature associated with CMS1, and corre-
sponding low-expression of genes related to immune functions in CMS2 and CMS3, re�ect �ndings of the CRC 
subtyping consortium8. However, a study by Becht et al., found that an in�ammatory CRC micro-environmental 

CMS1 CMS2 CMS3

Genus % Genus % Genus %

Bacteroides 48.5 Bacteroides 66.6 Bacteroides 27.6

Fusobacterium 15.7 Fusobacterium 4.0 Faecalibacterium 5.8

Hungatella 7.9 Prevotella 3.8 Clostridium 5.5

Prevotella 4.0 Roseburia 2.6 Roseburia 4.7

Porphyromonas 2.8 Faecalibacterium 2.2 Blautia 2.8

Lachnoclostridium 2.7 Porphyromonas 1.3 Lachnoclostridium 2.2

Campylobacter 1.6 Klebsiella 1.1 Prevotella 2.1

Leptotrichia 1.2 Clostridium 0.9 Clostridioides 1.6

Candidatus Desulfofervidus 0.8 Selenomonas 0.8 Klebsiella 1.6

Clostridium 0.6 Blautia 0.6 Eubacterium 1.4

Faecalibacterium 0.6 Eubacterium 0.5 Parabacteroides 1.2

Roseburia 0.5 Lachnoclostridium 0.5 Hungatella 1.1

Blautia 0.5 Ruminococcus 0.5 Alistipes 1.0

Treponema 0.5 Bacillus 0.4 Selenomonas 0.8

Klebsiella 0.5 Hungatella 0.4 Ruminococcus 0.7

Table 4. �e 15 most highly abundant bacterial genera, as a percentage of the total bacterial genera, for each 
consensus molecular subtype (CMS), as calculated using RNA-seq metagenomics.

Figure 4. Heatmap of log2 fold-changes in abundance of bacterial targets analysed using qPCR, for each 
consensus molecular subtype (CMS).

http://cancergenome.nih.gov/
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signature was highly associated with CMS4 in their transcriptomic analysis35. In contrast, an in�ammatory signa-
ture was strongly associated with CMS1 in our study, while CMS2 and CMS3 displayed low immune and in�am-
matory signals in both studies. Although a small number of studies have used the CMS classi�ers on previously 
unclassi�ed gene array data36, 37, most published studies reporting of CMS classi�cation have used expression 
data from the cohorts used in the initial study. �is study is the �rst one to independently validate the classi�er 
using newly derived RNA-sequencing data from a physically disparate patient cohort. Our �ndings highlight the 
importance of validation of new classi�cation systems in order to ensure their reproducibility and methodological 
robustness prior to use in a research or clinical setting.

Our second aim involved cataloguing and identifying di�erences in the tumour microbiome associated with 
di�erent molecular subtypes of CRC. To this end we employed both 16S rRNA sequencing and RNA-sequencing 
data. We found signi�cant phylum-level changes between the three subtypes studied in our cohort, using both 
sequencing methods; di�erences between the methods may be accounted for by the lower resolution seen using 
16S rRNA metabarcoding. Mapping of non-human RNA-sequencing reads to bacterial reference sequences ena-
bled us to catalogue bacterial species of each tumour sample. �is identi�ed very distinct bacterial communities 
associated with each molecular subtype. Although bacterial dysbiosis, as shown through 16S rRNA and metagen-
omics studies, have previously been associated with CRC compared to controls11, 12, 38, 39, and a recent study by 
Burns et al.16 has linked microbial composition with loss-of-function mutations in tumours, this is the �rst time 
that di�erent bacterial signatures have been shown to associate with molecular subtypes of CRC.

Increased carriage of Fusobacterium nucleatum has been frequently associated with CRC40–42. F. nuclea-
tum possesses a unique adhesion molecule, FadA, that allows it to adhere to and invade epithelial cells43; it has 
also shown to potentiate colorectal carcinogenesis by recruitment of in�ltrating immune cells44 and modulat-
ing E-cadherin/β-catenin signalling45. F. nucleatum has also been shown to have an association with immune 
response in the development of CRC46, and to be strongly in�uenced by diet47. Fusobacterium hwasookii, which 
until recently was classi�ed as F. nucleatum48, was one of the bacterial species most strongly associated with 
CMS1 in our cohort. Due to its recent reclassi�cation it may account for some of the previously reported associa-
tions of Fusobacterium with CRC. While the genome of F. hwasookii has been sequenced, no mechanistic studies 
have been carried out to date to compare the oncogenic potential of this strain to F. nucleatum. However, given 
the similarity to the F. nucleatum sequence, and presence of a highly conserved FadA gene, it is likely that F. 
hwasookii plays a similar role in carcinogenesis. �e ability of Fusobacterium species to elicit an immune response, 
in particular to recruit T-cells, is re�ected in the immunological signature seen in the CMS1 tumours. Our tar-
geted qPCR analysis of F. nucleatum that showed an increased abundance associated with CMS1, also re�ects 
the �ndings of two studies that found that Fusobacterium was associated with a CRC subtype characterised by 
CpG island methylation, MSI and in�ammatory signatures17, and higher prevalence in right-sided tumours49, all 
hallmarks of CMS18.

Although not as well studied as Fusobacterium, several other oral pathogens, or potential pathobionts, have 
been reported to be associated with CRC. Of considerable interest to us, is the enrichment of Porphyromonas 
gingivalis with CMS1 in our cohort, identi�ed by both Kraken and qPCR analysis. �is oral pathogen has been 
reported to synergistically promote oral cancer50 and is associated with CRC, although only some studies reported 
increased levels of the bacteria in tumours compared to controls11, 38, 51. P. gingivalis is also a known bio�lm for-
mer that co-aggregates with Treponema denticola and Tannerrella forsythia52, 53, both of which also show enrich-
ment in CMS1. Formation of such bio�lms in extra-intestinal infections facilitates synergistic pathogenicity54, 55, 
and the high enrichment of these bacteria in CMS1 suggests that similar community synergy may be occurring in 
the tumour microenvironment. �e concept of bacterial bio�lms as initiators of CRC has recently been proposed. 
Bio�lms facilitate the invasion of the mucous layer, and a study by Dejea et al.56 found that bio�lms were present 
in >90% of right-sided CRC; all of the CMS1 tumours in our study were right sided.

We also performed targeted analysis of two further oral bacteria, P. micra and P. stomatis, in our CRC cohort. 
�ese bacterial species have been identi�ed in metagenomics studies as markers of CRC using faecal samples12, 
and have been described in an oral-microbe-induced colorectal tumorigenesis model, proposed by Flynn et al.57. 
Interestingly, a recent microbiome study by Flemer et al.58 of CRC tumour and matched faecal samples found 
signi�cantly elevated abundance of Fusobacterium, Peptostreptococcus, or Parvimonas only in a subset of 20–30% 
of CRC patients. We found enrichment of these bacteria to be associated with CMS1 in our tumour cohort (18%), 
underlining the potential role of oral polymicrobial communities in the development of a subset of CRC, and the 
importance of considering CRC heterogeneity when studying mechanisms of CRC pathogenesis.

�e major limitation of this study was the small cohort size. Although we found signi�cant associations of 
bacterial species and taxa associated with particular molecular subgroups, a much larger cohort would be useful 
to reproduce our �ndings. �is study was limited to frozen tissues for the purposes of this pilot study; future use 
of formalin-�xed tissue would allow visual microdissection of tumour tissue and avoid potential problems with 
intra-tumoural heterogeneity. We also lacked an independent cohort to carry out validation, thus we carried out 
validation on the original cohort. Future directions would include testing of qPCR panels in a large independent 
sample set prior to molecular classi�cation using RNA-sequencing, and investigating the utility of these bacterial 
markers in non-invasive faecal-based tests.

Conclusions
In conclusion, due to the potentially modi�able nature of gut bacteria, identifying the role of particular bacterial 
species in CRC development could have implications for cancer prevention. Here, we have identi�ed, for the �rst 
time, distinct microbial populations associated with subtypes of CRC. �is will lay the groundwork for future 
studies into the molecular mechanisms of bacterial colorectal carcinogenesis, and may have clinical utility for 
CRC screening, diagnosis and treatment.
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