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Abstract

Background: The selection pressure exercised by antibiotic drugs is an important consideration for the wise

stewardship of antimicrobial treatment programs. Treatment decisions are currently based on crude assumptions,

and there is an urgent need to develop a more quantitative knowledge base that can enable predictions of the

impact of individual antibiotics on the human gut microbiome and resistome.

Results: Using shotgun metagenomics, we quantified changes in the gut microbiome in two cohorts of

hematological patients receiving prophylactic antibiotics; one cohort was treated with ciprofloxacin in a hospital in

Tübingen and the other with cotrimoxazole in a hospital in Cologne. Analyzing this rich longitudinal dataset, we

found that gut microbiome diversity was reduced in both treatment cohorts to a similar extent, while effects on

the gut resistome differed. We observed a sharp increase in the relative abundance of sulfonamide antibiotic

resistance genes (ARGs) by 148.1% per cumulative defined daily dose of cotrimoxazole in the Cologne cohort, but

not in the Tübingen cohort treated with ciprofloxacin. Through multivariate modeling, we found that factors such

as individual baseline microbiome, resistome, and plasmid diversity; liver/kidney function; and concurrent

medication, especially virostatic agents, influence resistome alterations. Strikingly, we observed different effects on

the plasmidome in the two treatment groups. There was a substantial increase in the abundance of ARG-carrying

plasmids in the cohort treated with cotrimoxazole, but not in the cohort treated with ciprofloxacin, indicating that

cotrimoxazole might contribute more efficiently to the spread of resistance.

Conclusions: Our study represents a step forward in developing the capability to predict the effect of individual

antimicrobials on the human microbiome and resistome. Our results indicate that to achieve this, integration of the

individual baseline microbiome, resistome, and mobilome status as well as additional individual patient factors will

be required. Such personalized predictions may in the future increase patient safety and reduce the spread of

resistance.
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Background
Healthcare-associated infections with antibiotic-resistant

pathogens are increasing worldwide, posing a serious threat

to our healthcare system [1, 2]. According to current esti-

mates, up to ten million fatal cases are expected to be

caused by antibiotic-resistant pathogens in 2050 [3].

In light of the emergence of novel sequencing tech-

niques, we are now able to characterize the human

microbiome and its associated resistome in detail. A

major target for these investigations is the human gut

because its microbiome is a well-known reservoir for a

vast number of antibiotic resistance genes (ARGs) and

moreover a hub for their horizontal exchange [4, 5]. It is

likely that the human gut microbiome is a key player in

the emergence and spread of antibiotic-resistant patho-

gens [6] and that its characterization can contribute to

personalized antimicrobial stewardship (AWS) strategies.

Antibiotic treatment can have a massive impact on both

the human gut microbiome and its resistome [7–9]. It is

likely that the clinically most relevant antimicrobial selec-

tion pressure occurs in this ecosystem. Our group has pre-

viously reported on a methodology to determine the

intestinal antimicrobial selection pressure under ciprofloxa-

cin treatment using shotgun metagenomics [10]. The pri-

mary objective of our prospective, multicenter cohort study

was to quantify and directly compare the antimicrobial se-

lection pressure caused by ciprofloxacin or cotrimoxazole

in a hematological patient population and to investigate

how and to what degree individual patient characteristics

and clinical cofactors influence the impact of antibiotics.

Results

Clinical cohort characteristics

We investigated two clinical cohorts from hematology de-

partments in Tübingen and Cologne, Germany. Both co-

horts received oral antibiotics as a prophylactic measure

according to national clinical guidelines. In Tübingen, cip-

rofloxacin was administered, in Cologne cotrimoxazole.

Ciprofloxacin belongs to the class of fluoroquinolone anti-

biotics. Cotrimoxazole contains two different substances

which belong to different antibiotic classes. It consists of

one part of trimethoprim, which blocks the bacterial folate

metabolism, and of five parts of sulfamethoxazole, which

belongs to the group of sulfanilamide antibiotics. We re-

cruited 68 patients and included 41 into our final analysis.

A flow chart of study participants and excluded patients is

shown in Additional file 1: Figure S1.

Clinical and demographic characteristics are listed in

Table 1. While most patient characteristics were similar

in both cohorts, we identified differences in the under-

lying diseases (leukemia, lymphoma), laboratory parame-

ters before start of antibiotic treatment (creatinine,

bilirubin, platelet count), and concurrent medication

(virostatic agents, antifungals).

Stool samples were collected before treatment (T0,

from now on called “baseline”), day 1 (T1), day 3 (T2)

after initiation of antibiotic treatment, and at the end of

the observation period (T3), which was after a median of

6 days on antibiotic treatment. Shotgun metagenomics

was performed at each time point, with a median se-

quencing depth of 83,345,082 raw sequence reads per

sample and 82,616,415 sequence reads per sample after

filtration (about 12.39 Gb output). Microbiome, resis-

tome, and plasmidome parameters at baseline did not

differ between both treatment cohorts (Table 1).

The mean time period between hospital admission and

collection of the baseline stool sample (with a subse-

quent start of antibiotic treatment) was 1.95 days in the

ciprofloxacin cohort (range 0–6 days) and 1.47 days in

the cotrimoxazole cohort (range 0–7 days) (Add-

itional file 2: Table S1). We did not detect a statistical

difference between both cohorts regarding time to base-

line stool sample (p = 0.37). This data shows that our pa-

tients have received prophylactic antibiotic treatment

shortly after hospital admission. We have chosen to in-

vestigate hematological cohorts with high-risk patients

because the majority of these patients received antibi-

otics early during the hospital stay and since antibiotic

resistance is a significant problem in this patient popula-

tion. This is also the reason why we did not recruit a co-

hort of patients not treated with antibiotics as controls.

Such a cohort is difficult to establish and would signifi-

cantly differ from hematological patients in need of

prophylactic or therapeutic antibiotic treatment.

Impact of antibiotic treatment on the gut microbiome

In both cohorts, we compared the impact of two

prophylactic regimens on microbial richness, Shannon

diversity and Simpson’s evenness of the gut microbiome

(Fig. 1). At first, we investigated a crude baseline-

endpoint comparison (BEC), where we compared differ-

ences between the last observation point (T3) and the

baseline (T0, before treatment), following the equation

BEC = variable (T3) − variable (T0). This way, BEC de-

tects either an increase or decrease of the investigated

variable over the course of antibiotic treatment. Hence,

BEC reflects crude study results without considering dif-

ferences in dosage or contributing factors.

We observed in both treatment cohorts a decline in

Shannon diversity at a phylum level over the course of the

treatment (Fig. 1a). However, the mean decline was greater

under ciprofloxacin treatment (− 31.29%, p = 0.006) com-

pared to cotrimoxazole (− 17.95%, p = 0.02). On a species

level (Fig. 1b), we only observed a mean decline under cip-

rofloxacin (− 21.01%, p < 0.0001) but not under cotrimoxa-

zole (− 2.01%, p = 0.62). The chance of whether diversity

decreased or increased in a patient was dependent on the

baseline status in the cotrimoxazole cohort (Fig. 1c).
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Patients with a high baseline diversity were more likely to

lose diversity, while those with a lower baseline diversity

likely remained at the same level or even slightly gained

diversity when treated with cotrimoxazole (p = 0.01,

Additional file 3: Table S2).

Evenness showed a statistically significant decrease on

the phylum level for patients on cotrimoxazole (− 13.2%,

p = 0.015), indicating some disruption of the original

phylum composition. On the species level, we did not

note a decrease in evenness on both antibiotics (Fig. 1a,

b). Alteration in evenness was found to be dependent on

the evenness baseline status in the ciprofloxacin cohort

(Fig. 1c, Additional file 3: Table S2, p = 0.006). All baseline

disparities are presented in Additional file 3: Table S2.

We also computed multivariate regression models

which can handle the entire time series data (T0, T1,

T2, and T3) of all patients. Instead of just investigating

the crude study outcome (BEC analysis), this

Table 1 Major demographic and clinical characteristics of both treatment cohorts

Characteristic Ciprofloxacin cohort (n = 20) Cotrimoxazole cohort (n = 21) p value

Demographic characteristics

Female gender (%) 9 (42.9) 9 (45) 0.89

Age, years, mean 55.75 51.43 0.39

Weight, kg, median 80 78 0.24

Height, cm, mean 175.44 175.2 0.85

Persons in household, median 2 2 0.06

Underlying diseases and comorbidities

Leukemia (%) 10 (50) 3 (14.3) 0.014*

Lymphomas (%) 8 (40) 19 (90.5) 0.001*

Charlson Comorbidity Score, median 2 2 0.51

Glascow Coma Scale, mean 15 15 n.a.

Baseline laboratory parameters

Creatinine, mg/dl, median 0.75 0.87 0.004*

Bilirubin, mg/dl, mean 0.65 0.48 0.01*

Platelets, counts/μl, median 99,500 210,000 0.0003*

WBC, counts/μl, median 5790 7830 0.06

Neutrophils, counts/μl, median 2105 4130 0.09

Baseline medication and medication history

Antibiotics within the last year (%) 3 (15) 4 (19) 0.73

Virostatic agents within the last year (%) 0 (0) 1 (4.8) 0.32

Anti-cancer treatment (%) 8 (40) 4 (19) 0.14

Virostatic agents (%) 7 (35) 1 (4.8) 0.015*

Antifungals (%) 6 (30) 0 (0) 0.007*

Proton pump inhibitor (%) 8 (40) 13 (61.9) 0.16

Cholesterol-lowering agents (%) 3 (15) 0 (0) 0.07

Bowel movement regulators (%) 6 (30) 4 (19) 0.41

Baseline microbiome/resistome/plasmidome parameters

Microbiome Shannon diversity (phylum) 0.751 0.808 0.32

Microbiome evenness (phylum) 0.0115 0.012 0.19

Microbiome Shannon diversity (species) 4.51 4.55 0.81

Microbiome evenness (species) 0.0022 0.0018 0.26

Total plasmid abundance (coverage/106 reads) 875.77 1066.92 0.06

Proteobacteria plasmid abundance (coverage/106 reads) 172.43 193.82 0.14

Total plasmid Shannon diversity 6.18 6.52 0.24

Total plasmid evenness 0.0225 0.0227 0.75

Resistome Shannon diversity 1.0048 1.0639 0.24

Resistome evenness 0.3573 0.3612 0.40

*Statistically significant differences
WBC white blood cells
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furthermore enabled us to take different cumulative dos-

ages of antibiotics into account and to test for the con-

tributing effect of all variables that had turned out to be

significantly different between both treatment cohorts

(Table 1). We also included proton pump inhibitors into

this analysis since their influence on the microbiome has

been previously reported [11, 12].

This investigation was independently done for both

cohorts. It started with a univariate regression analysis

of the antibiotic effect for each outcome variable and a

subsequent analysis of potential contributing variables. If

contributing variables were detected (p < 0.05), they

were included into the model with the antibiotic, result-

ing in a multivariate model with adjusted model

Fig. 1. Antibiotic impact on the gut microbiome. Trajectories of richness, Shannon diversity, and Simpson’s evenness before treatment (T0) and

at the end of the observation period (T3) are shown on phylum rank (a) and species rank (b) for both antibiotic treatments. Pink data points are

measurements at T0, purple data points at T3. Boxplots indicate the distribution of data. The connecting magenta line shows the means at each

time point and their development under treatment. The p value is displayed at the top of each box and indicates statistical significant differences

between T0 and T3 within each treatment cohort (paired t-test). Under ciprofloxacin treatment, richness and Shannon diversity decrease

significantly while Simpson’s evenness remains stable. In contrast, under cotrimoxazole, loss of richness and diversity is less pronounced and only

significant on the phylum rank. c Violin plots illustrate the differences in baseline values between those patients with a positive baseline-endpoint

comparison (BEC, green color) and those with a negative (orange color). The group size is displayed in the respective colors. Baseline species

Shannon diversity was higher in the group of patients that lost diversity under cotrimoxazole, while patients with no decline or even an increase

in diversity had a lower baseline diversity. The same was observed for species Simpson’s evenness under ciprofloxacin. d Based on multivariate

regression modeling, the average percentage change per defined daily dose (DDD) is illustrated for each treatment cohort. Under both

antibiotics, a loss in diversity was observed. However, no statistically significant difference was detected between both antibiotics. If an additional

impact of concurrent medication was detected beside antibiotics in the multivariate models, this has been illustrated by different filling pattern. e

Mean cumulative dose for antimicrobial agents in DDDs for the ciprofloxacin cohort and the cotrimoxazole cohort at each sampling time point

(T0–T3). The colors indicate the drug classes, administered in either the ciprofloxacin or cotrimoxazole cohort (illustrated in brackets). The

cumulative dose of ciprofloxacin was higher than the dose of cotrimoxazole. f Mean emergence and disappearance of species under antibiotic

treatment in percentage compared to the species count at baseline. Frequent potentially pathogenic species are displayed. The number of

patients with an emergence or disappearance of these species is shown in brackets
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coefficients. Finally, potential differences between the

trends (regression coefficients) of both antibiotics for a

certain outcome variable (e.g., Shannon diversity) were

investigated using the likelihood ratio test (LR). Within

each regression model, data from one patient was

treated as its own time series within the model by data

clustering. This resulted in the effect that each patient

served as its own control by comparing the baseline with

the subsequent time points. Finally, the model itself re-

ports an overall effect for the cohort.

Figure 1d demonstrates normalized multivariate re-

gression coefficients indicating an average percentage

change of diversity/evenness per cumulative defined

daily dose (DDD) of the antibiotic. Overall, the results

show a decrease of diversity in both cohorts. For even-

ness, a decrease was noted on phylum and an increase

on species level for patients on cotrimoxazole prophy-

laxis. Evenness was just slightly impacted in the cipro-

floxacin group. Along with antibiotic treatment, other

factors including baseline creatinine, lymphoma as

underlying disease, and virostatic/antifungal treatment

also had a significant impact on intestinal microbiome

diversity and evenness when tested in the multivariate

models (Fig. 1d, Additional file 4: Table S3). Crude

results of the univariate models are displayed in

Additional file 5: Table S4.

Interestingly, after accounting for the different cumu-

lative antibiotic dosages and these cofactors, we did not

observe statistical significant differences in antimicrobial

selection pressure caused by both antibiotics (LR p ≥

0.18 for all microbiome variables, Additional file 4: Table

S3), suggesting both antibiotics have a similar effect on

the microbiome. The BEC analysis had indicated such

differences (Fig. 1a, b). But they clearly do not exist after

multivariate adjustment, suggesting a strong impact of

the identified cofactors.

One major factor that impacts the results of the multi-

variate modeling is the different mean cumulative dose

of antibiotics that both groups received (Fig. 1e). Cipro-

floxacin was administered at about fourfold higher cu-

mulative doses when compared with cotrimoxazole.

Multivariate modeling takes this into account, while

BEC does not. Trajectories of microbiome variables over

all time points and for all patients are shown in Add-

itional file 6: Figure S2 and Additional file 7: Figure S3.

The drop in microbiome diversity on antibiotic treat-

ment came also along with a disappearance of microbial

species (Fig. 1f). However, compared to the baseline spe-

cies count, we also observed an emergence of species

not detectable before treatment (8.67% on cotrimoxazole

and 5% on ciprofloxacin, respectively). Among the emer-

ging species were potential pathogens like Proteus vul-

garis and Acinetobacter lwoffii/johnsonii, illustrating

important shifts during antibiotic treatment.

Impact of antibiotic treatment on the gut resistome

Within our study, we also set out to determine the influ-

ence of antimicrobial therapy on the gut resistome.

Therefore, the sequencing reads were mapped to the

ARG-ANNOT resistance gene database [13]. A total of

382 ARGs belonging to different ARG classes have been

detected in all samples.

The total length-corrected relative abundance (LCRA)

of the most abundant ARG classes did surprisingly in-

crease just by 11.5% (p = 0.43) on ciprofloxacin and 11%

(p = 0.55) on cotrimoxazole between the baseline and

end of treatment (Fig. 2a). Hence, the total ARG LCRA

did not significantly change over the treatment period.

We also investigated LCRA shifts of single ARG clas-

ses for both antibiotics using BEC (Fig. 2b). As for the

total ARG LCRA, none of these BEC shifts were statisti-

cally significant. However, we observed a fairly strong

mean increase of sulfonamide (+ 354.4%, p = 0.07) and

trimethoprim (+ 894.4%, p = 0.14) ARGs under cotri-

moxazole (Fig. 2c) compared to low BEC values for sul-

fonamide (+ 3.8%, p = 0.93) and trimethoprim (+ 6.25%,

p = 0.96) ARGs under ciprofloxacin. This suggests differ-

ences between both antibiotic treatments. BEC results

for all observed ARG classes are shown in Add-

itional file 8: Figure S4. LCRA trajectories of all ARG

classes comprising all patients and sample time points

are shown in Additional file 9: Figure S5, Add-

itional file 10: Figure S6, Additional file 11: Figure S7

and Additional file 12: Figure S8.

A potential reason for the high variance in ARG LCRA

observed in BEC could be that the impact of antibiotic

treatment on the intestinal resistome is very patient spe-

cific, for instance depending on the individual micro-

biome and resistome baseline status and also on other

individual patient characteristics. By applying multivari-

ate regression modeling, we additionally investigated po-

tential cofactors and corrected for differences in the

cumulative antibiotic dosage (Fig. 2d, Table 2, Add-

itional file 13: Table S5). Confirming the BEC analysis,

we observed a high antimicrobial selection pressure for

sulfonamide and trimethoprim ARGs, which increased

per cumulative cotrimoxazole DDD by 148.1% and

477.7% (p = 0.015 and p = 0.1), respectively. Crude re-

sults of the univariate models for ARGs are displayed in

Additional file 14: Table S6.

Particularly interesting was the comparison of anti-

microbial selection pressure from all ARG classes be-

tween both antibiotic treatments using the likelihood

ratio test (LR). This revealed significant differences in

antimicrobial selection pressure for various ARG classes

which are of clinical relevance (Fig. 2d, Table 2). For in-

stance, we observed a positive selection pressure for

CTX-M with ciprofloxacin, while negative with cotri-

moxazole (LR p < 0.0001). Additionally, we observed a
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Fig. 2. Antibiotic impact on the gut resistome. a Stacked bar chart of summed length-corrected relative abundances (LCRA) of major

antimicrobial resistance gene (ARG) classes at baseline (T0) and over the treatment period (T1–T3). The following ARG classes are depicted:

aminoglycosides (AGly), beta-lactamases (Bla), fluoroquinolones (Flq), glycopeptides (Gly), macrolide-lincosamide-streptogramin (MLS),

nitroimidazoles (Ntmdz), phenicols (Phe), sulfonamides (Sul), tetracyclines (tet), and trimethoprim (Tmt). b Trajectories of antimicrobial resistance

genes quantification by LCRA before treatment (T0) and at the end of the observation period (T3) are shown for both antibiotic treatments. Pink

data points are measurements at T0, purple data points at T3. Boxplots indicate the distribution of data. The connecting magenta line shows the

means at each time point and their development under treatment. The p value is displayed at the top of each box and indicates statistical

significant differences between T0 and T3 within each treatment cohort (paired t-test). Trends for LCRA changes are prominent but do not reach

statistical significance. c Two-dimensional kernel estimation density of square root transformed LCRA values of sulfonamide and trimethoprim

ARG classes in relation to the administered cumulative antibiotic dose in defined daily doses (DDD). ARG LCRA rises significantly with increasing

doses of cotrimoxazole, but not under ciprofloxacin. d Based on multivariate regression modeling, the average percentage change of ARG class

LCRA per defined daily dose (DDD) is illustrated for each treatment cohort. Bonferroni-corrected statistically significant differences between both

antibiotics (LR p < 0.002) are presented by single asterisks. Significant differences in antimicrobial selection pressure were observed for

aminoglycoside, CTX-M, glycopeptide, MLS, nitroimidazole, phenicol, sulfonamide, and trimethoprim ARGs. If an additional impact of concurrent

medication was detected beside antibiotics in the multivariate models, this has been illustrated by different filling pattern. e Fluoroquinolone

resistance-mediating mutation frequencies increase under ciprofloxacin exposure in patient 512 comparing baseline (T0) and endpoint (T3)
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high positive selection pressure for sulfonamide and tri-

methoprim ARGs under cotrimoxazole as mentioned

above. This was clearly not the case under ciprofloxacin

treatment (LR p < 0.0001 for both), suggesting that

ARGs conferring antimicrobial resistance to the sub-

stances contained in cotrimoxazole expand exclusively

under the respective treatment.

The suspicion that the high variance in ARG LCRA

observed in BEC could be driven by individual cofactors

that differ between patients was confirmed in our

multivariate analysis. Similar to microbiome changes,

several cofactors like bilirubin, creatinine, underlying

hematological diseases, proton pump inhibitors and

mostly concurrent antimicrobial agents independently

shaped ARG LCRA under antibiotic treatment (Add-

itional file 13: Table S5). This contributing effect was

particularly pronounced for virostatic agents, which had

a significant impact on ARG LCRA in 7 of 11 ARG clas-

ses, thus appearing to be a driving force of resistome

alterations.

Impact of ciprofloxacin on the length-corrected relative

abundance of fluoroquinolone ARGs and resistance-

mediating mutations

Overall, we did not observe differences between the two

antibiotics with respect to selection of fluoroquinolone

ARGs (Fig. 2b, d). In ARG-ANNOT [13], this ARG class

includes qnr genes and efflux pumps. We only detected

qnr genes in our dataset. Since we observed a low fre-

quency of qnr genes in our cohort (Additional file 9:

Figure S5), it is difficult to compute antimicrobial selec-

tion pressure differences between both drugs.

We therefore additionally examined our cohorts for

the presence of common fluoroquinolone resistance-

mediating mutations (gyrA, parC, parE, acrR, acrB) [14]

using reference genes from Escherichia coli strain K-12

MG1655 and Staphylococcus aureus NCTC8225 and

NCTC8325. We found four mutations mapping to the

reference E. coli strain K-12 in one patient (ID 512) from

the ciprofloxacin cohort. Figure 2e shows the percentage

increase of sequence reads carrying the respective muta-

tions comparing baseline (T0) and endpoint (T3). These

results indicate a clear positive selection when fluoro-

quinolone resistance-mediating mutations are abundant

before treatment. Patient 512 was the only one with such

mutations at baseline. We also did not observe the

emergence of sequence reads with fluoroquinolone

resistance-mediating mutations under ciprofloxacin

treatment in any patient.

The same patient (ID 512) also possessed qnr genes

before ciprofloxacin administration, which significantly

expanded on the first day of treatment but declined

afterwards even to a state much lower than at baseline

(Additional file 9: Figure S5). The non-linear course of

resistome changes in this patient demonstrates the im-

portance of the baseline status and the individual aspects

of ARG selection.

As a consequence, we examined the overall influence

of the baseline resistome status (T0) on the selection of

ARG classes. Mean baseline ARG class LCRAs were

Table 2 Multivariate selection pressure estimates for major antibiotic resistance gene classes

ARG class Ciprofloxacin
coefficient

Ciprofloxacin coefficient
(normalized)

Cotrimoxazole
coefficient

Cotrimoxazole coefficient
(normalized)

LR p value (likelihood
ratio test)

Aminoglycoside
ARGs

− 0.4 − 4.44% 1.45 8.16% < 0.0001

Beta-lactamases 0.73 1.63% − 7.44 − 10.39% 0.04

CTX-M 0.05 50% − 0.02 − 40% < 0.0001

Fluoroquinolone
ARGs

− 0.001 − 0.14% 0.15 10.06% 0.79

Glycopeptide
ARGs

0.04 2.48% − 0.11 − 5.88% < 0.0001

MLS ARGs 4.22 4.23% 7.76 10.25% < 0.0001

Nitroimidazole
ARGs

− 0.0008 − 10.52% − 0.006 − 25% < 0.0001

Phenicol ARGs − 0.06 − 6.52% 0.56 31.11% < 0.0001

Sulfonamide
ARGs

− 0.13 − 5.03% 2.34 148.1% < 0.0001

Tetracycline ARGs 4.57 3.05% − 2.52 − 1.45% 0.94

Trimethoprim
ARGs

− 0.004 − 2.5% 0.86 477.77% < 0.0001

ARG antibiotic resistance gene, CTX-M plasmid-mediated cefotaximases, MLS macrolide-lincosamide-streptogramin

Normalized coefficients are based on the mean baseline ARG length-corrected relative abundance (LCRA) and demonstrate a relative change in ARG LCRA per

defined daily dose (DDD) of the antibiotic
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compared from patients whose ARG class LCRAs in-

creased or decreased over the observation period (BEC

values). We found that baseline ARG class LCRAs were

significantly relevant for antimicrobial selection in four

ARG classes (Additional file 15: Table S7). This included

aminoglycoside and CTX-M ARGs in the ciprofloxacin

cohort. For aminoglycoside ARGs, high baseline LCRA

was likely to decrease during treatment, while high

CTX-M baseline LCRA was likely to increase. For cotri-

moxazole, high baseline LCRA levels of glycopeptide and

phenicol ARGs were more likely to result in a decrease

of these ARGs. This demonstrates that resistome alter-

ation under antibiotic treatment depends on the baseline

resistome, but only for specific ARG classes. Quantita-

tive LCRA baseline levels for all ARG classes and both

treatment cohorts can be found in Additional file 15:

Table S7.

Localization of ARGs

Our results indicate that different antibiotics have a spe-

cific effect on the gut resistome. However, determining

distinctions between antibiotics relating to antimicrobial

selection pressure adjusted to certain cofactors is just

one first step in improving antibiotic treatment strat-

egies. Additionally, the clinical relevance of an ARG or

ARG class must be a vital element in the overall

decision-making process in how to administer antibi-

otics. Clinical relevance of an ARG (class) is determined

(i) by the importance of the antibiotic class that is ren-

dered useless by an ARG, (ii) by the taxonomic unit car-

rying the ARG, and (iii) by the genomic location of the

ARG, particularly whether or not it is located on a mo-

bile genetic element.

For these reasons, we also investigated the taxonomic

location of ARG classes in our patients. ARGs are pri-

marily an immediate threat to patients when they are

carried by pathogenic organisms. We established a Ken-

dall’s rank correlation network between taxonomic phyla

and ARG classes for the ciprofloxacin (Additional file 16:

Figure S9A) and the cotrimoxazole cohort (Add-

itional file 16: Figure S9B) over all observation time

points.

In the ciprofloxacin cohort, glycopeptide resistance-

mediating ARGs including van genes were associated

with a location in the phylum Firmicutes (tau correlation

coefficient = 0.37, p = 1.6 × 10− 6). Firmicutes comprise

the genus Enterococci, which are increasingly found to

be vancomycin resistant [15].

In the cotrimoxazole cohort, sulfonamide and tri-

methoprim ARGs were associated with Proteobacteria

(tau = 0.15, p = 0.06 and tau = 0.23, p = 0.004, respect-

ively), while fluoroquinolone ARGs were associated with

Proteobacteria in the cotrimoxazole and ciprofloxacin

cohort (tau = 0.2, p = 0.017 and tau = 0.37, p < 0.00003,

respectively).

Since the phylum Proteobacteria contains several clin-

ically important pathogens, we extended our correlation

network to the species level (Additional file 17: Table

S8). In the cotrimoxazole cohort, we found potentially

pathogenic Enterobacter sp., Citrobacter sp., Klebsiella

sp., and Serratia marcescens to be positively correlated

with sulfonamide and trimethoprim ARGs, suggesting

some degree of pathogen selection under cotrimoxazole

treatment. We also found positive correlation in the cip-

rofloxacin cohort. Escherichia coli, Citrobacter sp., En-

terobacter cloacae, Serratia marcescens, Staphylococcus

aureus, and Staphylococcus saccharolyticus were posi-

tively correlated with fluoroquinolone ARGs.

Impact of antibiotic treatment on the intestinal

plasmidome

While an ARG location in an apathogenic commensal

organism might not pose an immediate threat to a pa-

tient, it could be a future threat if the ARG is localized

on a mobile genetic element. Therefore, we investigated

how the plasmidome is driven by antibiotic treatment

and to what extent it is involved in the expansion of

ARGs.

Comparing the last time point (T3) with the baseline

(T0) in our study (BEC analysis), we observed a mean

decrease in plasmid diversity (− 37.3%, p < 0.0001), total

plasmid abundance (− 36.11%, p = 0.004), and plasmid

abundance from Proteobacteria (− 87.6%, p = 0.01) under

ciprofloxacin (Fig. 3a). Of note, plasmid diversity and

abundance were not significantly affected by cotrimoxa-

zole, although mean plasmid diversity decreased to some

extent (− 10.13%, p = 0.06). Plasmid evenness remained

stable on both treatments, though this depended on its

baseline status (cotrimoxazole p = 0.05, ciprofloxacin p =

0.004, Additional file 18: Table S9). The other plasmid

variables did not show disparities in their baseline status

(Additional file 18: Table S9). The entire time series for

plasmid variables is displayed in Additional file 19:

Figure S10.

Multivariate regression modeling taking contributing

factors and the different cumulative dosage into account

demonstrated that plasmid diversity and total plasmid

abundance declined to the same extent in both treat-

ment groups (Fig. 3b, Additional file 20: Table S10).

Plasmid evenness was significantly different between

both antibiotic treatments (LR p < 0.0001), with a de-

crease under cotrimoxazole and a slight increase under

ciprofloxacin. Additional file 21: Table S11 additionally

displays the results from the univariate analysis.

As with BEC analysis, we examined the abundance

from Proteobacteria plasmids separately, since many of

them contain ARGs. The total plasmid abundance and
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abundance of plasmids from Proteobacteria significantly

decreased under ciprofloxacin (both p = 0.002, Add-

itional file 20: Table S10, Fig. 3a and b), but not under

cotrimoxazole (p = 0.24 and p = 0.86, Additional file 20:

Table S10, Fig. 3a). We did not note a clear differential

impact between both drugs on plasmid abundances

when considering a Bonferroni-corrected LR p value <

0.002 (Fig. 3b, Additional file 20: Table S10). Neverthe-

less, the determined LR p value of 0.02 still presents po-

tential differences in the impact of both antibiotics on

plasmid abundances, particularly in plasmids from Pro-

teobacteria, with a decrease of plasmid abundance under

ciprofloxacin and a stable state or even slight expansion

under cotrimoxazole (Fig. 3b, Additional file 20: Table

S10). The moderate decrease in plasmid evenness under

cotrimoxazole pointed to the emergence of a sudden

dominance of a few plasmids, likely because of positive

selection (Fig. 3b, Additional file 20: Table S10).

We therefore addressed the question of whether

plasmids from Proteobacteria or other taxonomic or-

igins carried ARGs and were then selected in the pa-

tients’ guts during treatment. We computed a co-

occurrence network that displays the relationship be-

tween the taxonomic origin of ARG-carrying plas-

mids and their total plasmid-ARG content for each

time point of our study period and for both treat-

ment cohorts (Fig. 3c for ciprofloxacin, Fig. 3d for cotri-

moxazole). Under ciprofloxacin, we observed a decline in

the total plasmid-ARG content over the course of treat-

ment. This is presumably due to an extinction of spe-

cies which carry plasmids with ARGs. Under cotrimoxazole

on the other hand, we noticed a sudden increase of

Proteobacteria-derived plasmids carrying sulfonamide, tri-

methoprim, aminoglycoside ARGs, and A-beta-lactamases.

This suggests a rise in the abundance of ARG-carrying plas-

mids from a potentially pathogenic origin, providing

evidence for a positive plasmid selection caused by

cotrimoxazole.

Since horizontal gene transfer occurs more frequently be-

tween species from the same body site and phylogenetic

background [16], this poses an additional threat regarding

ARG transmission from one species to another, particularly

considering the emergence of pathogenic species within the

microbiome (Fig. 1f). The interplay between antibiotic

treatment and plasmidome alteration that we observed was

again independently influenced by other factors. These

were mostly virostatic agents, particularly when combined

with cotrimoxazole (Additional file 20: Table S10).

Interplay between gut microbiome, resistome, and

plasmidome under antibiotic pressure

Our results indicate that antibiotic selection is a non-

linear process, depending on the presence and quality of

cofactors. Understanding the complex interplay of these

cofactors is important for implementing metagenomic-

guided antimicrobial stewardship that by necessity inte-

grates an exceptional high level of individuality.

We created a correlation matrix composed of baseline

taxonomic diversity and diversity of mobile genetic ele-

ments (Fig. 4a). We also created a resistance score for each

patient on the basis of comparing ARG LCRA of the base-

line (T0) with the end of the observation period (T3), again

applying BEC. If a patient had experienced an increase in

one of the ARG classes at the end of the observation period,

this was scored with one point. The higher the score, the

more we observed positive selection for more ARG classes.

The correlation matrix revealed that microbiome species

diversity at baseline was positively correlated with the re-

sistance score (rho = 0.31, p = 0.05). Thus, patients were

more likely to present an increase in ARG LCRA

while on treatment when baseline species diversity

was high (Fig. 4a, b). It is important to note that

(See figure on previous page.)

Fig. 3. Antibiotic impact on the gut plasmidome. a Trajectories of total plasmid abundance, plasmid abundance from proteobacteria, plasmid Shannon

diversity, and plasmid Simpson’s evenness before treatment (T0) and at the end of the observation period (T3) are shown for both antibiotic treatments.

Pink data points are measurements at T0, purple data points at T3. Boxplots indicate the distribution of data. The connecting magenta line shows the

means at each time point and their development under treatment. The p value is displayed at the top of each box and indicates statistical significant

differences between T0 and T3 within each treatment cohort (paired t-test). Total plasmid abundance, plasmid abundance from Proteobacteria, and

plasmid diversity decreased significantly under ciprofloxacin treatment while plasmid evenness remained stable. In contrast, plasmids were not strongly

affected by cotrimoxazole. b Based on multivariate regression modeling, the average percentage change of plasmid characteristics per defined daily dose

(DDD) is illustrated for each treatment cohort. Bonferroni-corrected statistically significant differences between both antibiotics (LR p< 0.002) are presented

by single asterisks. If an additional impact of concurrent medication was detected beside antibiotics in the multivariate models, this has been illustrated by

a different filling pattern (checkerboard pattern = virostatic agents, horizontal stripes = antifungal agents, vertical stripes = virostatic and antifungal agents).

Trends for plasmid evenness were significantly different, with a slight increase under ciprofloxacin and moderate decrease under cotrimoxazole. c, d The

co-occurrence network displays the relationship between ARG-carrying plasmids from certain taxonomic origins and the ARG classes located on these

plasmids at each sample collection time point for the ciprofloxacin cohort (c) and the cotrimoxazole cohort (d). The total plasmid-ARG content is

expressed by the line width between plasmid origin and ARG class. The bar on the upper right part of each network row displays the scale of the total

plasmid-ARG content (range 1–27). The diagrams in the lower right parts illustrate the Proteobacteria plasmid-ARG content for aminoglycoside,

sulfonamide, trimethoprim ARGs, and beta-lactamase A enzymes. The y-axis ranges from 1 to 27 and displays the respective plasmid-ARG content. The

ARG classes in the diagrams correspond to the colors of the networks and the legend at the bottom of the graph. Plasmids harboring ARGs from

Proteobacteria expanded under cotrimoxazole, while ARG-containing plasmids from all origins declined under ciprofloxacin
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there was also a strong correlation between baseline

plasmid diversity and resistance score (rho = 0.3, p =

0.05, Fig. 4a, b). This could reflect a higher baseline

potential for horizontal gene transfer resulting in a

more effective ARG expansion. A subgroup analysis

of both cohorts revealed that a correlation of resist-

ance score with baseline plasmid diversity was specif-

ically the case in the cotrimoxazole cohort (rho = 0.41,

p = 0.04) and was weaker in the ciprofloxacin cohort

(rho = 0.18, p = 0.45). Generally, baseline species

Fig. 4. Links between baseline gut microbiome and resistome alteration under antibiotic pressure. a Spearman’s rank correlation matrix revealed a

positive correlation between the resistance score (indicating more positive antibiotic resistance gene selection in patients) and baseline microbiome and

plasmid diversity. Pink-colored edgings indicate statistically significant correlation coefficients (p≤ 0.05). b Scatter graphs with detailed illustration of the

relation between baseline microbiome and plasmid diversity as well as between resistance score and baseline microbiome and plasmid diversity

Fig. 5. Independent contributors that shape the gut resistome along with antibiotic treatment. The graph summarizes the concept of additional

independent variables that impact the alterations of the gut resistome under antimicrobial selection pressure caused by antibiotic treatment
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diversity was highly correlated with baseline plasmid

diversity (rho = 0.66, p < 0.001, Fig. 4a, b). In order to

exclude confounding because of differences in the cu-

mulative antibiotic dose of patients, we correlated this

dose with the resistance score. We did not determine

a relevant association (rho = 0.08, p = 0.64).

These findings indicate that high species diversity

could indeed be a risk factor for an effective selection

and spread of ARGs, underlining the importance of the

microbiome baseline status before antibiotic treatment.

We concluded that resistome alteration under the sig-

nificant impact of antibiotic treatment is additionally

driven by a complex interplay of various cofactors, includ-

ing the baseline microbiome, resistome, and plasmidome,

but also other individual patient factors like the liver and

kidney function, and clinical cofactors like concurrent

drugs, particularly virostatic agents (Fig. 5).

Discussion
Our study presents the first proof-of-concept that ultra-

deep shotgun metagenomics allows us to determine and

compare antimicrobial selection pressure for different

antibiotics in a clinical cohort of hematological patients.

We compared ciprofloxacin with cotrimoxazole. While

both antibiotics had a similar negative impact on gut

microbiome diversity, there were significant differences

in resistome alterations under treatment. Nevertheless,

currently, it is not an option to generally recommend

one of these antibiotics over the other regarding spread

of resistance within a patient or between patients. In

terms of resistome alterations, we discovered a complex

interplay between the antibiotics with concomitant treat-

ment, the clinical status of a patient, and the baseline

status of the gut microbiome, resistome, and plasmi-

dome. Of note, the microbiome, resistome, and plasmi-

dome parameters at baseline were not different between

both treatment cohorts. This makes a general bias re-

garding the microbiome baseline composition of our co-

horts unlikely and emphasizes the validity of our

observations. It is thus important to account for all iden-

tified contributors when predicting the impact of an

antibiotic on resistome alterations of an individual pa-

tient. However, we cannot warrant that all relevant con-

tributing patient and environmental variables were

documented in our study and subsequently included

into our final models, e.g., potential differences in the

diet between both cohorts were not investigated.

In this context, we want to stress the contributing ef-

fect of virostatic agents. It has recently been reported

that an unexpectedly high number of drugs affect micro-

biota, even those without a direct antimicrobial activity

like proton pump inhibitors, antidiabetics, psychotropic

drugs, and many more [17–19]. To our knowledge, how-

ever, this is the first study to show a relevant and

independent impact of antiviral treatment on the micro-

biome, resistome, and plasmidome in a clinical cohort.

We have also noted independent effects of antifungals

and proton pump inhibitors, but to a lower extent. This

is a clinically highly relevant finding since it has been re-

ported that a diminished microbiome diversity—regard-

less of its cause—has a negative impact on long-term

survival, particularly in patients with hematological ma-

lignancies [20, 21].

Baseline laboratory parameters like creatinine and bili-

rubin were further independent contributors, probably

due to their importance for the pharmacokinetics of

drugs or due to the interplay between liver metabolism

and the gut microbiome [22]. For instance, increasing

serum levels of creatinine shifted the resistome always in

the same direction as cotrimoxazole in our study, prob-

ably due to the renal excretion of both drug’s compo-

nents and their accumulation under reduced kidney

function resulting in a prolonged effect.

Underlying hematological diseases were also identified

as other important cofactors. We hypothesize that this

might reflect the distinct anti-cancer treatments within

the cohort because anti-cancer drugs have been reported

to affect gut microbiota composition [18, 23]. Since anti-

cancer treatment regimens were highly diverse in our

cohorts, and since our study was specifically designed to

investigate and compare the effect of antibiotics, we can-

not provide further evidence regarding anti-cancer drugs

as contributors. Instead, we recommend independent

studies to specifically address this question.

We also found the baseline plasmidome to be one of

the major players in rendering how an antibiotic would

impact a patient’s resistome. In our clinical cohorts, we

showed that high gut plasmid diversity before treatment

reflects a higher transmission potential, and thus a

higher chance for positive ARG selection under anti-

biotic pressure. On the other hand, antibiotic pressure

can shape the plasmidome to a relevant degree. We saw

a relative expansion of ARG-carrying plasmids from Pro-

teobacteria under cotrimoxazole. The higher impact on

the plasmidome compared with ciprofloxacin might be

due to the selection of sulfonamide ARGs which are

often localized on integron cassettes, typically to be

found on conjugative plasmids [24].

One limitation of our study is the lack of a cohort not

treated with antibiotics as a control. Abeles et al. have

shown that relative abundances of bacterial taxa change

over time in a similar pattern in household members ei-

ther treated with an antibiotic or a placebo [25]. This in-

dicates that various environmental contributing factors

could have an impact on the microbiome beside antibi-

otics. In our study, we did not recruit a non-antibiotic-

treated control cohort since we assumed this cohort

would severely differ from hematological patients in
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need of antibiotics. Hence, we could have missed add-

itional contributing factors from the hospital environ-

ment that further shape the microbiome, resistome, and

plasmidome. We have potentially weakened this limita-

tion by clustering the time series data from each patient

within our regression models. This way, we have made

each patient his or her own control. Moreover, the re-

sults of our clinical study stress some points regarding

confounding: We must acknowledge individual contrib-

uting factors from patients if we want to determine the

impact of antibiotic treatment with a high precision.

And while we do not expect a strong “household effect”

in the clinic due to the relatively short stay, we want to

emphasize that studies are warranted which investigate

the additional contribution of the hospital environment

on microbiome, resistome, and plasmidome changes.

This will enable to determine antibiotic impact even

more precisely.

Conclusions

Our study is one important exploration towards a

metagenomic-guided antimicrobial stewardship that

aims at advanced and informed precision for the use of

antibiotics in a high-risk hematological patient popula-

tion. Predicting the individual effect of an antibiotic

seems possible, but this will need to incorporate multiple

contributors in order to completely reflect the complex

interplays outlined by our data. A profound knowledge

of these cofactors will enable us to collect required data

in an appropriate format in large cohorts and to measure

the specific impact on clinically relevant resistome parti-

tions. A link between significant resistome-shaping fac-

tors with clinically relevant selection of resistance could

subsequently be modeled through machine-learning al-

gorithms for predicting the effects of individual anti-

biotic treatments and for supplying therapeutic advice.

Such computer-supported individualized guidance would

not only promote the transition of infectious disease

medicine into the digital age, but also provide the means

to significantly reduce transmission of resistant patho-

gens, thus improving infection control and patient

safety.

Methods

Hospital settings

We conducted a prospective, multicenter cohort study

at two university hospitals in Tübingen and Cologne,

Germany, in order to assess the impact of antibiotic

treatment on the gut resistome and to compare anti-

microbial selection pressure between different antibiotic

prophylaxis regimens. In both hospitals, patients were

recruited from the hematology/oncology departments.

The local ethics committees approved the study (refer-

ence numbers: 661/2013BO1 and 14-021, respectively).

All patients provided written informed consent before

participating in the study. Data monitoring of patient

data was performed at both centers. The study is regis-

tered at https://www.clinicaltrials.gov/ under the identi-

fier NCT02058888.

Study design, definition, and participants

Adult patients (≥ 18 years) with an underlying hematological-

oncological disease were considered eligible if a neutropenia

of at least 7 days and the need for an antibiotic prophylaxis

were expected. Patients having received antibiotics within the

last 30 days were excluded from the study. A complete list of

inclusion and exclusion criteria is made available in Add-

itional file 22: Table S12. Patients in Tübingen received oral

ciprofloxacin as prophylaxis against bacterial infections dur-

ing neutropenia (2 × 500mg daily), patients in Cologne oral

cotrimoxazole (trimethoprim/sulfamethoxazole) as Pneumo-

cystis jirovecii pneumonia prophylaxis (160/800mg three

times a week). Patients were excluded from the study if they

needed to be treated with any other antibiotic medication

during the observation period.

Clinical data acquisition

We gathered the following clinically and demographic-

ally relevant parameters: age, sex, weight, height, Charl-

son Comorbidity Score [26], laboratory parameters

(creatinine, bilirubin, platelet count, neutrophils count,

white blood cell count) at each sample collection time

point, Glascow Coma Scale [27], and concurrent medi-

cation (virostatic agents, antifungals, anti-cancer drugs,

proton pump inhibitors, cholesterol-lowering substances,

and laxatives). A full list of administered concomitant

medication is provided in Additional file 23: Table S13.

Stool collection, DNA extraction, and shotgun

metagenomic sequencing

In order to determine the intestinal resistome and to es-

timate the antibiotic-induced selection pressure, we col-

lected four stool samples from each patient for shotgun

metagenomics. The baseline sample T0 was collected

within a maximum of 3 days before the start of anti-

biotic prophylaxis. Sample T1 was collected 1 day after

initiation of prophylaxis, sample T2 after 3 days of

prophylaxis, and sample T3 at the end of the observation

period. The end of the observation period was either at

the end of prophylactic drug administration or after

7 days of prophylaxis. A delay of up to + 48 h was toler-

ated for each time point. Between two time points, a

minimum of 24 h must have been passed.

We collected stool samples in a sterile plastic device

(Commode Specimen Collection System, Thermo Fisher

Scientific, Pittsburgh, USA). The majority of stool samples

were collected in the hospitals, while a few were collected

at the patients’ home and immediately transported in cool
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bags to our laboratory. Samples were stored within 30min

at 4 °C and DNA was extracted on the same day using the

Power Soil DNA Isolation Kit (Qiagen, Hilden, Germany).

Shotgun metagenomic sequencing was carried out at the

GATC Biotech AG (Konstanz, Germany) using the NEB-

Next Ultra DNA Library kit (New England Biolabs, Ipswich,

USA) for DNA library preparation and an Illumina HiSeq

platform for sequencing. A paired-end sequencing ap-

proach with a targeted read length of 150 bp and an insert

size of 550 bp was conducted.

Metagenomic assembly

Trimmomatic (version 0.35) was used to acquire high-

quality reads [28]. Quality control of trimmed reads was

performed with FastQC version 0.11.5 (https://www.bio-

informatics.babraham.ac.uk/projects/fastqc/). We used

SPAdes (version 3.9.0) to assemble metagenomic scaf-

folds with a minimum length of 1000 bp [29].

Taxonomic classification, resistome identification, and

definitions

Human contamination was removed by mapping reads

against the human genome (GRCh38) using KneadData

(https://bitbucket.org/biobakery/kneaddata/wiki/Home).

Taxonomic profiling was carried out with Kaiju (version

1.5.0) using the greedy mode with a minimum alignment

length of 11 amino acids, a maximum of 1 mismatch, and a

match score of 65 [30]. The non-redundant protein data-

base nr was used for classification. Counts for taxonomic

units were normalized to a relative abundance through div-

iding the hits by the sample read count and multiplying the

quotient by 106. The resulting unit is hits per million reads

(HPM).

In order to determine the resistome composition, we

performed a blastx of decontaminated reads against the

ARG-ANNOT database (AA, version 3) [13] using DIA-

MOND (version 0.8.0.62) [31]. We set the query cover

to 75% and used the “sensitive” mode as well as a best

hit algorithm where one read is only assigned to one

database entry based on the best bit-score. Hits against

antibiotic resistance genes (ARGs) were transformed

into length-corrected relative abundance (LCRA). As

with the taxonomic units, we calculated the HPM for

each ARG. For LCRA calculation, we divided the HPM

by the respective ARG length in kilobase and acquired

the unit HPM per kilobase gene length. LCRAs for ARG

classes were calculated by summing up the individual

ARG LCRAs that belong to the respective ARG class.

Baseline-endpoint comparison for the illustration of

antibiotic impact

We performed a baseline-endpoint comparison (BEC) by

subtracting the baseline value (antibiotic naïve patient, T0)

from the value at T3 (end of observation period). BEC reflects

an overall crude treatment effect. Positive values illustrate an

increase of the respective factor, negative values a decrease.

Determination and normalization of antimicrobial

selection pressure

This second strategy to determine antimicrobial selection

pressure has previously been reported in detail by our

group and has been validated using qPCR [10]. Briefly, we

account for individual heterogeneity within the time series

data using fixed- or random-effects models. The coeffi-

cients of the models express a change in an investigated

outcome value by a defined unit increase of the model

components, as for instance the increase or decrease of

ARG LCRA per defined daily dose (DDD) of an antibiotic

or another drug. Of note, time series data from each pa-

tient were clustered within a model, thus providing more

conservative standard errors. This way, each patient was

considered his or her own control by comparing the base-

line sample with the other time points. Finally, the regres-

sion models always report the overall effect for a cohort.

Regression modeling normalization and multivariate

regression procedure

Potential contributors were identified through analyzing

which factors were significantly distinct in both treatment

groups. A univariate analysis was performed investigating

the relationship between antibiotic treatment and all identi-

fied potential contributors with each investigated outcome.

If a model’s component was found to have a significant im-

pact on the outcome (p ≤ 0.05), it was included into the

final multivariate model. Antibiotic treatment as primary

exposure of interest was always included as a component in

the final multivariate model. This way, we were able to esti-

mate the independent degree of selection pressure caused

by antibiotics and other variables.

In order to improve comparison between coefficients

with different units and data ranges, we normalized the

regression model coefficients by dividing a coefficient

with the population mean of the baseline samples. This

quotient was subsequently multiplied by 100. Population

means were calculated and applied for both treatment

groups. The resulting unit is an average percentage in-

crease/decrease of the observed outcome per unit of the

model component. One example would be an average

148.1% increase in the abundance of sulfonamide resist-

ance genes per administered DDD of cotrimoxazole.

A statistical comparison between the effects of both

drugs was performed by including the coefficients for

the same outcome and model component in a nested

likelihood ratio test. A Bonferroni-corrected LR p value

< 0.002 was regarded a significant difference in the im-

pact of both antibiotics on a specific ARG class.
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Beta-lactamase antibiotic resistance gene investigation

OXA, TEM, and SHV hits were investigated differently.

Metagenomic scaffolds were submitted to a blastx against

ARG-ANNOT. ARGs on the scaffolds with 100% se-

quence similarity to database entries were documented,

and only hits versus such ARGs were further investigated.

TEM and SHV genes must have been members of the

functional group 2be according to Bush-Jacoby [32].

ARGs and ARG classes were only submitted to further

analysis if hits were detected in at least 10 samples.

Diversity and evenness definition and calculation

We calculated Shannon diversity and Simpson’s evenness

for the composition of the sample microbiome and resis-

tome. Shannon’s diversity H′ was calculated according to

the following formula where Pi represents the proportion

of counts within a certain unit i in relation to the total

population count. In this case, a unit count could be the

HPM of a taxon or the LCRA of an ARG or ARG class.

H
0

¼ −

X
Pi ln Pið Þ

Simpson’s evenness E was calculated based on Simp-

son’s dominance D2.

D2 ¼ 1=
X

Pi2

The evenness E was then determined by dividing D2

by the total number of individual units (richness). Here

again, units could be taxa, ARGs, or ARG classes. We

have used the same formulas for the calculation of plas-

mid diversity and evenness.

Definition of species emergence and disappearance

within the gut microbiome

The emergence and potential colonization of a species was

defined as no detection of the species at baseline but

detection at a minimum of two time points during treat-

ment and detection at T3. A disappearance and potential

decolonization of a species was defined as detection at base-

line but no detection at T2 and T3. Counts of emerging and

disappearing species were generated for each patient and

compared to the total species count detected at baseline.

The means of these values were assumed to reflect species

emergence and disappearance events under both antibiotics.

Analysis of ciprofloxacin-mediating mutations

The ARG-ANNOT database includes mostly plasmid-

mediated fluoroquinolone resistance proteins (Qnr).

However, fluoroquinolone resistance is also mediated by

target modifications and overexpression of multi-drug

efflux pumps [33]. Apart from QepA, NorA, OqxA, and

OqxB, no other efflux pumps are included in ARG-

ANNOT. For this reason, we looked specifically for

these other mechanisms of resistance.

We investigated mutations reported to increase the MIC

of fluoroquinolones in the following proteins: GyrA (S83L,

D87N, D87T), ParC (S80I, E84V, E84G), ParE (S458A,

E460D), AcrR (R45C), AcrB (G288D). We used the wild-

type Escherichia coli strain K-12 MG1655 as reference. We

also investigated potential mutations in Gram-positive or-

ganisms in the following proteins: GyrA (S84L with

Staphylococcus aureus NCTC8225 as reference) and ParC

(S80F and E84K with Staphylococcus aureus NCTC8325 as

reference). SNPs at these positions were called by mapping

the sequence reads against these references using BWA

(version 0.6.2) and samtools (version 1.2) with a mapping

and quality score of 30 [34, 35]. We counted the proportion

of reads showing the mutation (dp4 values) and calculated

the percentage difference between the baseline sample

(antibiotic treatment naïve) and T3 (end of observation

period). A relevant increase in the proportion of reads car-

rying fluoroquinolone resistance-mediating mutations was

considered a positive selection under treatment.

Gut plasmid content determination and definitions

The plasmidome was identified using PlasFlow (version

1.1) based on the scaffolds from our metagenomic assem-

bly [36]. Based on a threshold of 0.7, PlasFlow categorized

each scaffold according to its taxonomic ancestry and in-

dicated it to be either of chromosomal or plasmid origin.

Plasmid abundance and total plasmid-ARG content

determination

For calculating plasmid abundance in one sample, we de-

termined the sum of coverages for all identified plasmids

and divided this sum by the sample read count. Subse-

quently, this quotient was multiplied by 106, resulting in

an expected coverage sum per million input reads (nor-

malized coverage). For the sake of simplicity, we termed

this normalized coverage sum the “plasmid abundance.”

For calculating diversity and evenness, we normalized the

coverage of each plasmid by dividing it by the sample read

count and multiplying the quotient by 106. This value was

regarded as normalized coverage for an individual plas-

mid. Following the previous concept, we also normalized

plasmid richness (number of unique plasmids) by dividing

the richness by the sample read count and multiplying the

quotient by 106, acquiring a normalized richness.

Genes on plasmid scaffolds from each sample and

taxonomic origin were predicted using Prokka (version

1.11) [37]. Predicted genes were clustered by CD-HIT-

EST (version 4.6) [38] using the following options: -c

0.98 -aL 0.9 -aS 0.9. Subsequently, we performed a blastx

(version 2.3.0) against the ARG-ANNOT database (max_

target_seqs 25) [39]. For each sample, we determined

the number of ARGs from each ARG class from plas-

mids of different taxonomic origin. The sum of ARG hits

was considered the sample ARG class abundance from
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the plasmids of the respective origin. The total sum of

ARG class abundances from all samples of a sampling

time point was regarded as the total plasmid-ARG con-

tent, reflecting both ARG abundance as well as ARG

richness on plasmids within the patient population. A

co-occurrence network from each sampling time point

was drawn based on this total plasmid-ARG content

which is reflected by the line width.

Correlation analyses and resistance score generation

All phyla and species were correlated with the most

abundant ARG classes using Kendall’s rank correlation.

We also built a correlation matrix between baseline

taxonomic and plasmidome diversities, ARG class BEC

values, and a resistance score using Spearman’s rank

correlation. The resistance score was computed for each

patient and was based on the BEC values of the 11 most

abundant ARG classes. For each ARG class, a positive

BEC was scored as one, a negative as zero. The points

for all ARG classes were summed up and attributed to

the respective patient. The score ranges between 0 and

11, with higher values indicating an overall stronger

positive ARG selection.

Statistical analysis

D’Agostino’s K-squared test was used to examine continu-

ous variables for normality, Bartlett’s test for equality of

variances. The chi-squared test was applied for hypothesis

testing regarding observed frequencies on one or more

categories. Differences of continuous parameter distribu-

tions were assessed with either Student’s t test or the Wil-

coxon rank-sum test. A p value < 0.05 (two-sided) was

considered statistically significant. Statistical analyses were

conducted using either Stata version 12.1 (Stat Corp., Col-

lege Station, TX, USA) or the Python-based Anaconda

software suite (https://anaconda.org/).
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Additional file 1: Figure S1. Flowchart of study participant recruitment
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estimates on the intestinal microbiome (PDF 45 kb)

Additional file 5: Table S4. Univariate models of selection pressure

estimates on the intestinal microbiome (PDF 44 kb)

Additional file 6: Figure S2. Microbiome diversity and evenness

trajectories. A heatmap with microbiome diversity trajectories at phylum

level is displayed in (A), at species level in (B), of microbiome evenness at

phylum level in (C), and at species level in (D). Microbiome diversity was

calculated using the Shannon index, and evenness using the reciprocal

of Simpson’s dominance (see patients and methods). Diversity and

evenness values are printed in all boxes for each study participant

(Patient ID, on y-axis) and day of stool collection (T0 - T3, on x-axis). Treat-

ment period was from T1 to T3. T0 is the sample before antibiotic expo-

sures. Orange heatmaps include patients from the ciprofloxacin cohort,

blue heatmaps patients from the cotrimoxazole cohort. The bottom row

of the heatmaps presents the mean value of each column, here the sam-

ple collection time point. The intensity of the color bar reflects the diver-

sity and evenness values, with a deeper color for higher values. (PDF

1281 kb)

Additional file 7: Figure S3. Trajectories of richness, diversity and

evenness of both cohorts over the entire observation period.

Trajectories of richness, Shannon diversity and Simpson’s evenness

before treatment (T0), at T1, at T2, and at the end of the observation

period (T3) are shown on phylum rank (A) and species rank (B) for

both antibiotic treatments. Blue data points are measurements at T0,

yellow data points at T1, green data points at T2, and dark orange

data points at T3. Boxplots indicate the distribution of data. The

connecting magenta line shows the means at each time point and

their development under treatment. Under ciprofloxacin treatment,

richness and Shannon diversity decrease significantly while Simpson’s

evenness remains stable. In contrast, under cotrimoxazole, loss of

richness and diversity is less pronounced. (PDF 2405 kb)

Additional file 8: Figure S4. Comparison of length corrected relative

abundances from antimicrobial resistance gene classes before

treatment and at the end of observation. Trajectories of antimicrobial

resistance genes quantification by LCRA before treatment (T0) and at

the end of the observation period (T3) are shown for both antibiotic

treatments. Pink data points are measurements at T0, purple data points at

T3. Boxplots indicate the distribution of data. The connecting magenta line

shows the means at each time point and their development under treatment

(paired t-test). Trends for LCRA changes are prominent but do not reach

statistical significance. The following ARG classes are depicted:

aminoglycosides (AGly), beta-lactamases (Bla), fluoroquinolones (Flq), glyco-

peptides (Gly), macrolide-lincosamide-streptogramin (MLS), nitroimidazoles

(Ntmdz), phenicols (Phe), sulfonamides (Sul), tetracyclines (tet), and trimetho-

prim (Tmt). CTX-M are cefotaximase enzymes that mediate an ESBL pheno-

type. (PDF 2247 kb)

Additional file 9: Figure S5. Abundance trajectories of aminoglycoside

and fluoroquinolone antibiotic resistance gene classes und CTX-M as well

as beta-lactamases. Abundance heatmaps of the aminoglycoside anti-

biotic resistance gene (ARG) class are displayed in (A), of beta-lactamases

in (B), of CTX-M in (C), and of the fluoroquinolone ARG class in (D). Abun-

dances are expressed as square root transformed length corrected rela-

tive abundances (LCRA, see patients and methods). LCRA values are

printed in all boxes for each study participant (Patient ID, on y-axis) and

day of stool collection (T0 - T3, on x-axis). Treatment period was from T1

to T3. T0 is the sample before antibiotic exposures. Orange heatmaps in-

clude patients from the ciprofloxacin cohort, blue heatmaps patients

from the cotrimoxazole cohort. The bottom row of the heatmaps pre-

sents the mean value of each column, here the sample collection time

point. The intensity of the color bar reflects the LCRA values, with a dee-

per color for higher values. (PDF 948 kb)

Additional file 10: Figure S6. Abundance trajectories of glycopeptide,

macrolide-lincosamide-streptogramin, nitroimidazole and phenicol anti-

biotic resistance gene classes. Abundance heatmaps of the glycopeptide

antibiotic resistance gene (ARG) class are displayed in (A), of the

macrolide-lincosamide-streptogramin (MLS) ARG class in (B), of the nitroi-

midazole ARG class in (C), and of phenicol ARG class in (D). Abundances

are expressed as square root transformed length corrected relative abun-

dances (LCRA, see patients and methods). LCRA values are printed in all

boxes for each study participant (Patient ID, on y-axis) and day of stool

collection (T0 - T3, on x-axis). Treatment period was from T1 to T3. T0 is

the sample before antibiotic exposures. Orange heatmaps include pa-

tients from the ciprofloxacin cohort, blue heatmaps patients from the

cotrimoxazole cohort. The bottom row of the heatmaps presents the

mean value of each column, here the sample collection time point. The

intensity of the color bar reflects the LCRA values, with a deeper color for

higher values. (PDF 1023 kb)

Additional file 11: Figure S7. Abundance trajectories of sulfonamides,

tetracyclin and trimethoprim antibiotic resistance gene classes. Abundance
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heatmaps of the sulfonamide antibiotic resistance gene (ARG) class are

displayed in (A), of the tetracycline ARG class in (B), and of the trimethoprim

ARG class in (C). Abundances are expressed as square root transformed

length corrected relative abundances (LCRA, see patients and methods).

LCRA values are printed in all boxes for each study participant (Patient ID,

on y-axis) and day of stool collection (T0 - T3, on x-axis). Treatment period

was from T1 to T3. T0 is the sample before antibiotic exposures. Orange

heatmaps include patients from the ciprofloxacin cohort, blue heatmaps pa-

tients from the cotrimoxazole cohort. The bottom row of the heatmaps pre-

sents the mean value of each column, here the sample collection time

point. The intensity of the color bar reflects the LCRA values, with a deeper

color for higher values. (PDF 727 kb)

Additional file 12: Figure S8. Trajectories of length-corrected relative

abundances of diverse antimicrobial resistance gene classes of both cohorts

over the entire observation period. Trajectories of antimicrobial resistance

genes quantification by LCRA before treatment (T0), at T1, at T2, and at the

end of the observation period (T3) are shown for both antibiotic treatments.

Blue data points are measurements at T0, yellow data points at T1, green

data points at T2, and dark orange data points at T3. Boxplots indicate the

distribution of data. The connecting magenta line shows the means at each

time point and their development under treatment. The following ARG clas-

ses are depicted: aminoglycosides (AGly), beta-lactamases (Bla), fluoroquino-

lones (Flq), glycopeptides (Gly), macrolide-lincosamide-streptogramin (MLS),

nitroimidazoles (Ntmdz), phenicols (Phe), sulfonamides (Sul), tetracyclines

(tet), and trimethoprim (Tmt). CTX-M are cefotaximase enzymes that medi-

ate an ESBL phenotype. (PDF 3083 kb)
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Additional file 15: Table S7. Baseline disparities in the intestinal
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matrix between taxonomic units (phylum level) and ARG classes for the

ciprofloxacin cohort (A) und the cotrimoxazole cohort (B). The following

ARG classes are depicted: aminoglycosides (AGly), beta-lactamases (Bla),

fluoroquinolones (Flq), glycopeptides (Gly), macrolide-lincosamide-

streptogramin (MLS), nitroimidazoles (Ntmdz), phenicols (Phe), sulfon-

amides (Sul), tetracyclines (tet), and trimethoprim (Tmt). (PDF 1180 kb)
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plasmidome between BEC groups. (PDF 47 kb)

Additional file 19: Figure S10. Trajectories of plasmid abundance,

plasmid diversity and plasmid evenness of both cohorts over the entire

observation period. Trajectories of plasmid abundance, plasmid diversity

and plasmid evenness before treatment (T0), at T1, at T2, and at the end of

the observation period (T3) are shown for both antibiotic treatments. Blue

data points are measurements at T0, yellow data points at T1, green data

points at T2, and dark orange data points at T3. Boxplots indicate the

distribution of data. The connecting magenta line shows the means at each

time point and their development under treatment. (PDF 1651 kb)
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