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Introduction 

Infection with severe acute respiratory syndrome coronavirus 

2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). 

Acute respiratory failure occurs in a subset of COVID-19 

patients (1–3). Respiratory failure has occurred in as many as 

8% of individuals testing positive for infection in the 

Lombardy region of Italy (4). Understanding the etiology of 

respiratory failure in COVID-19 patients is critical for 

determining the best management strategies and 

pharmacologic targets for treatment. Current management of 

acute respiratory failure in COVID-19 consists of optimized 

supportive care (5, 6), primarily through oxygen 

administration and consideration of endotracheal intubation 

and mechanical ventilation in the appropriate context (7). 

Recent evidence published in the RECOVERY trial (8) 

suggests that the administration of high dose steroids in a 

small subgroup of critically ill patients may reduce mortality. 

Cytokine storm syndrome (CSS) has been proposed as un-

derlying the etiology of respiratory failure in patients with 

COVID-19 (9). This model suggests that respiratory failure is 

related to significant pro-inflammatory cytokine expression 

that leads to inflammatory cell recruitment and tissue damage 

in the lung. Most of the data supporting this hypothesis in 

COVID-19 comes from an early paper that observed high levels 

of the cytokines IL-2, IL-7, IL-10, GCSF, IP-10, MCP1, MIP-1α, 

and TNFa in a small cohort of COVID-19 patients cared for in 

the ICU. The level of these cytokines was increased in the ICU 

patients compared with a group of COVID-19 patients that did 

not require care in the ICU (3). The CSS hypothesis for respir-

atory failure in COVID-19 has recently been challenged, as oth-

ers have more closely examined data from early studies of 

cytokine expression in COVID-19 patients (10). CSS, while not 

specifically defined, is clearly observed in conditions such as 

haemophagocytic lymphohistiocytosis (11), severe cases of 

avian influenza (12), Castleman disease (13), and in the cyto-

kine release syndrome observed in a subset of patients follow-

ing chimeric antigen receptor T cell therapy for malignancy 

(14). In these cases of true CSS, circulating blood levels of mul-

tiple cytokines are elevated usually more than 10-fold above 

baseline levels and generally demonstrate skewing toward a 

Th1-type cytokine response profile suggestive of an increased 

T cell response. Reported cytokine expression levels in studies 
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of COVID-19 patients, although increased in individuals with 

severe illness, are elevated only marginally, less than 2-fold 

above those observed in non-critically ill subjects (3). Very few 

studies compare COVID-19 inflammatory responses to those 

observed in other viral illnesses that lead to acute respiratory 

failure, such as influenza (15). 

There has been significant interest in modulating the sys-

temic immune response in an effort to prevent or treat res-

piratory failure in patients with COVID-19 (2, 8, 16–18). More 

than one hundred clinical trials are currently registered at 

clinicaltrials.gov to evaluate the efficacy of inflammatory cy-

tokine blocking medications or interventions such as cyto-

kine filtration as potential treatments for respiratory failure 

in COVID-19 patients. The RECOVERY dexamethasone study 

suggests a mortality benefit for immunomodulation therapy 

in a subset of critically ill COVID-19 patients (8). A thorough 

understanding of the underlying inflammatory environment 

in COVID-19 patients is required to carefully select patients 

for these studies of potential treatments, especially in light of 

the increased (though not statistically significant) rate of 

death observed in patients without an oxygen requirement 

who were given dexamethasone in the RECOVERY trial. 

In order to understand the relationship between inflam-

matory host responses and the respiratory failure observed in 

COVID-19 patients, we undertook a comparative investiga-

tion of inflammatory responses in a cohort of influenza pa-

tients with severe illness collected during 2019 and 2020, 

which allowed us to characterize the immune response in pa-

tients with severe COVID-19 specifically in the context of the 

more widely studied immune responses seen in respiratory 

disease caused by influenza. These comparisons reveal that, 

despite prevailing assumptions in the literature, CSS is rela-

tively rare among moderate and severe COVID-19 infections; 

rather, the majority of COVID-19 patients in the current study 

exhibited suppressed immune profiles relative to the patterns 

observed among influenza-infected patients. 

 

Results 

Demographic and Clinical Characteristics 

We enrolled a total of 79 symptomatic subjects in the initial 

(primary) cohort who tested positive for SARS-CoV-2 RNA us-

ing an FDA-approved clinical PCR test. Our comparison 

group consisted of 26 symptomatic seasonal influenza sub-

jects recruited during the 15 months immediately preceding 

the outbreak of COVID-19 in the Saint Louis region, all of 

whom tested positive for influenza A or B via a clinical PCR 

test obtained during their clinical care. COVID-19 subjects 

were on average 19 years older than influenza subjects and 

29 years older than control subjects (Table 1). A greater num-

ber of COVID-19 subjects required hospitalization, ICU ad-

mission, and mechanical ventilation than influenza subjects, 

but this was not significantly different after controlling for 

demographic factors and other clinical characteristics. 

Twenty-seven percent of the COVID-19 subjects died during 

their hospitalization, compared with eight percent of influ-

enza subjects enrolled. Many subjects in both influenza and 

COVID-19 groups exhibited co-morbidities that increased 

their risk for severe disease, including diabetes and chronic 

lung disease; however, there were no significant differences 

between the COVID-19 and influenza subjects in any analyzed 

co-morbidity (Table 1). Both the COVID-19 and influenza co-

horts included subjects with moderate disease, as defined by 

individuals with symptomatic illness requiring evaluation in 

the hospital, and severe disease, as defined by individuals re-

quiring mechanical ventilation for acute respiratory failure 

or who ultimately died due to their illness. 

 

Evaluation of Circulating Immune Cells 

Utilizing peripheral blood mononuclear cells (PBMCs) from 

15 healthy, 23 influenza-infected, and 22 COVID-19-infected 

subjects, we examined the composition and activation of cir-

culating leukocytes with flow cytometry. We used multivari-

ate linear regression with subject age, sex, ethnicity, symptom 

duration at study enrollment, and all comorbidities as covari-

ates to explore immune cell dynamics as a function of condi-

tion while statistically controlling for demographic and other 

clinical differences across the patient groups. We initially 

characterized circulating immune cells by quantifying the ab-

solute number of CD4+ and CD8+ T lymphocytes and CD19+ 

B cells. COVID-19 and influenza subjects exhibited trends of 

decreased B cells and significant reductions in both T cell 

subsets, which generally constitute the majority of circulating 

PBMCs in healthy controls (Fig. 1A, Supplemental Fig. S1A). 

In contrast, COVID-19 subjects had significantly more circu-

lating early antibody-secreting B cell plasmablasts than con-

trols (Fig. 1B). Circulating activated CD4+ and CD8 + cells 

were equivalent across all groups (Fig. 1B). However, when 

compared with either influenza or control subjects, COVID-

19 subjects exhibited significantly reduced numbers of circu-

lating monocytes, including all three common classifications 

of human monocytes (classical, intermediate, and non-classi-

cal; Fig. 1C, Supplemental Fig. S1B). 

Given the pronounced variation in monocyte abundance 

across patient conditions, we also measured major histocom-

patibility complex class II expression on the surface of mon-

ocytes to gauge monocyte activation. We noted that COVID-

19 subjects had reduced abundances of HLA-DR on the sur-

face of all classes of monocyte when compared with influenza 

subjects or controls, though only intermediate monocytes 

reached statistical significance after controlling for covariate 

effects (Fig. 1D). Additionally, COVID-19 patients exhibited 

significantly less surface HLA-DR on CD8+ T cells than influ-

enza patients, and trends toward less HLA-DR on CD4+ T 

cells in comparison to both influenza patients and healthy 
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controls (Fig. 1E). Once again using multivariate linear re-

gression, we next assessed potential differences in HLA-DR 

abundance between patients with moderate illness and those 

with severe illness, defined as those who required intubation 

and mechanical ventilation or who ultimately expired as a re-

sult of their illness. Although there were no associations with 

severity in HLA-DR abundance among lymphocyte popula-

tions, we discovered that, compared to moderately ill pa-

tients, the severest patients exhibited substantially less HLA-

DR on intermediate and non-classical monocytes (Supple-

mentary Figs. S1C-D). 

 

Cytokine associations with disease 

From this primary cohort, plasma cytokine levels were meas-

ured from 79 patients with SARS-CoV-2 (COVID-19) infection, 

26 patients with confirmed influenza virus infection, and 8 

healthy controls. Among the COVID-19 patients, two response 

profiles were immediately apparent, with three of 79 patient 

samples exhibiting obviously distinct cytokine profiles in prin-

cipal component analysis (PCA; Fig. 2A). These samples were 

characterized by cytokine levels > 2 standard deviations from 

the mean for more than 17 of the 35 cytokines measured 

(range: 49%-89%), encompassing broad and unfocused im-

mune responses characteristic of classic cytokine storm (see 

outliers, Supplemental Fig. S2). Cytokine storms in other con-

ditions have been defined by extreme deviations in the levels 

of a broad array of cytokines, rather than just moderate eleva-

tions in targeted pathways (19). Standard deviations from the 

mean ranged from 2 up to 10.5 among these cytokine storm 

syndrome (CSS) subjects, with outlier values ranging from 0.8 

to 2 orders of magnitude higher than the mean for each of the 

measured cytokines. CSS patients were all African American, 

one female (89 years) with no noted comorbidities, one female 

(62 years) with diabetes mellitus, and a male (47 years) with 

diabetes mellitus and pre-existing chronic pulmonary disease 

(Supplementary Table S1). All three CSS patients were admit-

ted to the ICU, required intubation and mechanical ventila-

tion, and ultimately expired. In subsequent analyses, these 3 

patients were visualized and analyzed as a separate CSS group 

unless otherwise noted. Among the remaining 76 COVID-19 

samples from this primary cohort, patients often exhibited val-

ues outside 1.5 interquartile ranges (IQRs) for individual cyto-

kines (Supplemental Fig. S3), suggestive of activation of 

specific pathways; however, the vast majority of individual pa-

tient’s cytokine levels were well within the majority of the ob-

served variation, which does not support the broad 

dysregulation of cytokines expected in a CSS phenotype. 

We and others have previously shown that many cyto-

kines are often correlated with demographic and environ-

mental factors (e.g., age, prior herpesvirus exposure) (20). To 

assess cytokine differences across groups while controlling 

for such potentially confounding factors, including the 

significant differences in age observed within our cohort, we 

generated estimated marginal means from linear regression 

models that incorporated age, sex, ethnicity, days since symp-

tom onset at enrollment, and all reported comorbidities as 

covariates. In comparison to healthy controls, both influenza 

and COVID-19 subjects exhibited elevated levels of a number 

of cytokines. Among COVID-19 patients, IP-10, IL-8, MCP1, 

HGF, and MIP-1β were significantly up-regulated compared 

to healthy controls, in addition to apparent (but not statisti-

cally significant) trends for increases in MIG, GMCSF, IL-

1RA, IL-2, IL-17f, and IL-6 (Fig. 2B, Supplemental Fig. S3). In 

comparison to healthy controls, influenza-infected patients 

likewise exhibited significant up-regulation of all of cytokines 

up-regulated among COVID-19, but influenza-infected pa-

tients also exhibited significantly greater abundances (com-

pared to COVID-19-infected patients) of a number of 

cytokines with known inflammatory and immunomodulatory 

roles, including MIG, IL-1RA, IL-2R, IL-2, IL-17f, and IL-12 

(Supplemental Fig. S3). 

In order to elucidate the unique ways in which COVID-19 

modulates cytokine profiles, we focused the majority of cyto-

kine analyses on comparisons between the COVID-19 and in-

fluenza groups. Direct comparisons between infected groups 

revealed that the dominant response profile among COVID-

19 patients consisted of more selective cytokine up-regula-

tion, with a relative bias toward lower inflammation when 

compared to influenza patients (Figs. 2B-C). Among all sub-

jects, we found that for 28 of 35 cytokines, COVID-19 patients 

had lower median cytokine levels, though not all were statis-

tically significant (Fig. 2B; Supplemental Fig. S3). Among the 

statistically significant reduced cytokines exhibited by 

COVID-19 patients compared to influenza patients were IFN-

γ, MIG, IL-1RA, IL-2R, GCSF, IL-17a, IL-9, and MIP-1α. Upon 

visual inspection of the raw data, both IL-6 and IL-8 appeared 

to be greater among COVID-19 than influenza-infected pa-

tients, but the estimated marginal means (EMM) of neither 

cytokine was significantly different after controlling for co-

variates (Fig. 2C; Supplementary Figs. S3-S4), in particular 

the effects of age, sex, and pre-existing pulmonary disease. 

This finding is particularly relevant in the ongoing discussion 

of COVID-19 cytokine profiles: although some cytokines seem 

to be higher among COVID-19 patients, those differences are 

potentially inflated by other underlying demographic and 

clinical differences. For instance, hospitalized COVID-19 pa-

tients are generally older (Table 1; (21)), and many baseline 

cytokine levels increase with age (22, 23). When accounting 

for these and other confounding factors, the data indicated 

that the majority of COVID-19 patients did not have as pro-

found an inflammatory phenotype as influenza patients, with 

certain targeted exceptions. 
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Validation of COVID-19 cytokine patterns in an addi-

tional SARS-CoV-2 cohort 

In order to validate the cytokine patterns observed among 

COVID-19, influenza, and healthy control groups in our pri-

mary cohort, we enrolled a follow-up cohort that consisted of 

the next 89 consecutive confirmed COVID-19 patients en-

rolled into the ongoing prospective observational study (Ta-

ble 2). Cytokine data from these patients were collected and 

analyzed as described for the primary cohort. Among the 89 

patients in the validation cohort, 4 exhibited marked varia-

tion in their cytokine profiles (Fig. 3A, red circles) that, 

though not as extreme as those in the primary cohort, were 

consistent with a CSS phenotype (Supplemental Fig. S5). 

These samples were characterized by cytokine levels > 2 

standard deviations from the mean for more than 9 of the 35 

cytokines measured (range: 26%-49%). Two of these patients 

self-identified as African American (59F, 71M), one as ‘other’ 

(41M), and one as white (64M). Both African American CSS 

patients had been previously diagnosed with diabetes melli-

tus, and the 59-year-old female also had been diagnosed with 

chronic heart failure and chronic pulmonary disease and was 

immunosuppressed. The other CSS patients had no listed 

comorbidities. The 64-year-old male patient was admitted to 

the ICU, required intubation and mechanical ventilation, and 

ultimately expired. None of the other three CSS patients were 

intubated, and all ultimately survived. In contrast to these 

CSS profiles, another subset of 3 patients exhibited a unique 

profile with a classic Th22 signature (Fig. 3A, blue circles), 

consisting of production of high levels of IL-22, GMCSF, and 

IL-13 without high levels of IL-17. All Th22 patients were fe-

male African Americans (aged 19, 26, and 71) with no listed 

comorbidities. None required intubation, and all survived. Alt-

hough samples exhibiting the Th22 signature are plotted sepa-

rately for visual comparison, they were considered to represent 

regulated cytokine responses and were therefore included as 

COVID-19 validation samples in all statistical analyses. 

Comparison of cytokine measures from the validation co-

hort to the original healthy controls and influenza patients 

were largely consistent with those observed in the primary 

cohort. In addition to significantly higher levels of IP-10, IL-

8, HGF, and MIP-1β observed among COVID19 patients from 

the primary cohort in comparison to healthy controls, the val-

idation cohort also exhibited significantly greater levels of IL-

12, EGF, and IL-2 (Supplemental Fig. S6), two of which were 

consistent with trends observed in the primary cohort anal-

yses (Supplemental Fig. S3). 

In comparison to influenza-infected subjects, the COVID-

19 subjects in the validation cohort also exhibited many of 

the same patterns observed within the primary COVID-19 co-

hort with the single exception of MIP-1α (p = 0.14), which 

may have differed due to variations in assay lower limits of 

detection. In addition, the validation COVID-19 cohort in 

comparison to influenza-infected subjects exhibited signifi-

cantly lower levels of IL-1β, IL-4, IP-10, TNFα, IL-1α, IL-17f, 

FGF, and Eotaxin (Fig. 3B-C; Supplemental Figs. S6-S7), sev-

eral of which were consistent with nonsignificant trends ob-

served in the primary cohort analyses (Supplemental Figs. S3-

S4). We again detected no significant difference in either IL-

6 or IL-8 between influenza-infected and COVID-19 infected 

patients after controlling for demographic and clinical co-

variates (Fig. 3D). Overall, these data validated our observa-

tion in the primary cohort that many cytokines are down-

regulated in COVID-19 patients compared to influenza-in-

fected patients, suggesting that overall higher inflammation 

is foremost predictive of influenza infection and that a defin-

ing feature of COVID-19 disease is generally reduced inflam-

mation compared to influenza; aside from the 4% of patients 

with extreme cytokine dysregulation (i.e., CSS), COVID-19 

subjects were not characterized by overall high levels of cyto-

kines, but rather exhibited a selective pattern of inflamma-

tion in which only a subset of inflammatory cytokines were 

up-regulated and most were down-regulated when compared 

with seasonal influenza patients. 

 

Cross-cohort comparisons and integrated cytokine analyses 

Comparison of the validation cohort to the COVID-19 group 

from the primary cohort revealed no significant differences 

in demographics or comorbidities, save for a significant re-

duction in pre-existing chronic lung disease (16% in the vali-

dation cohort compared to 34% in the original cohort; Table 

2). Of the other clinical characteristics considered, the valida-

tion cohort was significantly less likely to receive mechanical 

ventilation (27% compared to 44%). We hypothesize that this 

difference reflects the evolution of treatment approaches over 

time rather than an underlying difference in the patient pop-

ulation, as the difference in ventilation rates was significant 

after controlling for differences in comorbidities, and there 

was no significant difference in death rates between the co-

horts. Furthermore, written guidance to the clinical staff at 

the study institutions over the course of the first weeks of the 

pandemic reflected a nationwide transition from initial rec-

ommendations for early and aggressive intubation of COVID-

19 patients with relatively moderate hypoxia, to later written 

guidance that focused on maximizing oxygen delivery strate-

gies prior to intubation using more traditional approaches to 

acute respiratory failure. Although we found a significant 

negative association between week of enrollment and per-

centage of patients intubated (Supplemental Fig. S8A), we ob-

served the opposite relationship between week of enrollment 

and the percentage of patients who survived infection (Sup-

plemental Fig. S8B). These correlations suggest that aggres-

sive early intubation strategies may have been unwarranted 

or even harmful, but further study is required. An alternative 

hypothesis is that disease severity somehow naturally 
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declined over time among COVID-19 patients seeking hospi-

tal care in the St. Louis area. 

Regardless of these differences, many of the underlying 

cytokine patterns were replicated between the primary and 

validation cohorts, as the majority of cytokine variation 

among the two COVID-19 cohorts overlapped substantially 

(e.g., Fig. 4A; Supplemental Figs. S8C-D). Yet other patterns 

seemed not to replicate to statistical significance simply due 

to a lack of power for the highly parameterized models re-

quired to control for all demographic and clinical factors 

(20). This was not particularly surprising, as the relatively 

high dimensionality of cytokine data and the tendency for ex-

treme outliers can make it difficult to detect statistically sig-

nificant associations while conservatively controlling for false 

discovery rate. To address this, we next sought to integrate 

the cytokine data from the two COVID-19 cohorts by utilizing 

a data-driven modular informatics approach developed spe-

cifically for cytokine analyses (24). These analyses allowed us 

to detect a number of co-correlating cytokines across COVID-

19 samples, which we grouped into distinct co-expression 

modules using hierarchical clustering (Fig. 4B). This unsu-

pervised approach categorized the 35 cytokines we assayed 

among COVID-19 samples into 8 distinct modules of co-sig-

naling cytokines (Supplemental Fig. S8E), including a module 

comprising HGF, IL-1RA, IL-6, and IL-8 (Module1; Fig. 4C). 

As described above, most elements of this module were inde-

pendently found to be up-regulated in both influenza and 

COVID-19 groups compared to healthy controls and were 

comparably expressed between COVID-19 and influenza 

groups, save for IL-1RA which showed decreased expression 

among COVID-19 subject compared to influenza subjects. 

Plasma IL-6 and IL-8 have been shown to correlate strongly 

in large pediatric and adult influenza cohorts, albeit typically 

with GCSF and MIP-1α as well (24); in contrast, among 

COVID-19 samples, GCSF clustered with IL-1α, IL-9, and 

TNFα (Module3), whereas MIP-1α clustered with 13 other cy-

tokines, including several interleukins and IFN-α (Module5). 

Module 5 contained cytokines associated with Type 1 (IL-12), 

Type 2 (IL-4), and Type 3 (IL-17f) immune responses, includ-

ing those secreted by innate (IFN-α, IL-1) and adaptive (IL-4, 

IL-15) immune cells. Notably, several cytokines were assigned 

to their own modules due to a lack of sufficient correlation 

with others, including the chemokine RANTES (Module8), 

vascular endothelial growth factor (VEGF; Module2), and 

IFN-γ (Module7). In general, these analyses suggest that as-

pects of typical cytokine co-signaling modules inferred from 

large cohorts in other severe respiratory diseases are altered 

in the context of COVID-19, indicative of a unique immuno-

regulatory environment in COVID-19 potentially demon-

strated by the overall reduced inflammatory profile. The 

significantly lower levels of IFN-γ and its lack of clustering 

with other cytokines suggests that this prototypical Type 1 

cytokine is not being produced in a manner typical of other 

common viral infections. 

Using this analytical framework further, we next inquired 

whether particular co-signaling modules or individual cyto-

kine expression patterns were associated with clinical out-

comes among COVID-19 patients. Here, we utilized 

multivariate logistic regression, again controlling for age, sex, 

ethnicity, days since symptom onset at enrollment, and all re-

ported comorbidities, to calculate adjusted odds ratios of se-

verity. Because these analyses spanned both primary and 

validation cohorts, we also included cohort as a covariate to 

control for any potential cryptic differences between the pa-

tient populations, and we adjusted for multiple comparisons 

(13 covariates tested within each model) by controlling the 

false discovery rate. These analyses revealed a number of sig-

nificant associations between various measures of disease se-

verity, co-signaling cytokine modules, and their constituent 

cytokines. For instance, increases in cytokine Modules 1, 2, and 

6 were associated with increased odds of requiring ICU admis-

sion, as were HGF, IL-1RA, IL-6, IL-8, VEGF, GCSF, IL-15, IL-

1β, MCP1, MIP-1α, and MIG individually (Fig. 4D). Increases in 

Module1 and most of its constituent cytokines, as well as GCSF 

and IL-1β, were likewise associated with increased risk of 

death (Fig. 4E). While some of these cytokines (IL-6, IL-8) have 

been implicated previously in COVID-19 pathogenesis, our 

comprehensive screening approach has identified a signature 

that is striking for its focus on largely innate inflammatory me-

diators associated with monocyte and neutrophil mobilization. 

Additionally, in our analysis, there was a lack of association 

with traditional adaptive inflammatory markers (IFN-γ, IL-13, 

IL-5) that has been observed in some other reports (25). Strik-

ingly, this severity signature is reminiscent of the innate mon-

ocyte mobilization signature identified in influenza patients 

using a similar statistical approach, with the notable lack of 

IFN-α associations (20, 24). 

 

Single-cell Transcriptional Profiles of COVID-19 Sub-

jects with Respiratory Failure are Concordant with Sig-

nals of Targeted Immunosuppression 

Immune suppression can often occur as a negative feedback 

from immune activation, so we sought further resolution of 

the immune state of a subset of severe COVID-19 subjects to 

understand the dominant regulatory signals determining 

their trajectory. A total of 37,469 cells from eight subjects 

(three COVID-19-infected, three influenza-infected, and two 

healthy controls) were obtained for single cell gene expres-

sion analyses after standard processing and filtering. All six 

of the infected subjects required intubation and mechanical 

ventilation for severe respiratory failure, and ultimately three 

of the COVID-19-infected patients and one of the three influ-

enza-infected patients died from their illnesses. Using an in-

tegration-based approach that leverages convergent 
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expression signals across samples (see Methods), we identi-

fied 25 putative transcriptional clusters that we were able to 

categorize into major cell subsets, including monocytes and 

macrophages (4 transcriptional clusters including CD16+ and 

CD16- monocytes), CD8+ T cells (3 clusters including putative 

naïve, effector, and central memory populations), CD4+ T 

cells (2 clusters including putative naïve and memory popu-

lations), regulatory T cells (Tregs), innate-like T cells (includ-

ing Gamma Delta T cells and MAIT cells), B cells (2 clusters 

including putative memory B cells), plasmablasts, mixed cy-

tolytic lymphocyte populations (MCLPs; 4 clusters that po-

tentially include NK and NKT cells), platelets, red blood cells 

(RBCs), granulocytes (putative), stromal cells, and plasmacy-

toid dendritic cells (PDCs), as well as putative doublets (Fig. 

5A; Supplemental Fig. S9). 

As variations in the relative abundance of subsets across 

groups were obvious upon visual inspection (Figs. 5A-C), we 

next interrogated each of these major groups and their con-

stituent transcriptional clusters for variation in both relative 

abundance and gene expression owed to differences in group 

(i.e., COVID-19-infected, influenza-infected, or healthy con-

trol). Although some transcriptional clusters had more cells 

from one condition or another (Supplementary Fig. S10), we 

utilized an analytical approach that allowed us to detect dif-

ferences between conditions by simultaneously assessing the 

proportions of cells expressing a gene and the expression of 

that gene within cells expressing it. 

Given the substantial down-regulation of HLA-DR among 

COVID-19 monocytes observed during flow cytometry analy-

sis, we decided to further investigate potential transcrip-

tional differences between COVID-19 and influenza 

specifically within our transcriptionally defined mono-

cyte/macrophage subset and clusters. As expected, given the 

flow cytometry analysis carried out on these same patients, 

the proportion of cells in monocyte/macrophage clusters 

were substantially smaller in COVID-19 compared to both 

healthy and influenza subjects (Supplementary Fig. S10). Ad-

ditionally, expression of the conserved Class II chain HLA-DR 

was significantly reduced in cells from COVID-19 patients 

compared to influenza patients (Fig. 5D). 

At the single-cell (SC) transcriptional level, many of the 

genes that we profiled in our protein cytokine assays were 

rarely observed, likely due to the sensitivity limitations of the 

gene expression kit. We therefore utilized Gene Set Enrich-

ment Analysis (GSEA; (26)) to broadly survey transcriptional 

variation as a function of infection status in an unbiased 

manner. Specifically, we ranked gene expression differences 

between COVID-19-infected and influenza-infected patients 

for each subset and tested for enrichment of Hallmark gene 

sets as a function of these diagnoses. Surprisingly, a number 

of important immunological pathways were significantly en-

riched specifically among cells from influenza patients across 

a number of subsets: compared to the influenza condition, 

both IFN-γ and IFN-α response pathways were significantly 

down-regulated within the COVID-19 condition for B cells, 

plasmablasts, CD8+ T cells, MCLPs, Tregs, PDCs, and mono-

cyte/macrophage subsets (Fig. 5E; Supplementary Fig. S11). 

These pathway-based analyses were particularly informative, 

as there was no significant difference in expression of IFN-γ 

itself in these subsets, and we were unable to detect IFN-α 

transcripts at all. More exhaustive analysis using gene ontol-

ogy pathways related to interferon production, secretion, re-

sponse, and regulation demonstrated that patterns observed 

among IFN-γ and IFN-α pathways extended to IFN-β (which 

was also not directly detected in the transcriptomic data) and 

general Type I interferon pathways across most subsets, but 

particularly among monocytes (Supplementary Fig. S11). 

These patterns were concordant with substantial enrichment 

of inflammatory pathways in influenza cells compared to 

COVID-19 cells across a majority of cell subsets. In contrast, 

COVID-19 cells were significantly enriched for a number of 

pathways involved in cellular metabolism, stress, corticoster-

oid stimulus, and proliferation in comparison to influenza 

cells across most subsets (Fig. 5E, Supplementary Fig. S12, 

and Supplementary Fig. S13). 

To confirm these observations, we looked at the specific 

expression of Stat genes, including the IFN associated STAT1 

and STAT2, which were both significantly underrepresented 

in COVID-19 patients compared to influenza patients (Fig. 

5F). STAT3, which is critical for IL-6 signaling, was also ex-

pressed significantly less in COVID-19 patients compared to 

influenza patients despite the elevated levels of IL-6 circulat-

ing in these subjects. Taken together, these data indicate that, 

in this subset of COVID-19 patients, there was a general re-

fractoriness to certain inflammatory signals, including IFNs. 

Although the transcriptional signals from this subset of pa-

tients were concordant with the robust phenotypic patterns 

observed across our much larger cohorts, it is important to 

note that others have reported dissimilar findings in their 

own transcriptional comparisons of treated influenza-in-

fected and COVID-19-infected patients (15). Future work, as 

discussed below, will be important for fully understanding 

the diverse biological and immunological patterns underly-

ing these heterogeneous patient populations. 

 

Discussion 

Understanding the complexities of the systemic inflamma-

tory response to SARS-CoV-2 infection is critical to determin-

ing the most appropriate treatment for this condition. We 

have demonstrated that the immunophenotypes of COVID-19 

and influenza patients vary widely. Multiple forms of COVID-

19 immune dysregulation were observed: a cytokine storm 

phenotype in 3-4% of patients across primary and validation 

cohorts (7 of 168), a Th22 phenotype in 3% of the validation 
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cohort patients (3 of 89), and a far more common phenotype 

characterized by targeted immunosuppression relative to in-

fluenza-infected patients. The signatures of this common 

COVID-19 phenotype compared to influenza were equivalent 

levels of IL-6 and IL-8, paired with lower levels of cytokines 

in many other pathways and essentially the absence of any 

Type I or Type II IFN response. The suppression in Type I 

IFN signaling has been noted by others in humans and ani-

mal models of COVID-19 infections (27–29). At the cellular 

level, dramatic reductions in overall cellularity, particularly 

in the monocyte compartment, were observed, with pheno-

typic and transcriptional evidence that monocytes were less 

activated. While lymphocyte numbers (except for plas-

mablasts) were reduced in both infected groups compared to 

healthy controls, several lymphocyte subsets had functional 

signatures of suppression in COVID-19 patients compared to 

influenza patients, including type I and II IFN signaling. IFN-

γ production is critical for effector type I responses, and its 

absence may limit antiviral activity. The elevated plasmablast 

frequencies in COVID-19 patients may reflect the abundance 

of viral antigens, which is consistent with the reported per-

sistence of viral RNA in nasal swabs for up to 15 days after 

onset of symptoms (30). 

The single cell analyses also identified enrichment of sev-

eral pathways in COVID-19-infected patients associated with 

metabolic stress and the general stress response. These results, 

combined with the targeted, severe suppression of specific 

pathways and dramatic leuko- and lymphopenia led us to con-

sider what pathways might account for this response profile. 

Previous studies in animal models had implicated glucocorti-

coid (GC) signaling in the immunosuppression and lymphope-

nia that occurs in the influenza model in mice (31). In humans, 

systemic inflammation, and hydrocortisone specifically, are 

known to suppress HLA-DR expression on monocytes (32). 

Excessive GC production is an attractive hypothesis to ac-

count for the observed immune dysregulation and disease 

manifestations in COVID-19. First, the relatively high levels 

of IL-6 production can directly drive excessive cortisol pro-

duction through multiple mechanisms, including through the 

direct induction of corticotropin-releasing hormone and 

adrenocorticotropin. IL-6 can also act directly on the adrenal 

cortex to stimulate GC release (33). While GCs are generally 

immunosuppressive, which is why they are often utilized 

therapeutically, their effects are uneven across the cytokine 

landscape, with cortisol failing to suppress IL-6 (34), or even 

inducing IL-6 and IL-8 in one report (35). A recent retrospec-

tive cohort study from Germany has also reported increased 

cortisol levels in a majority of COVID-19 patients (36) while 

another analysis found an association between risk COVID-

19 mortality and high levels of serum cortisol (37). 

A recent report from the RECOVERY trial has suggested 

that, in contrast to this hypothesis, treatment with steroids 

(dexamethasone) had a significant protective effect in reduc-

ing mortality among the most severe COVID-19 patients (8). 

These data demonstrated a statistically significant reduction 

in mortality among patients requiring oxygen (21% vs. 25%) 

or ventilation (29% vs. 40%). In light of our findings, we 

would hypothesize that this subset of patients that was aided 

(~5-11% of the most severe patients, approximately 2% of the 

total cohort of COVID-19 patients enrolled in the study) rep-

resented those who had the severe cytokine storm immuno-

type. Intriguingly, in those patients not receiving respiratory 

support, outcomes for patients on dexamethasone were 

poorer, with 17% mortality vs. 13.2% in the control group 

(though this was not statistically significant; p = 0.14). Other 

reports have similarly found deleterious effects of GC admin-

istration in COVID-19 and related illnesses (38). Based on our 

results, we might hypothesize that this lack of efficacy in this 

larger population may correspond to patients already experi-

encing higher level of GC production. This hypothesis would 

need further verification, with direct measurement of GCs. If 

confirmed, therapeutic consideration should be given to in-

hibiting both IL-6 and GC activity in the majority of COVID-

19 patients exhibiting this phenotype (high IL-6, low IFN sig-

naling, profound cytopenias) versus the small proportion of 

patients with a true cytokine storm phenotype. A focus on 

understanding GC dynamics and activity across the course of 

infection is an important direction for future research. 

Cytokine storms were originally defined in graft versus 

host disease manifestations of hematopoietic stem cell trans-

plants (39). Subsequent characterization of extraordinary lev-

els of cytokines in H5N1 avian flu infections in vitro and in 

vivo led to an exploration of this phenotype in infection mod-

els (40). In general, seasonal influenza infections such as 

those studied here, even fatal cases were not associated with 

this phenotype, while the emergence of a novel avian virus 

(H7N9) again demonstrated a hypercytokinemia phenotype 

(41). Recent literature has started conflating “cytokine 

storms” with generally, but not exceptionally, elevated cyto-

kine levels. We have tried to emphasize here that regardless 

of the terminology, this small but significant subgroup of pa-

tients with outlier levels of many cytokines needs special con-

sideration and is most consistent with the “cytokine storm” 

literature (11, 13, 42). For instance, one CSS patient has 

1.08x106 pg/mL of IL17f, whereas the average value among all 

non-CSS COVID-19 patients is 1,435 pg/mL. 

Our findings are consistent with severe COVID-19 disease 

resulting from diverse underlying immunological profiles. 

While a significant subset of patients exhibits the cytokine 

storm phenotype, the majority do not, including most of 

those who progress to the severest outcomes. Another study 

using cell-based immune profiling also identified diverse “im-

munotypes” associated with varying outcomes, including 

strong activation and expansion in adaptive immune 
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compartments (T cells and plasmablasts) in some patients, 

while other patients appeared to have no measurable adap-

tive immune activation above baseline (43). We attempted to 

define the cytokine storm subset using commonly measured 

clinical parameters (e.g., C-reactive protein levels), or combi-

nations thereof, but thus far have not identified a statistically 

informative predictor. Other groups analyzing severe COVID-

19 cohorts have similarly failed to directly correlate clinically 

measured parameters in patients with cytokine storm pheno-

types (44). Ideally, parsing the diverse and therapeutically 

distinct immune profiles underlying severe COVID could be 

assessed with a simple, fast, inexpensive, robust test; a mini-

mal set of cytokines (e.g., simultaneous assessment of some 

combination of EGF, FGF, IL-15, MIP-1α, IL-3 and/or other 

cytokines with consistent outliers in Supplementary Figs. S2 

and S5) may currently be the most tractable option. 

There are several important limitations to the current 

work, including our focus on the circulating peripheral blood 

compartment. At the initiation of the study, the safe collection 

of respiratory samples from COVID-19 patients had not been 

established, though we plan to address the local features of in-

flammation in subsequent reports, including addressing 

whether some of the peripherally depleted subsets may have 

migrated to the inflamed airways. Ideally, longitudinal sam-

ples would also be used to determine the trajectory of each im-

mune profile to determine their stability. Additionally, we 

focused on the first blood sample collected from each subject, 

which in more than 75% of enrolled subjects was collected 

from the patient at the same time that the treating team 

learned of the patient’s COVID-19 diagnosis. Although limiting 

the possibility that substantial disease-specific therapeutic in-

terventions were employed prior to initial sample collection 

removed a major potential source of variation among our sub-

jects, in future studies it will be critical to understand how the 

array of therapeutic modalities currently being applied affect 

our identified immune profiles. Furthermore, our study com-

pares initial enrollment blood samples from COVID-19 sub-

jects and acute influenza subjects. While there was no 

significant difference between the duration of symptoms prior 

to sample collection between the two groups and multivariate 

analyses utilized throughout our manuscript controlled for du-

ration of symptoms, there remain differences between these 

two viral infections – this may include the duration of the pre-

symptomatic period of infection. The time course of the im-

mune response to these two distinct viral pathogens is likely 

not identical despite our efforts to provide statistical correc-

tion for these variations. Finally, our study does not include a 

truly mild COVID-19 group, such as asymptomatic patients. 

This group is particularly hard to enroll and sample in the cur-

rent setting as they are requested to avoid the clinic, and it is 

important to note that our conclusions do not necessarily gen-

eralize to these milder infections. 

Materials and Methods 

Study Design 

This is a prospective observational cohort of subjects with vi-

ral respiratory illness symptoms who presented to Barnes 

Jewish Hospital, St. Louis Children’s Hospital, Missouri Bap-

tist Medical Center or affiliated Barnes Jewish Hospital test-

ing sites located in Saint Louis, Missouri, USA. Inclusion 

criteria required that subjects were symptomatic and had a 

physician-ordered SARS-CoV-2 test performed in the course 

of their normal clinical care. Some subjects were enrolled 

prior to the return of the SARS-CoV-2 test result. Enrolled 

subjects who tested negative for SARS-CoV-2 are not included 

in the current manuscript. This report includes the first sub-

jects enrolled in the study. The first 79 SARS-CoV-2+ subjects 

compose our primary cohort and the next 89 enrolled SARS-

CoV-2+ subjects make up the validation cohort. Study recruit-

ment is ongoing. All samples were collected at the time of 

enrollment, and there was a median interval between hospi-

tal admission and enrollment of 1 day (which corresponded 

to the median turn-around time for the SARS-CoV-2 clinical 

RT-PCR test). Patient-reported duration of illness and other 

clinically relevant medical information was collected at the 

time of enrollment from the subject, their legally authorized 

representative, or the medical record. The vast majority of 

samples from patients testing positive for SARS-CoV-2 were 

collected immediately after the treatment team learned that 

the subjects were positive, and therefore most patients will 

not have received any specific treatment prior to sample col-

lected. We obtained less information about whether treat-

ment had begun before sample collection for the validation 

cohort, hence the consideration of the primary and validation 

cohorts separately throughout the majority of the manu-

script. The portions of the study relevant to each institution 

were reviewed and approved by the Washington University 

in Saint Louis Institutional Review Board (WU-350 study ap-

proval # 202003085) and the Missouri Baptist Medical Center 

Institutional Review Board (Approval # 1132). The study com-

plied with the ethical standards of the Helsinki Declaration. 

We also report findings from healthy control subjects and 

influenza-infected subjects enrolled in separate, ongoing 

studies. Control subjects had not experienced symptoms of a 

viral respiratory illness at the time of sample collection or 

within the previous 90 days, and samples were all collected 

before October of 2019. Influenza subjects were enrolled in 

the ongoing EDFLU study (45). All influenza subjects were 

sampled in 2019 and 2020. We enrolled most influenza sub-

jects during the course of the 2019-2020 influenza season, im-

mediately before the spread of COVID-19 disease in the Saint 

Louis region. The last included influenza subject was enrolled 

and sampled on March 2, 2020. The first case of COVID-19 

was reported in Saint Louis on March 8th of 2020 in a return-

ing traveler. The control and influenza studies were 
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independently approved by the Washington University Insti-

tutional Review Board (Approval #’s 201707160, 201801209, 

201808171, 201710220, 201808115 and 201910011). 

 

Multi-Parameter Flow Cytometry 

Absolute counts of CD45+ cells in whole blood were deter-

mined at the time of blood collection on fresh samples by flow 

cytometry with Precision Count Beads (BioLegend). Peripheral 

blood mononuclear cells (PBMCs), prepared using ficoll sepa-

ration, were analyzed using a panel of antibodies directed 

against the following antigens: CD8 BV421 (clone RPA-T8), 

CD20 Pacific Blue (clone 2H7), CD16 BV570 (clone 3G8), HLA-

DR BV605 (clone L243), IgD SuperBright 702 (clone IA6-2), 

CD19 BV750 (clone HIB19), CD45 Alexa Fluor 532 (clone HI30), 

CD71 PE (clone CY1G4), CD38 PE-Cy7 (clone HIT2), CD14 APC 

(clone M5E2), CD4 Spark 685 (clone SK3), and CD3 Alexa 700 

(clone UCHT1). PBMC samples of 0.5-2x106 cells were stained 

with a master-mix containing pre-titrated concentrations of 

the antibodies, along with BD Brilliant Buffer (BD Biosciences) 

and Zombie NIR Fixable Viability Marker (BioLegend) to dif-

ferentiate live and dead cells. Samples were run on a Cytek Au-

rora spectral flow cytometer using SpectroFlo software (Cytek) 

and unmixed before final analysis was completed using FlowJo 

software (BD Biosciences). 

 

Cytokine Quantification 

Plasma obtained from subjects was frozen at -80°C and subse-

quently analyzed using a human magnetic cytokine panel provid-

ing parallel measurement of 35 cytokines (ThermoFisher). The 

assay was performed according to the manufacturer’s instruc-

tions with each subject sample performed in duplicate and then 

analyzed on a Luminex FLEXMAP 3D instrument. 

 

Single-Cell RNAseq 

PBMCs were suspended at 1,000 cells/μL and approximately 

17,400 cells were input to a 10x Genomics Chromium instru-

ment. Aside from Healthy Control sample ZW-WU321, each 

sample was used for two independent reactions, with all first 

reactions processed on one chip and second reactions pro-

cessed on a second chip. Single-cell gene expression libraries 

were prepared using 5-prime (V2) kits and sequenced on the 

Illumina NovaSeq 6000 platform at 151x151bp. Individual li-

braries were processed using CellRanger (v3.1.0; 10xGe-

nomics) with the accompanying human reference (GRCh38-

3.0.0), which was modified to include the influenza A, influ-

enza B, and COVID-19 (NC_045512.2) genomes. Processed li-

braries were subsequently aggregated using CellRanger, 

randomly subsampling mapped reads to equalize sequencing 

depth across cells. Filtered aggregation matrices were subse-

quently analyzed using Seurat (46) (v3.2.0), excluding cells 

from downstream analyses that exhibited extremes in the to-

tal number of transcripts expressed, the total number of 

genes expressed, or mitochondrial gene expression. For each 

cell we inferred cell cycle phase using markers from Tirosh 

and colleagues (47) and incorporated module scores from a 

number of external gene sets in the same manner. 

After filtering, we first sought to characterize putative 

cell subsets shared across conditions by detecting integra-

tion anchors among the samples, effectively minimizing 

condition-associated differences. The top 2,000 variable 

genes were identified for each library using the “vst” 

method, and integration anchors were obtained using ca-

nonical correlation analysis (CCA). Data were integrated us-

ing 50 CCA dimensions and scaled to regress out the effects 

of total transcript count, percent of mitochondrial gene ex-

pression, and module scores associated with cell phase. 

Principal components (PC) were calculated and assessed for 

statistical significance using random permutation. The first 

45 PCs (p < 0.01) were used to identify transcriptional clus-

ters and for tSNE and UMAP dimensionality reduction. Af-

ter identifying clusters on the basis of transcriptional 

similarities across cells from all three conditions (i.e., the 

“integrated” analysis), we performed pairwise differential 

gene expression analysis between conditions using Wil-

coxon Rank Sum tests as implemented in Seurat, with de-

fault parameters. We also generated an additional UMAP 

projection using the top 2,000 variable genes across the en-

tire dataset (excluding TCR and IG genes, which are known 

to map poorly) irrespective of the CCA but again using sig-

nificant PCs; this allowed us visualize cells in a manner that 

did not obscure transcriptional differences owed to sample 

or condition but with previously identified cell subsets and 

transcriptional clusters from the integration analysis over-

laid. We also looked within identified subsets and clusters 

for explicit differences in gene pathway enrichment be-

tween cells from COVID-19-infected and influenza-infected 

patients, COVID-19-infected and healthy patients, and influ-

enza-infected and healthy patients. For these analyses, gene 

expression differences between conditions were ranked for 

individual subsets and transcriptional clusters by calculat-

ing differential expression under a generalized linear hurdle 

model (48). To generate gene ranks, gene-specific average 

log fold changes were multiplied by the absolute difference 

in the proportions of cells expressing the gene (+1e-4 as a 

lower boundary) and the inverse of the Bonferroni-cor-

rected p-values, which were re-scaled from 1e-7 to 1 to insti-

tute reasonable bounds in the ranking; this approach has 

been implemented previously ((49)) in order to synthesize 

information about average expression differences, the frac-

tion of cells expressing the gene at all, and statistical assess-

ments of significance. These ranks were used as inputs for 

gene set enrichment analysis (26) using GSEAPreranked with a 

classic enrichment statistic and chip-based gene collapsing 

based on the Human_Symbol_with_Remapping_MSigDB.v.7.0 
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chip (50). Gene sets were considered significantly enriched if 

they resulted in a nominal p-value < 0.05 and a q-value < 0.20. 

 

Data Availability 

Raw flow cytometry and cytokine data can be found in Sup-

plementary Table S1. Single cell gene expression data have 

been uploaded to the NCBI Short Read Archive under BioPro-

ject ID PRJNA630932. 

 

Analysis 

Cohort Comparisons 

Statistical analyses of primary cohort demographics in-

cluded pairwise comparisons between COVID-19 and 

healthy groups for age, sex, and ethnicity using a multino-

mial logistic regression, with the variation from the influ-

enza group included in the model. Results were reported as 

odds ratio and (when significant) and corresponding p-

value. Comparisons between COVID-19 and influenza 

groups were performed using a multivariate logistic regres-

sion between the COVID-19 and influenza groups only, as 

the clinical variables were irrelevant to healthy controls. 

The “Immunocompromised” comorbidity was not included 

in the primary cohort logistic regression because it perfectly 

segregated across groups. The COVID-19 validation cohort 

was compared to the COVID-19, Healthy, and Influenza 

groups from the primary cohort again using multinomial lo-

gistic regression, with comparisons between Validation and 

Healthy limited to demographic variables. Multinomial re-

gressions were modeled using the R nnet package (v7.3.14), 

(51) and multivariate logistic regressions were modeled us-

ing the glm function in R. P-values were adjusted for multi-

ple testing by controlling the Benjamini-Hochberg false 

discovery rate approach. 

 

Flow Cytometry 

Flow cytometry measures were compared across healthy, in-

fluenza, and SARS-CoV-2 subjects using multivariate linear 

regression, with log10 subset percentages, counts, or MFIs 

modeled as a function of condition (COVID-19-infected, in-

fluenza-infected, healthy control) with sex, age, ethnicity, 

and all comorbidities included as covariates among compar-

isons to healthy controls, and all of those covariates as well 

as the number of days since symptom onset at study enroll-

ment included in comparisons between influenza-infected 

and COVID-19-infected patients. The emmeans package in 

R was used to assess pairwise differences in estimated mar-

ginal means between conditions or severity, and Tukey’s 

method was used to adjust for multiple comparisons. In the 

HLA-DR expression analysis, there were four negative mean 

fluorescence intensity observations, and these were re-

placed with a value of 1 prior to analysis. 

 

Cytokines 

Principal Component Analysis (PCA) was conducted on sam-

ples without missing data points using the prcomp function 

in R and visualized using the factoextra package. Cytokine 

concentrations were otherwise compared across healthy, in-

fluenza, and SARS-CoV-2 subjects using multivariate linear 

regression, with log10 concentration modeled as a function of 

condition (COVID-19-infected, influenza-infected, healthy 

control) with sex, age, ethnicity, and all comorbidities in-

cluded as covariates among comparisons to healthy controls, 

and all of those covariates as well as the number of days since 

symptom onset at study enrollment included in comparisons 

between influenza-infected and COVID-19-infected patients. 

The ‘emmeans’ package in R was used to assess pairwise dif-

ferences in estimated marginal means between conditions, 

and Tukey’s method was used to adjust for multiple compar-

isons. Data points from CSS samples were not included in 

the statistical analyses so as to prevent skewing the results. 

Data points from Th22 samples were included in the valida-

tion cohort COVID-19 samples for analysis even when visu-

alized separately. 

Cytokine-cytokine co-correlations were investigated using 

CytoMod (24) utilizing absolute cytokine concentrations of 

COVID-19 samples across both the primary and validation co-

horts. For these correlations, values below the lower limit of 

detection were set to the lower limit of detection, and values 

above the upper limit of detection were set to the upper limit 

of detection. We tested up to k = 12 modules and used the 

change in gap statistic to identify the optimal k. 

Logistic regressions for severity were carried out within R 

and included sex, age, ethnicity, the number of days since 

symptom onset, cohort, and all comorbidities as covariates. 

P-values were adjusted for multiple testing by controlling the 

false discovery rate as described above. Forest plots were gen-

erated using the “forestplot” package in R. 
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Fig. 1. Evaluation of circulating lymphocyte and monocyte subpopulations in select healthy controls (N=15), acute 

influenza-infected subjects (N=23), and acute SARS-CoV-2-infected subjects (N=22): (A) Total B cells, CD8+ T 

cells, and CD4+ T cells; (B) circulating B cell plasmablasts, activated CD8+ T cells, and activated CD4+ T cells; and 

(C) classical, intermediate, and nonclassical monocytes. Surface expression of the major histocompatibility complex 

class 2 molecule, HLA-DR, on the surface of the indicated sub-populations of circulating monocytes (D) and 

lymphocytes (E) as measured by geometric mean fluorescence intensity (MFI) using flow cytometry. Presented p-

values are from pairwise comparisons of estimated marginal means of linear regression models that adjust for 

ethnicity, sex, age, and all comorbidities (immunocompromised, end stage renal disease, chronic lung disease, 

chronic heart failure, and diabetes mellitus). P-values were adjusted for multiple comparisons using Tukey’s method. 

For comparisons between COVID-19 and influenza, the models also include days of symptom duration at study 

enrollment as a covariate. In each case raw values are plotted on the log10 scale. 
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Fig. 2. Selective cytokine up-regulation in COVID-19 patients from the primary cohort. (A) Top panel: Principal 

component analysis (PCA) of 35 cytokines measured in COVID-19 subjects from the primary cohort. Red circles: 

patients with cytokine storm syndrome (CSS); green dots: all other subjects. Samples with missing cytokine data were 

excluded. Bottom panel: corresponding PCA loadings indicating effects of each cytokine. (B) Relative cytokine 

abundance plot, with each cytokine normalized to the respective median cytokine level in influenza subjects. The 

normalized median cytokine level in influenza patients (1) is represented by the vertical blue line. Bar graphs represent 

the normalized median COVID-19 cytokine level relative to the normalized median influenza cytokine level. Light red 

bars: cytokine levels lower in COVID-19 than influenza patients (normalized median < 1, n = 28); dark red bars: 

cytokines levels greater in COVID-19 than influenza patients (normalized median > 1, n = 7). (C) Box plots show 

cytokine concentrations in healthy, influenza, COVID-19, and CSS subjects, with raw values plotted on the log10 scale. 

P-values are from estimated marginal means (EMM) comparisons, averaging over all demographic and clinical factors 

included as covariates and adjusted for multiple comparisons. To the right of each box plot are EMM plots for the 

influenza-COVID-19 comparison. Black dot: estimated marginal mean for the log10 concentration of the cytokine, 

averaged over the levels of all other covariates; blue shading: corresponding 95% confidence interval; red arrows: 

standard error (SE) in one direction, with overlapping SE arrows indicating no significant difference between the EMM 

of a given cytokine in influenza subjects versus COVID-19 subjects. 
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Fig. 3. Selective cytokine up-regulation in COVID-19-infected patients from the validation cohort. (A) Left panel: 

Principal component analysis (PCA) of all 35 cytokines measured in the COVID-19 validation cohort. Red circles 

represent samples with cytokine storm syndrome (CSS) cytokine profiles, blue dots represent samples with Th22 

cytokine profiles, and green dots represent the remainder of subjects. Samples with missing cytokine data were 

excluded. Right panel: The corresponding PCA loading plot, in which each cytokine has a vector/arrow which points in 

the direction of increasing cytokine levels. The color and length of the vector represent how strongly each cytokine 

contributes to a principal component. (B-D) Box plots show cytokine concentrations in healthy, influenza, primary 

COVID-19, validation COVID-19, primary CSS, validation CSS, and validation Th22 groups for all 35 cytokines measured, 

with raw values plotted on the log10 scale. Presented p-values are from estimated marginal means (EMM) comparisons, 

averaging over all demographic and clinical factors that were included as covariates and p-values adjusted for multiple 

comparisons. Although Th22 samples were visualized separately, they were included as validation COVID-19 samples 

in the underlying statistical analyses. To the right of each box plot are EMM plots for the influenza-COVID-19 

comparison; the black dot represents the estimated marginal mean for the log10 concentration of the cytokine for a 

given condition, averaged over the levels of all other covariates (e.g., age, sex, ethnicity), and the blue shading 

represents the corresponding 95% confidence interval. The red arrows represent the standard error (SE) in one 

direction, with overlapping SE arrows indicating no significant difference between the EMM of a given cytokine in 

influenza subjects versus COVID-19 subjects. 
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Fig. 4. Cross-cohort comparisons. (A) Left panel: Principal component analysis (PCA) of 35 cytokines measured across 

all patient groups in both primary and validation cohorts; all samples with complete cytokine data were included in the 

analysis, but only the majority of sample variation is included in the visualization. Right panel: corresponding PCA loadings 

indicating effects of each cytokine. (B) Correlations of log10 absolute cytokine values are visualized as the proportion of 

times cytokine pairs clustered together during hierarchical clustering over 1,000 permutations for all COVID-19 patients 

across cohorts. Colors alongside the dendrogram and cytokine names denote module membership, whereas colors 

within the heatmap correspond to the ratio of co-clustering. (C) Cytokine co-correlations for all cytokines assigned to 

Module1 (M1) are assessed using Pearson’s correlation coefficient. (D-E) Forest plots depicting the adjusted odds ratios 

obtained from multivariate logistic regression analysis between cytokines and various correlates of COVID-19 disease 

severity. Panel D: cytokine associations with ICU admission; Panel E: cytokine associations with death. Logistic regression 

models utilized absolute log10-transformed cytokine values and included age, sex, ethnicity, days since symptom onset 

at enrollment, all reported comorbidities, and cohort as covariates. Grey shading indicates the area of the plots where 

odds ratios are less than 1, indicative of negative associations. Adjusted odds ratios are indicated with points, and 

confidence lines encompass the range between the lower and upper limits. Red indicates significance at FDR < 0.1, † 

indicates that age was a significant covariate, and ‡ indicates that day of sampling after symptom onset was significant. 
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Fig. 5. Single-cell gene expression analyses of PBMCs from COVID-19-infected, influenza-infected, and healthy 

subjects demonstrate profound differences in the relative abundance and transcriptional activity of cell subsets 

across conditions. (A) UMAP (uniform Manifold Approximation and Projection) plots depict transcriptional clusters, 

which (B) vary transcriptionally as a function of condition despite the presence of nearly all subsets across various 

conditions, as evidence in (C). (D) Violin plots demonstrate significant down-regulation of HLA-DRA among all cells from 

COVID-19-infected patients compared to influenza-infected patients (with healthy controls included for reference). 

Asterisks indicate significance at Bonferroni-corrected p-values < 0.001. (E) GSEA analysis of gene expression 

differences between COVID-19 and influenza groups across major cell subsets. In direct comparison to cells from 

influenza-infected patients, transcriptional patterns among cells from COVID-19-infected patients reveal significant up-

regulation (red bars) of metabolic pathways, stress pathways, and glucocorticoid signaling pathways across major cell 

subsets, particularly monocytes/macrophages. In contrast, interferon pathways were significantly down-regulated 

(blue bars) among subsets from COVID-19-infected patients compared to those from influenza-infected patients. Grey 

bars indicate that tests for enrichment did not meet statistical significance for a particular subset. (F) Violin plots 

demonstrate significant down-regulation of STAT1, STAT2, and STAT3 among monocytes/macrophages from COVID-

19-infected patients compared to influenza-infected patients (with healthy controls included for reference). Asterisks 

indicate significance at Bonferroni-corrected p-values < 0.001. 
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Table 1. Demographics and clinical characteristics of primary cohort. Statistical analyses of primary cohort demographics include 

comparisons between COVID-19 and healthy groups for age, sex, and ethnicity using a multinomial logistic regression that includes 

the variation from influenza-infected individuals. Comparisons between COVID-19 and influenza groups were assessed using a multi-

variate logistic regression that included demographic and clinical variables but without including variation from the healthy group, as 

clinical characteristics were irrelevant to healthy controls. Results are reported as the corresponding p-value and, when significant, 

include the odds ratio (OR). COVID-19 serves as the reference condition in all analyses, “African American” serves as the reference 

for ethnicity comparisons, and the negative indication serves as the reference for all categorical clinical characteristics. A significant 

OR > 1 indicates a positive association between the comparator group and the variable (e.g., healthy individuals were more likely to 

self-identify as Caucasian than SARS-CoV-2 patients), whereas a significant OR < 1 indicates a negative association (e.g., influenza-

infected patients were likely to be younger than SARs-CoV-2 patients). The “Immunocompromised” comorbidity was not included in 

the logistic regression due to complete separation across conditions and was instead tested using Fisher’s exact test. P-values were 

adjusted for multiple testing by controlling the false discovery rate. SD denotes standard deviation, and IQR denotes interquartile 

range. 

  

SARS-

CoV-2 

(n = 79) 

Healthy 

Control 

(n = 16) 

Influenza 

(n = 26) 

COVID19-

Healthy 

comparison 

COVID19-

Influenza 

comparison 

Demographics           

Mean ± SD (range) age, in 

years 

61 ± 15 

(25-89) 

 

32 ± 7 

(22-49) 

 

42 ± 17 

(18-89) 

 

p < 0.001, 

OR = 0.85 

 

p = 0.007, 

OR = 0.93 

 

Female 

 

44% 

(35/44) 

 

50% (8/8) 

 

58% 

(15/26) 

 

p = 1, N.S. 

 

p = 1, N.S. 

 

Ethnicity           

African American 
80% 

(63/79) 
44% (7/16) 

65% 

(17/26) 
- - 

White 
18% 

(14/79) 
56% (9/16) 

27% 

(7/26) 

p < 0.05, OR = 

9.59 
p = 0.718, N.S. 

Other 
<3% 

(2/79) 
0% (0/16) 8% (2/26) - p = 1, N.S. 

Clinical characteristics           

Mean (IQR) symptom du-

ration at study enrollment, 

in days 

6.4 (3-9)   4.1 (2-7)   p = 0.229, N.S. 

Hospital admission 
90% 

(71/79) 
  

58% 

(15/26) 
  p = 0.229, N.S. 

ICU admission 
56% 

(44/79) 
  

35% 

(9/26) 
  p = 0.285, N.S. 

Intubation and mechanical 

ventilation 

44% 

(35/79) 
  

27% 

(7/26) 
  p = 0.285, N.S. 

In-hospital death 

 

30% 

(24/79) 
  8% (2/26)   p = 0.234, N.S. 

Comorbidities           

Immunocompromised 6% (5/79)   0% (0/26)   p = 0.33, N.S. 

            

Chronic lung disease 
34% 

(27/79) 
  

42% 

(11/26) 
  p = 0.682, N.S. 

            

Chronic heart failure 
13% 

(10/79) 
  

23% 

(6/26) 
  p = 0.101, N.S. 

            

End stage renal failure 5% (4/79)   8% (2/26)   p = 0.582, N.S. 

            

Diabetes mellitus 

Active cancer 

43% 

(34/79) 

6% (5/79) 

  

27% 

(7/26) 

8% (2/26) 

  
p = 0.628, N.S. 

p = 0.234, N.S. 
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Table 2. Demographics and clinical characteristics of validation cohort with comparisons to primary cohort subsets. Statistical 

analyses of validation cohort demographics include comparisons between validation and healthy groups for age, sex, and ethnicity 

using a multinomial logistic regression that includes the variation from influenza-infected individuals. Comparisons between the vali-

dation cohort and both patient groups from the primary cohort (COVID-19 and influenza) were assessed using a multivariate logistic 

regression that included demographic and clinical variables. Results are reported as the corresponding p-value and, when significant, 

include the odds ratio (OR). The validation cohort serves as the reference condition in all analyses, “African American” serves as the 

reference for ethnicity comparisons, and the negative indication serves as the reference for all categorical clinical characteristics. A 

significant OR > 1 indicates a positive association between the comparator group and the variable (e.g., COVID-19 patients from the 

primary cohort were more likely to be intubated than validation cohort patients), whereas a significant OR < 1 indicates a negative 

association (e.g., healthy controls were likely to be younger than validation cohort patients). P-values were adjusted for multiple test-

ing by controlling the false discovery rate. SD denotes standard deviation, and IQR denotes interquartile range. The “Immunocompro-

mised” comorbidity was not included in the Validation-Influenza comparison logistic regression due to complete separation across 

groups was instead tested using Fisher’s exact test. 

  

SARS-CoV-2 

Validation 

(n = 89) 

  

Validation-Pri-

mary COVID-19 

comparison 

Validation-

Healthy com-

parison 

Validation-In-

fluenza 

comparison 

Demographics           

Mean ± SD (range) age, in 

years 

 

61 ± 17 

(19-92) 

 

  
p = 1, N.S. 

 

p < 0.001, 

OR = 0.87 

 

p = 0.041, 

OR = 0.93 

 

Female 39% (35/89)   p = 1, N.S. p = 1, N.S. p = 1, N.S. 

Ethnicity           

African American 74% (66/89)   - - - 

White 25% (22/89)   p = 1, N.S. p = 0.069, N.S. p = 1, N.S. 

Other 1% (1/89)   p = 1, N.S. - p = 1, N.S. 

            

Clinical characteristics           

Mean (IQR) Body Mass 

Index 
28.6 (24-33)   -   - 

            

Mean (IQR) symptom du-

ration at study enroll-

ment, in days 

7.5 (2-9)   p = 0.958, N.S.   p = 0.635, N.S. 

Hospital admission 94% (84/89)   p = 0.958, N.S.   
p = 0.043, 

OR = 0.046 

ICU admission 48% (43/89)   p = 0.10, N.S.   p = 1, N.S. 

Intubation and mechani-

cal ventilation 
27% (24/89)   

p < 0.001, 

OR = 19.03 
  p = 0.893, N.S. 

In-hospital death 

 
17% (15/89)   p = 0.509, N.S.   p = 1, N.S. 

Comorbidities           

Immunocompromised 8% (7/89)   p = 1, N.S.   p = 0.347, N.S. 

            

Chronic lung disease 16% (14/89)   
p = 0.017, 

OR = 5.9 
  

p = 0.049, 

OR = 11.69 

            

Chronic heart failure 15% (13/89)   p = 1, N.S.   p = 0.817, N.S. 

            

End stage renal failure 2% (2/89)   p = 1, N.S.   p = 1, N.S. 

            

Diabetes mellitus 

Active cancer 

44% (39/89) 

3% (3/89) 
  

p = 1, N.S. 

p = 0.893, N.S. 
  

p = 1, N.S. 

p = 0.387, N.S. 
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