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In recent years, there has been growing enthusiasm that functional magnetic resonance

imaging (MRI) could achieve clinical utility for a broad range of neuropsychiatric
disorders. However, several barriers remain. For example, the acquisition of large-scale

datasets capable of clarifying the marked heterogeneity that exists in psychiatric

illnesses will need to be realized. In addition, there continues to be a need for the
development of image processing and analysis methods capable of separating signal

from artifact. As a prototypical hyperkinetic disorder, and movement-related artifact

being a significant confound in functional imaging studies, ADHD offers a unique
challenge. As part of the ADHD-200 Global Competition and this special edition of

Frontiers, the ADHD-200 Consortium demonstrates the utility of an aggregate dataset

pooled across five institutions in addressing these challenges. The work aimed to (1)
examine the impact of emerging techniques for controlling for “micro-movements,”

and (2) provide novel insights into the neural correlates of ADHD subtypes. Using
support vector machine (SVM)-based multivariate pattern analysis (MVPA) we show

that functional connectivity patterns in individuals are capable of differentiating the two

most prominent ADHD subtypes. The application of graph-theory revealed that the
Combined (ADHD-C) and Inattentive (ADHD-I) subtypes demonstrated some overlapping

(particularly sensorimotor systems), but unique patterns of atypical connectivity. For

ADHD-C, atypical connectivity was prominent in midline default network components, as
well as insular cortex; in contrast, the ADHD-I group exhibited atypical patterns within

the dlPFC regions and cerebellum. Systematic motion-related artifact was noted, and
highlighted the need for stringent motion correction. Findings reported were robust to

the specific motion correction strategy employed. These data suggest that resting-state

functional connectivity MRI (rs-fcMRI) data can be used to characterize individual patients
with ADHD and to identify neural distinctions underlying the clinical heterogeneity

of ADHD.

Keywords: ADHD, functional connectivity, support vector machines, RDoC, research domain criteria
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INTRODUCTION

Brain imaging has increasingly become a useful tool in mod-

ern medicine. Most notably, magnetic resonance imaging (MRI)

has emerged as an accurate and reliable approach to identifying

abnormalities characteristic of congenital, neoplastic, ischemic,

inflammatory, metabolic, and infectious processes in the brain.

Unfortunately, the clinical utility of imaging is markedly dimin-

ished when considering conditions that are not accompanied by

gross structural or inflammatory abnormalities. Chronic pain

syndromes, movement disorders, and, in particular, psychiatric

illnesses, have thus far remained without scientifically founded

clinical benefit from the introduction of brain imaging into med-

ical practice (Matthews et al., 2006). After two decades of devel-

opment, there is now growing enthusiasm that functional MRI

could achieve clinical utility for a broad range of neuropsychiatric

disorders.

This growing enthusiasm stems, in part, from the emergence of

resting-state functional connectivity MRI (rs-fcMRI). Originally

described by Biswal et al. (1995), rs-fcMRI is based on the discov-

ery that spontaneous neural activity (Biswal et al., 1995; Leopold

et al., 2003; Nir et al., 2006; Scholvinck et al., 2010) is associated

with correlated low-frequency (<∼0.1 Hz) blood oxygen level-

dependent (BOLD) signal fluctuations in functionally related

brain regions at rest (Biswal et al., 1995). By cross-correlating the

time series of a particular brain region (seed region) with other

regions or voxels, one can determine which regions are “func-

tionally connected.” Importantly, rs-fcMRI can be used during

sleep as well as during sedation (Fukunaga et al., 2006, 2008;

Vincent et al., 2007; Greicius, 2008; Horovitz et al., 2008); it

yields consistent results across subjects, scans, and days (van de

Ven et al., 2004; Damoiseaux et al., 2006; Shehzad et al., 2009;

Van Dijk et al., 2010), and rs-fcMRI results are remarkably reli-

able across imaging centers (Biswal et al., 2010). These features

make rs-fcMRI an attractive measure for translational and clin-

ical applications. As highlighted in the ADHD-200 competition

(ADHD-200-Consortium, 2012), and this special edition high-

lighting the work of the competitors, the race for these sorts

of applications is currently underway (ADHD-200-Consortium,

2012).

Despite the enthusiasm, two key rate-limiting steps remain

for the advancement of functional neuroimaging approaches

in the clinical realm. First is the acquisition of large-scale

datasets capable of clarifying the marked heterogeneity that exists

in psychiatric disorders—even within a single diagnostic cate-

gory. The diagnosis of Attention Deficit Hyperactivity disorder

(ADHD) provides a salient example of clinical heterogeneity, as

DSM-IV distinguishes between three distinct subtypes, includ-

ing predominantly hyperactive/impulsive (relatively infrequent),

predominantly inattentive, and combined (most frequent among

children). While the behavioral literature has long struggled

with the challenges of identifying commonalities and differences

among the subtypes, imaging studies have generally ignored

these distinctions. The second challenge is the development of

image processing and analytical methods capable of separating

signal from artifact, enabling both the characterization of patho-

logic processes underlying a given disorder, and detection of

their presence in an individual. As a prototypical hyperkinetic

disorder, ADHD presents exceptional challenges for fMRI-based

research, due to importance of addressing the increased preva-

lence of motion in this population, which can artificially pro-

duce or obscure ADHD-related differences in rs-fcMRI metrics

(Power et al., 2012a; Satterthwaite et al., 2012; Van Dijk et al.,

2012).

In response to these challenges, here we use an aggregate

dataset pooled across five institutions [resulting in quality-

controlled rs-fcMRI scans for 455 typically developing children

(TDC) and 193 children with ADHD] to provide novel insights

into the neural correlates of clinical heterogeneity in ADHD.

Specifically, we use support vector machine (SVM)-based mul-

tivariate pattern analysis (MVPA) to identify those functional

connections in the brain that, collectively, are capable of differen-

tiating the DSM-IV Inattentive and Combined ADHD subtypes

(termed presentations in DSM-5) from one another, as well as

from typically developing controls (we omit the hyperactive-

impulsive subtype due to its relative rarity in the age ranges

studied). We believe that such pattern analytic approaches may

prove to be advantageous in the examination of ADHD, given the

growing consensus that the neural correlates of ADHD are dis-

tributed in nature, rather than being explained by abnormalities

in any specific connection or region.

In this work we begin with a methodological aim to assess sev-

eral techniques aimed at controlling for micro-movements in a

TDC sample. We focus this analysis on results related to short

and long-range functional connectivity, as recent works suggest

that findings related to these types of connections can be aug-

mented by micro-movements (Power et al., 2012a; Satterthwaite

et al., 2012; Van Dijk et al., 2012). Using the strongest meth-

ods from the first aim, we then follow-up this examination to

investigate subtype heterogeneity and the predictive capacity of

rs-fcMRI in a large group of TDC vs. a large group of children

with ADHD.

METHODS

PARTICIPANTS AND MEASURES

Data from Brown University, Beijing Normal University, Kennedy

Krieger Institute, New York University Child Study Center,

Washington University at St. Louis, and Oregon Health and

Science University were aggregated for youth ages 7–14 years. The

resulting dataset comprised 455 typically developing control sub-

jects and 193 subjects with a DSM-IV-TR diagnosis of ADHD.

A summary of the demographic characteristics for each sam-

ple is provided in Table 1. Informed written consent and assent

were obtained for all participants, and procedures complied with

the Human Investigation Review Board at respective universi-

ties. As data for this investigation were aggregated retrospectively

(as a large collaborative effort), slightly different ADHD assess-

ment protocols were used across institutions. These procedures

are detailed in Appendix text.

DATA ACQUISITION

All participants were scanned on 3.0 Tesla scanners using stan-

dard resting-connectivity T2∗-weighted echo-planar imaging

(details for each institution are provided in Appendix text). All

imaging data used is publicly available at the Neuroimaging
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Table 1 | Sample characteristics.

N Age (mean) % Female FD mean ADHD-I ADHD-C

N Age (mean) % Female FD mean N Age (mean) % Female FD mean

Total 455 14.39 50 0.10 80 11.45 27 0.11 112 10.31 19 0.11

Brown 6 12.38 83 0.11 1 14.70 0 0.00 5 11.86 80 0.11

NYU 65 15.54 54 0.10 15 10.54 47 0.12 37 9.95 16 0.11

Beijing Normal 176 13.63 44 0.10 48 12.14 17 0.11 40 11.25 05 0.11

JHU 70 13.78 53 0.09 5 11.27 20 0.08 14 9.77 50 0.09

OHSU 56 13.94 59 0.11 11 9.15 45 0.11 16 8.80 13 0.11

WashU 82 16.09 48 0.11 – – – – – – – –

FD mean reflects the mean frame displacement of the remaining frames after censoring (see Methods).

Informatics Tools and Resources Clearinghouse (NITRC), see

http://fcon_1000.projects.nitrc.org/indi/adhd200.

PREPROCESSING

All functional images were preprocessed in the same manner to

reduce artifacts (Miezin et al., 2000). These steps included: (1)

removal of a central spike caused by MR signal offset, (2) cor-

rection of odd vs. even slice intensity differences attributable

to interleaved acquisition without gaps, (3) correction for head

movement within and across runs [also see Power et al. (2012a)],

and (4) within-run intensity normalization to a whole brain

mode value of 1000. Atlas transformation of the functional data

was computed for each individual via the MPRAGE scan. Each

run then was resampled in atlas space (Talairach and Tournoux,

1988) on an isotropic 3 mm grid, combining movement correc-

tion and atlas transformation in one interpolation (Lancaster

et al., 1995). All subsequent operations were performed on the

atlas-transformed volumetric time series.

Functional connectivity preprocessing followed prior meth-

ods (Fox et al., 2005; Fair et al., 2007a,b, 2008, 2009). These

steps included: (1) a temporal band-pass filter (0.009 Hz < f <

0.08 Hz) and spatial smoothing (6 mm full width at half maxi-

mum), (2) regression of the whole brain signal averaged over the

whole brain, (3) regression of ventricular signal averaged from

ventricular region of interest (ROI), and (4) regression of white

matter signal averaged from white matter ROI. Regression of first

order derivative terms for the whole brain, ventricular, and white

matter signals were also included in the correlation preprocess-

ing. These preprocessing steps are thought to reduce spurious

variance unlikely to reflect neuronal activity (Fox and Raichle,

2007).

TRADITIONAL MOTION PARAMETERS AND CORRECTION

In a typical functional connectivity experiment, motion is

addressed by excluding participants with high levels of movement

(using various criteria), and then removing movement-related

signal via a linear regression of preprocessed data on the 6

motion parameters (i.e., rotation and translation) for remaining

participants. In some instances, samples are matched for move-

ment [via parameters such as root mean square (RMS)] (Fair

et al., 2007a; Dosenbach et al., 2010). However, these approaches

involve potentially problematic assumptions. The first is that the

traditional calculations of the 6 motion parameters (which are

typically generated relative to a within-run reference frame) are

tightly related to abrupt motion-related changes in the BOLD

signal. The second is that there is a linear relationship between

changes in the BOLD signal and abrupt motion in the scan-

ner. Three recent reports (Power et al., 2012a; Satterthwaite

et al., 2012; Van Dijk et al., 2012) suggest that these assumptions

are likely incorrect and that traditional motion correction does

not adequately control for the changes in signal intensity that

accompany abrupt changes in head position.

With this concern in mind, we attempted several motion

correction procedures (described below). At the first level of

correction (i.e., traditional motion correction), motion was mea-

sured relative to a reference frame (in this case, the middle

frame of a BOLD run) and quantified using an analysis of head

position based on rigid body translation and rotation. This pro-

cedure results in the rigid body transform defined by 6 motion

parameters (3 translation, 3 rotation) typically generated by

most functional MRI software tools. Traditional motion cor-

rection procedures in fMRI-based functional connectivity stud-

ies, as well as in many task-based fMRI studies, use these 6

parameters as regressors in preprocessing to remove potential

motion-related artifact. This step was included in most analyses

below.

In addition, in an effort to remove participants with egregious

motion, we began our analysis by filtering those subjects with

high movement runs based on RMS. The data derived from the 6

motion parameters needed to realign head movement on a frame-

by-frame basis were calculated as RMS values for translation and

rotation in the x, y, and z planes in millimeters. Total RMS val-

ues were calculated on a run-by-run basis for each participant.

Participant’s BOLD runs with movement exceeding 1.5 mm RMS

were removed.

FRAME-TO-FRAME (VOLUME-TO-VOLUME) MOTION PARAMETERS

In an effort to examine motion from volume-to-volume, two

additional motion parameters were examined. The first, based

on framewise displacement (FD), was first introduced by Power

et al. (2012a). This variable measures movement of any given

frame relative to the previous frame, as opposed to relative to

the reference frame (as above). Thus, the method yields a 6

dimensional time series representing frame-to-frame motion, as
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described by FDi = |�dix| + |�diy| + |�diz| + |�αi| + |�βi| +
|�γi|, where �dix = d(i − 1)x − dix , and similarly for the other five

rigid body parameters [dix diy diz αi βi γi]. In essence, this formula

sums the absolute values of volume-by-volume changes in the six

rigid body parameters (Note: Rotational displacements for this

method are first converted from degrees to millimeters by cal-

culating surface displacement on a sphere of radius 50 mm, the

approximate distance from the cerebral cortex to the center of

the head).

A second measure likely to reflect direct BOLD-related devi-

ations secondary to movement is termed DVARS (the RMS of

the derivatives of the differentiated timecourses of every brain

voxel for each acquired volume), originally described by Smyser

et al. (2010). DVARS quantifies volume-to-volume BOLD signal

change, thus capturing large deviations produced by phenom-

ena that impact the brain on a global scale—head motion being

a major contributor to fluctuations in DVARS. This measure

is based on the fact that abrupt head displacement typically

manifests as signal loss in echo-planar imaging (Smyser et al.,

2010). Thus, a logical measurement sensitive to sudden changes

in head position is the whole brain signal change measured by

DVARS (Power et al., 2012a). DVARS is computed by aggre-

gating voxel-wise volume-by-volume backwards differences in

the BOLD signal described by: DVARS (�Ii)t =

√

〈

[�Ii (�x)]2
〉

=
√

〈

[Ii (�x) − Ii − 1 (�x)]2
〉

, where Ii(�x) is image intensity at locus �x

on frame i and angle brackets denote the spatial average over the

whole brain. Because frame-to-frame changes in signal intensity

related to movement are significantly greater than those caused

by neurophysiologic changes in the BOLD signal, this measure

provides a natural parameter with which to directly examine the

relationship of movement measurements and the BOLD response

(Smyser et al., 2010).

REGION OF INTEREST SELECTION

We selected 160 regions of interest (ROIs) based on prior work

by Dosenbach et al. (2010) (see Figure A7). These regions were

selected based on their use to develop maturation indices (fcMI)

in a previous study (Dosenbach et al., 2010). This set of regions

originated from a series of five meta-analyses, focused on error-

processing, default-mode (task-induced deactivations), memory,

language, and sensorimotor functions (Dosenbach et al., 2010).

The functionally defined ROIs were used as a “best guess” esti-

mate of the underlying functional area architecture across the

brain (Fair and Schlaggar, 2008).

Network categorization of each ROI was based on labels des-

ignated in a previous report (Dosenbach et al., 2010). This

categorization stemmed from a community detection procedure

conducted on combined correlation matrices across adult sub-

jects [e.g., see Fair et al. (2009)]. The modularity optimization

algorithm of Newman was used (Newman, 2006). The mod-

ules (i.e., communities) used to categorize regions had a high

quality index (Q) and were the most resistant to perturbation

by randomization, measured by variation of information (VOI)

(Karrer et al., 2008). For Figure A7, the network assignments

were re-examined based on the current adult and child datasets.

In this instance, the weight conserving community detection

algorithm used was based on the work by Rubinov and Sporns

(2011).

COMPUTATION OF SINGLE SUBJECT CORRELATION MATRICES

SVR analyses in the manuscript were conducted on single sub-

ject correlation matrices derived from the above mentioned 160

a priori ROIs (10 mm diameter spheres). The resting-state BOLD

time series were correlated region by region for each partici-

pant across the full length of the resting time series, creating

455 square correlation matrices (160 × 160), one for each sub-

ject (Dosenbach et al., 2007; Fair et al., 2007a, 2008, 2009). For

those motion correction strategies in which motion covariates

were included in the calculation, the resultant matrices for each

participant represent partial correlations (after accounting for

motion).

AGE RELATIONSHIPS

For all statistical comparisons, r-values within matrices were first

normalized using the Fisher r-to-z transformation. Functional

connections of the brain most strongly associated with age were

then determined by cross correlating each connection with sub-

ject age (in one instance partial correlations were generated

using mean movement parameters as a covariate—see below).

Connections were corrected with the Benjamini and Hochberg

False Discovery Rate (Benjamini et al., 2001). Connection dis-

tances for those links that significantly correlated with age were

calculated in terms of Euclidean distance (i.e., vector distance)

between the center of mass coordinates of each region. These val-

ues were then separated for those connections that got stronger

with age or weaker with age. Post-hoc analyses for these same con-

nections using one of the selected movement-related procedures

below (i.e., Procedure 8) was conducted for Figure A2 (site by site

comparisons).

SUPPORT VECTOR-BASED MULTIVARIATE PATTERN ANALYSIS

In the present study SVM and support vector regression (SVR)-

based MVPA were used to make predictions about brain maturity

and disease status in individual subjects (e.g., Norman et al., 2006;

Dosenbach et al., 2010; Rizk-Jackson et al., 2011). The approach

used in the present analysis was similar to that used in a previous

report (Dosenbach et al., 2010).

SVM-based MVPA is a supervised classification algorithm

rooted in statistical learning theory. Conceptually, input vectors

are mapped to a higher dimensional feature space using special

non-linear functions called kernels. Classification is performed by

constructing a hyperplane in the feature space that optimally dis-

criminates between two classes of the training data by maximizing

the margin between two data clusters.

Given a training set of the form (xi, yi) where the vectors xi

are data points and yi are the class labels, the SVMs require the

solution to the following optimization problem:

min
w, b, ξ

1

2
w

T
w + C

n
∑

i = i

ξi

subject to yi(w × xi + b) ≥ 1− ξi and ξi ≥ 0
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where ξi are the slack variables, measuring the degree of a data

point’s misclassification, w are the weights defining the hyper-

plane and C > 0 is the penalty parameter of the error term. The

resultant decision function implemented by SVM can be written

as:

f (x) = sign

(

n
∑

i = 1

yiαiK (x, xi) + b

)

where K(xi, xj) is the kernel function. In our work, we use the

radial basis kernel given by:

K
(

xi, xj

)

= exp

(

−

∥

∥xi − xj

∥

∥

2

2σ2

)

,

SVMs are inherently two-class classifiers. Multiclass SVM aims

to handle the K-class pattern classification problem by reduc-

ing a single multiclass problem into multiple binary classification

problems. The most common method for such reduction is to

build a set of one-vs.-rest binary classifiers that distinguish one

of the classes from the rest. Another strategy is to build a set

of one-vs.-one classifiers that distinguish between every pair of

classes. For the one-vs.-one approach, classification is done by

max-wins voting strategy that chooses the class that is selected

by the most classifiers. For the one-vs.-rest case (used in this

work), classification of new instances is done by a winner-takes-all

strategy, in which the classifier with the highest output func-

tion assigns the class. SVM classifications used a soft margin

C = 1, and a radial basis function with σ = 2. In brief, for all

SVR classifications we used epsilon-insensitive SVRs. Parameters

were set with C = Infinity, epsilon = 0.00001 with σ = 2 [as

in Dosenbach et al. (2010)]. We use Spider (http://people.kyb.

tuebingen.mpg.de/spider/main.html), an object orientated envi-

ronment for machine learning in Matlab (MATLAB 7.1.0, The

Mathworks, Natick, MA), for generating the SVM models.

The brain functional connectivity maturity index (fcMI) for

TDC (Figures 3 and A1) was based on the top 300 connec-

tions that correlated (and passed FDR correction) in each round

of leave-one-out-cross-validation (LOOCV). Calculating fcMI by

LOOCV involves removing a single subject as a test sample, then

using the remaining data for feature selection and as the train-

ing set for the SVR predictor. This procedure is then repeated

until each subject is used once as the test case [i.e., univari-

ate feature-filtering, see De Martino et al. (2008); Pereira et al.

(2009)].

We also conducted an SVM analysis using features (i.e., con-

nections) that most strongly differentiated ADHD subjects of

each of two subtypes [i.e., primary inattentive type (ADHD-I)

and combined type (ADHD-C)] from each other and/or con-

trol subjects (2-group classification: t-test; 3-group classification:

ANOVA). For this procedure, we ran the SVM using LOOCV on

all subjects conducted on the top 150 features that differentiated

each subtype and controls (via the comparisons as noted above).

These analyses are presented in Figure 8 and Figures A4 and A5.

The number of features used in this case was reduced because of

our reduced sample size for the comparisons.

For the typically developing population, the SVR and univari-

ate age relationships were conducted after 10 potential motion

correction procedures (Table 2). Procedure 1 used traditional

motion correction, which included regression of the BOLD

data on 6 rigid body motion parameters (based on the mid-

dle reference frame) during preprocessing. Procedure 2 added

an additional step that included the six rigid body frame-to-

frame parameters, [�dix �diy �diz �αi �βi �γi], as covariates

to generate partial correlation matrices (160 × 160) for each

participant. Procedure 3 was similar to Procedure 2, but used

FDi as the covariate. Procedure 4 was the same as Procedure

1, but replaced the traditional preprocessing motion regres-

sors (i.e., Procedure 1) with the frame-to-frame measures (i.e.,

[�dix �diy �diz �αi �βi �γi]). Procedure 5 utilized a group-

level correction, similar in nature to what has been proposed by

Van Dijk et al. (2012). In this instance, mean FD for each partici-

pant is used as a covariate when cross correlating each connection

across subject age. Procedure 6 involves a movement “matching”

procedure (analogous to matching a parameter between groups)

whereby mean FD is used to remove subjects until there is no

relationship between mean FD and age (Figure 5). Procedure 7 is

Table 2 | Brief description of each motion correction procedure.

Procedure Method

1 Traditional motion correction: regression of BOLD data with six rigid motion parameter in pre-processing

2 The six rigid body frame to frame parameter were used as a covariates to generate partial correlation matrices

3 Same as Procedure 2 but uses FD as a covariate

4 Same as Procedure 1 but regressed the BOLD data with six rigid body frame to frame parameters

5 Group level correction: mean FD is covaried while cross-correlating connections across subject age

6 Movement matching: removed subjects to make sure there was no relation between mean FD and age

7 Frames having FD > 0.2 mm were removed (scrubbing). To account for temporal blurring one frame before and two after were also

removed

8 This is combining Procedure 7 and Procedure 6 i.e., frame censoring and movement matching was done

9 Same as Procedure 8. Instead of FD > 0.2, frames were removed based on DVAR > 4, then the movement matching was done with

mean DVAR and age

10 Utilizes a polynomial generated for each subject based on information obtained from Procedure 7 to correct for the effect of movement

Frontiers in Systems Neuroscience www.frontiersin.org February 2013 | Volume 6 | Article 80 | 5

http://people.kyb.tuebingen.mpg.de/spider/main.html
http://people.kyb.tuebingen.mpg.de/spider/main.html
http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Fair et al. Differentiating ADHD subtypes with rs-fcMRI

a method (i.e., “scrubbing” or volume censoring) first proposed

by Power et al. (2012a). In this instance, frames are removed

based on the magnitude of FDi. In the original publication frames

were removed based on having FDi > 0.5 mm and a DVARS

level greater than 5. Here we apply a more stringent criterion

based on findings in Figure 1, and remove frames prior to cre-

ating the 160 × 160 correlation matrix for each subject based

on an FDi > 0.2 mm. To account for potential temporal blur-

ring of the motion-related artifact during the bandpass filter,

2 frames after the censored frame, and one frame before are also

removed (Power et al., 2012a). Procedure 8 is an extension of

procedure 6 and combines matching with frame removal. Here

additional participants are removed to assure there is no rela-

tionship of mean FD and age for the remaining frames after

applying frame removal based on FDi > 0.2. Procedure 9 was

identical to Procedure 8, but DVARSi is used to remove frames

instead of FDi. Here DVARSi > 4 was used to remove frames

likely associated with excess movement. In addition, subjects were

removed so there was no relationship between mean DVARS and

age (see Figure 5). Procedure 10 aims to utilize the censoring

techniques described above; however, it does so only to gener-

ate the effect of movement on the correlation coefficients in each

subject. It then utilizes this information to correct the original

values. In this sense r-values are corrected via censoring, but

without requiring actual data removal for the correlation esti-

mates. For the procedure, connectivity matrices are first generated

from the original and censored time series (i.e., Procedure 7)

for each subject. Next, within each participant, delta r is cal-

culated for all of the connections (i.e., the difference between

the scrubbed and the original connectivity data is calculated

for each individual subject). A polynomial curve is fitted to the

relationship between delta R and distance between the ROIs

(see Figure A8). The general form of a polynomial equation is

shown below.

y = p1x + p2x2 + p3x3 + · · · + pnxn + pn + 1

As shown in the Figure A8, for a given subject, the red curve

shows the trend of delta r and the blue curve shows the curve

fitted to delta r (Note: in the figures we also include LOWESS

curves of the data to visualize how the polynomial fits the data).

The method is applied on each subject individually such that

every subject will have an equation that fits their respective curve.

This equation is then used to regress the effect of movement

on the original r-values. Censoring the frames as in Procedure

7 after applying this procedure reveals no effect of movement

(Figure A8).

VISUALIZING REGIONAL BRAIN CONTRIBUTIONS

Regional brain contributions associated with age or ADHD status

were not equally distributed throughout the cortex. Some regions

had many connections that strongly correlated with age (or dif-

ferentiated TDC from ADHD subjects), while others had few or

none. As such, we represented this phenomenon with a parame-

ter termed “Node Strength” by scaling the diameter of each node

by the summed z-scores of each of its connections identified as a

connection of interest (COI) in previous analyses. Node strength

FIGURE 1 | The relationship between movement parameters and

variations in echo-planar imaging. (A) LOWESS curves of six

traditional movement measurements, which align any given frame

within a run to a reference frame within that run, relative to the

derivation in BOLD signal (i.e., DVARS) from volume to volume (or

frame to frame). These traditional movement measurements show a

non-linear relationship with changes in the BOLD signal. (B) The same

plot as in (A), using 6 frame-to-frame motion measurements as

opposed to traditional movement parameters. (C) FD, which combines

all 6 directions in (B), as a function of DVARS. There is a stronger

relationship of DVARS and the FD measurements, compared to

traditional motion estimates shown in (A).
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is simply the sum of all of the weights (in this case z-scores)

attached to a specific node [e.g., see Hagmann et al. (2010)]. Node

strength was calculated for the consensus features (those features

present in each round of the LOOCV procedures above) that most

strongly correlated with age, as well as for the strongest feature

set found in the comparisons with regard to the ADHD sub-

types. If an ROI did not have any COIs that correlated with age

or differentiated groups based on our criterion, it was assigned

a Node Strength of 0. Nodes with many and/or strong connec-

tions that correlated with age or differentiated groups have a high

node strength. Raw values for all Node Strengths are presented

in Table A1. Surfaced-based mapping of nodes and vectors were

conducted using caret software (Van Essen et al., 2001; Van Essen,

2005).

RESULTS

Given prior demonstrations of increased micro-movements in

pediatric samples and the potential for motion artifact to con-

tribute to estimates of functional connectivity (Power et al.,

2012a; Satterthwaite et al., 2012; Van Dijk et al., 2012), we first

provide a comprehensive examination of micro-movements in

the ADHD-200 sample, as well as the impact of various correction

strategies. Then, we report unique findings from our ADHD-C

and ADHD-I samples, after controlling for movement using the

most conservative procedure.

SECTION 1: CHARACTERIZING AND ACCOUNTING FOR

MICRO-MOVEMENTS IN THE ADHD-200 SAMPLE

We first examined the relationship between traditional movement

measures and abrupt changes in the BOLD signal as measured

across the whole brain. Traditional movement measurements

relate to the six directional adjustments (i.e., rotation and trans-

lation) required to align any given frame within a BOLD fMRI

run to a reference frame within that run. As noted in meth-

ods, this reference frame can be any frame (e.g., in AFNI), but

often is the middle frame of a run (e.g., in FSL). Our measure-

ment for changes in the whole brain signal is termed DVARS.

Figure 1A clearly illustrates that there is a non-linear relation-

ship between all six traditional motion parameters and changes in

the BOLD signal. These findings violate the assumptions inherent

to several traditional preprocessing movement correction pro-

cedures (e.g., linear regression), for both traditional task and

connectivity-based fMRI analyses.

Importantly, however, while the relationship of frame-to-

frame motion parameters (i.e., FD) and changes in the whole

brain signal is positive, there is still a non-linear relationship

(Figure 1B). These data suggest that simply replacing traditional

movement parameters with frame-to-frame motion parameters

in traditional preprocessing steps (i.e., linear regression) will

assist, but likely not fully account for potential movement arti-

fact. This presumption was confirmed in the following analyses

(also see Figure A1).

Traditional motion correction in a typically developing sample

(Procedure 1)

We begin this section by first identifying the functional con-

nections that most strongly associated with age in TDC, when

only traditional motion correction procedures were used. Again,

for each subject, we estimated the Pearson r between the rest-

ing BOLD time-series computed for 160 a priori defined brain

ROIs (Dosenbach et al., 2010). After Fisher r-to-z transformation,

this step created 455 square r-matrices (160 × 160)—containing

12,720 pair-wise connections for each participant. Two analy-

ses were applied to examine age relationships. The first was a

basic cross-correlation to examine how each pair-wise connec-

tion relates with age. The second was the use of SVR-based

MVPA (Norman et al., 2006; Rizk-Jackson et al., 2011) to ver-

ify the ability of rs-fcMRI to predict brain maturity for TDC.

Chronological age served as our training measure, while predicted

age was our measure of functional maturity. We calculated the

fcMI by setting the model fit (Von Bertalanffy’s growth curve

model [a•(1 − e−bx)]) of predicted age for the oldest subjects

equal to one. Predictions for each TDC subject were based on the

top 300 connections in each round of LOOCV.

Consistent with prior reports (Fair et al., 2007a, 2009; Kelly

et al., 2009; Supekar et al., 2009; Dosenbach et al., 2010), we

found that connections that became stronger with increasing age,

or “grew-up,” tended to link distant regions (i.e., long-range con-

nections). Connections that became weaker with increasing age,

or “grew-down,” were primarily found between proximal regions

(i.e., short-range connections) (see Figures 2 and 4; p < 0.0001).

We also saw robust age-predictions for the TDC group. Von

Bertalanffy’s growth curve model ([a•(1 − e−bx)]) provided a sig-

nificant fit for predicting brain maturity (Figure 3A) (R2 = 0.36).

These results served as our baseline.

Using frame-to-frame measures as covariates when correlating

time series (Procedures 2–4)

We next examined the same age relationships using the addi-

tional (or alternative) procedures focused on micro-movement

correction. Here, in addition to performing the traditional correc-

tion for motion (Procedure 1), we computed partial correlation

estimates between the BOLD time series of each of the 160

ROIs using either (1) Frame-to-frame displacement (FDi) as a

covariate, or (2) the frame-to-frame 6 motion parameters as

unique covariates (i.e., [�dix �diy �diz �αi �βi �γi]). This step

created 455 square partial correlation matrices for each method.

Again, after Fisher r-to-z transformation, each pair-wise con-

nection was cross-correlated with age. As can be observed in

Figures A1 and 4, the distinction between short- and long-range

connections in terms of their relationships with age was only

modestly altered by these additional correction procedures, while

the ability to make age predictions was maintained. Similar find-

ings were observed when we replaced the traditional movement

regressors in the preprocessing with regressors based on FDi

(Figures A1 and 4). The limited effect of these procedures on

the short-long range distinctions is likely secondary to the non-

linear relationships between changes in BOLD and movement

(Figure 1).

Using mean FD as a covariate with age (Procedure 5)

Similar to prior work by Van Dijk et al. (2010), we next examined

the effect of including mean FDi across all frames for each sub-

ject as a group-level covariate in the calculation of the correlation
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FIGURE 2 | Histograms of Euclidean distance for functional

connections that get stronger with age and those that get weaker

with age (FDR corrected). Red colors denote the distribution with regard

to distance of those connections that get weaker with age. Blue colors

represent the distribution for those connections that get stronger with age.

(A) Distance measurements after traditional motion correction

(Procedure 1), (B) Procedure 5, (C) Procedure 6, (D) Procedure 7, (E)

Procedure 8, (F) Procedure 9, and (G) Procedure 10. Table 2 provides a

short summary of each of these procedures. Each motion correction

procedure reduced the mean difference in distance between those

connections that get stronger relative to those that get weaker with age.

Also see Figure A1 for procedures 2–4.

between functional connectivity and age. As previously shown,

this method substantially attenuates the distinction between long-

and short-range connections in terms of their relationships with

age (Van Dijk et al., 2012) (see Figures 2 and 4). The difference in

the mean distance of short-range connections using this method

relative to those obtained using Procedure 1 (i.e., traditional

correction) was highly significant (p < 0.0001). The difference

in mean distance of long-range connections using this method

relative to Procedure 1 was also highly significant (p < 0.0001)

(Figure 4). Interestingly, while the short-long range effect was

reduced, the ability to make age predictions in the data rose

slightly from the original estimate (i.e. Procedure 1) with the

movement correction procedures (R2 = 0.39).

Subject “matching” based on mean FDi (Procedure 6)

We next employed a method that excluded subjects on the basis of

their mean FD until there was no relationship between the mea-

sure and age (p = 0.63) as shown in Figure 5C. Because there

appears to be no strongly discernible relationships between the

effect of movement on the BOLD signal and age (i.e., the effect of

FD on DVARS is similar for all ages—Figure 5), we expected this

analysis to yield similar results as using the measure as a covariate

with regard to our outcome measure (albeit weaker overall signif-

icance levels due to the decrease in sample size). For this analysis

we removed participants (N = 76) until there was no relation-

ship between mean FDi and age (see Figure 5C). We then re-ran

the age cross-correlation. This analysis also attenuated the distinc-

tion between short- and long-range connections in terms of their

relationships with age (Figures 2 and 4). The difference in mean

distance of short-range connections using this method relative

to no “micro-movement” motion correction (i.e., Procedure 1)

was also highly significant (p < 0.0001). The difference in mean

distance of long-range connections using this method relative

to no “micro-movement” motion correction was significant, as

well (p < 0.0001) (Figure 4). The ability to make age predictions

increased (R2 = 0.42) (Figure 3).

Volume censoring (Procedure 7)

Another method recently employed to correct for motion simply

censors or removes volumes or frames corresponding to excessive

movement (Power et al., 2012a). We used FDi > 0.2 mm displace-

ment as our threshold for removal of frames. The basis of this

threshold was rooted in Figure 1, which highlights a knee in the

LOWESS curve at, or just below, ∼0.2 mm FD. Updated recom-

mendations by (Power et al., 2012b) independently established

the same threshold. While age-relationships were not completely

removed, we once again see a reduction in the distinction noted

between short- and long-range connectivity (Figures 2 and 4).

The ability to make age predictions based on SVR-based MVPA

was similar to Procedures 5 and 6 (R2 = 0.42).

One concern of this approach is the consequence of miss-

ing, or removing, values in time-series analysis. We attempted to

examine this influence with a simulation. The simulation began

by selecting 3 participants with little to no movement based on

the 0.2 mm threshold (i.e., 0–1% of frames above the threshold)

from each dataset (i.e., each institution). For each of these sub-

jects we than calculated their correlation matrix across the 160

ROIs, which served as our baseline (i.e., the true correlation struc-

ture). We then iteratively removed frames from the time courses

of these subjects based on the frames that did not pass the 0.2 mm

displacement criteria for each of the other subjects in their cohort

(based on FDi). In other words if subject 1 had 30 frames that did

not pass criteria, we would remove those same 30 frames from

the 3 participants with little to no movement and then recalculate
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FIGURE 3 | SVR-based MVPA brain maturation curves. SVR-based

MVPA brain maturation curves showing individual age predictions for

TDC (blue) after seven motion correction procedures. Chronological

age is presented on the x-axis and fcMI on the y-axis. The Von

Bertalanffy’s growth equation shows a reasonable fit for these data

(with 90% prediction limits shown with dashed lines). (A) Procedure 1

(traditional motion correction), (B) Procedure 5, (C) Procedure 6, (D)

Procedure 7, (E) Procedure 8, (F) Procedure 9, and (G) Procedure 10.

Also, see Methods and Table 2 for short description of each

procedure.

FIGURE 4 | Mean Euclidean distance for short-range and long-range connection changes over age for each procedure. Asterisks represent significant

differences in distance relative to Procedure 1 (traditional motion correction).

the correlation matrices for those 3 participants. The procedure

was next repeated for subject 2, and so on. In each instance, we

were able to compare the newly generated matrices to the base-

line matrices of the 3 subjects that had no frames removed. Thus,

the simulation gave us a pure reference by which we could sys-

tematically quantify the effect of removing a given percentage of

frames on the overall correlation matrix’s structure. Importantly,

the number, percentage, and frequency of frames removed for

each iteration conformed directly to real data. Figure 6 shows the

distance plots (i.e., 1–r) of the original, baseline, matrices relative

to the simulated matrices as a function of the percentage of frames

removed. As can be seen, the distance is low when few frames are
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FIGURE 5 | Age relationships of movement-related measurements.

(A) Mean FD as a function of age for Procedure 7 (i.e., mean FD for the

remaining frames after removal). There is a small, but significant relationship

with mean FD and age (p < 0.01). (B) Procedure 8 after matching shows that

the relationship found in (A) is no longer significant (p = 0.13). (C) Mean FD

as a function of age for Procedure 6 (matching only without frame removal).

Again, here there is no relationship with mean FD and age (p = 0.62). (D) A

similar figure as in (B), for the DVAR based frame removal (i.e., Procedure 9).

As with (B) and (C), there is no age relationship with the DVAR measurement

(p = 0.13). (E) Using mean FD as a covariate (i.e., Procedure 5) with age

assumes that movement affects the BOLD signal similarly for any age group.

Thus, for all subjects, data frames were split into low (FD = 0–0.2), medium

(FD = 0.2–0.4), and high (FD = 0.4–0.6) movement for each participant. The

age relationship with our whole brain BOLD measurement, DVARS, was then

examined for each bin. While there is a limited age relationship in the lowest

movements overall the data suggest movement affects the BOLD signal

similarly across the age range studied here (blue p < 0.01, red p = 0.25,

green p = 0.88). (F) The percentage of frames removed across age for

Procedure 8 (i.e., FD frame censoring after matching), as expected shows a

slightly higher rate of frame removal for the younger participants.

removed; however, the tight relationship degrades as the fraction

of frames removed approaches 1. We therefore re-ran our analysis

for Procedure 7 while including only those subjects with <60%

of their frames removed. Results were largely convergent (see

Figure A6).

We also attempted to examine the possibility of replacing miss-

ing frames via a common spline interpolation in our simulation

[similar in concept to Carp (2011)]. As can be seen in Figure 6,

imputing missing frames using cubic spline interpolation added

significantly more noise than simply removing the volumes of

high movement. As such, we did not attempt to interpolate frames

for any of the following analyses.

Volume censoring with subject “matching” using mean FDi

(Procedure 8)

Importantly, despite the removal of motion related frames

exceeding a threshold of 0.2 mm displacement, age, and mean FD

continued to be associated, p = 0.0001 (Figure 5A). This obser-

vation is likely due to a small increase in movement in younger

subjects for the remaining frames and what can be observed as

a small relationship of frame-to-frame changes in BOLD (i.e.,

DVARS) and FD even under this 0.2 mm cutoff (Figure 1). As

such, we repeated the age correlation after combining this censor-

ing approach (Procedure 7) with mean FD matching (Procedure

6—as in Figure 5B). Thus, we repeated the analysis after remov-

ing participants (N = 142) until the there was no relationship of

mean FDi (for the remaining frames) and age (p = 0.13). This

combined method also reduces the short- and long-range rela-

tionships (Figures 2 and 4), but shows a slight decline in the abil-

ity to make age classifications in individuals (R2 = 0.34). [Note:

findings were consistent across individual sites (Figure A2)].

Volume censoring with subject matching using mean DVARS

(Procedure 9)

Here we examine the utility of using the DVARS measure

itself to remove frames. In this instance, instead of removing

frames based on FDi, we removed frames based on changes in

DVARSi (DVARSi > 4). We also removed participants (N = 130)

to assure no relationship with DVARS and age for the remain-

ing frames. This analysis is shown in Figures 2, 4, and 5D.

Interestingly, while the short- and long-range distinctions in

terms of their relationship with age were also significantly reduced
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FIGURE 6 | Simulations showing the effect of frame removal on the

correlation structure of a subject matrix. The simulation began by

selected 3 participants with little to no movement based on the 0.2 mm FD

threshold (i.e., 0–1% of frames) from each datasets used here (i.e., each

institution). For each of these subjects we then calculated their correlation

matrix across the 160 ROIs, which served as our baseline. We then

iteratively removed frames from the time courses of these subjects based

on the frames that did not pass the 0.2 mm displacement criteria for each

of the other subjects in their cohort (based on FDi ). In each instance, we

compared the newly generated matrices to the baseline matrices of the

three subjects that had no frames removed. In (A) we show the distance

plots (i.e., 1–r) of the original, baseline matrices relative to the simulated

matrices as a function of the percentage of frames removed. The distance

is low when few frames are removed; however, the tight relationship

degrades as the fraction of frames removed approaches 1. In (B) we show

the same procedure except in this instance missing frame are imputed via

a cubic spline interpolation. Substantially more noise is added by

interpolation.

as with other methods, the ability to make age predictions was the

highest of all of the methods thus far (R2 = 0.46) (Figure 3).

R-value correction using polynomial regression based on volume

censoring (Procedure 10)

Finally, we examine a method that applies an r-value cal-

ibration by utilizing a polynomial regression based on the

correction induced by data scrubbing, as outlined in the meth-

ods. Importantly, this particular method is not completely devoid

of the issues noted above for data censoring. To obtain a valid

estimate of the true polynomial, the method still requires a

sensible number of remaining frames. As such, we ran the

analysis on subjects with at least 40% of their frames remain-

ing after censoring. The analysis is shown in Figures 2, 4,

and 5. As with the other procedures, the short- and long-

range distinctions in terms of age were significantly reduced,

yet the ability to make age predictions remained (R2 = 0.40;

Figure 3).

In Figure 7 (also see Figure A3), for this procedure along

with procedures 5 and 8, we use node strength, a commonly

employed graph-theory metric (see Methods), to reveal the nodes

that are most strongly predicative of age. The figure shows a

distributed pattern of connectivity with several subcortical struc-

tures being highly predictive. Connections that tended to get

stronger with age appeared to be within networks, and con-

nections that got weaker with age were between networks. The

findings were qualitatively similar across the motion correction

methods.

SECTION 2: PREDICTION OF DIAGNOSTIC STATUS

Consistent with prior work (Dosenbach et al., 2010), we fol-

lowed our movement analyses with an effort to determine if

rs-fcMRI in combination with SVM-based MVPA is capable of

predicting ADHD status in children with ADHD-C or ADHD-I.

Predictions for each subject were based on the top 150 connec-

tions (features) that differentiated each subtype from controls in

each round of LOOCV. To avoid biasing our classifier group, sub-

sample size was matched (see Table 3). Consensus features, or

those connections present across all of the LOOCV samples are

provided in Figure A5. In addition, node strength was used to fur-

ther examine the functional neurobiology that differentiated the

two ADHD subtypes from controls. Raw absolute values of node

strength are provided in Table A1.

For prediction analyses and subtype comparisons we used

what we saw as the three most conservative movement correction

approaches, Procedures 5, 8, and 10. These are not necessarily

“the best” procedures, as performance varied based on whether

we examined short- or long-range connections. Importantly,

these analyses were careful to consider potentially confounding

variables (site, gender, and IQ) by controlling for them using

multiple regression analysis. That is, these variable connections

were regressed from functional connectivity values across ROIs

connections of all subjects. When adjusting for the confounding

variables, our regression equation is:

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ε,

where y represents the vector of connectivity values, β0 is

the intercept, ε is the vector of residuals, β1 to β4 repre-

sent regression coefficients corresponding to independent or

explanatory variables: x1—ADHD Diagnosis, x2—Site, x3—

Gender, and x4—IQ. The unknown βi’s that measure the sam-

ple relationship between y and xi after all other variables

have been partialled out, are obtained using ordinary least
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squares (OLS) estimation. Using the OLS estimates of βi, func-

tional connectivity values adjusted for confounding variables are

given by:

y = β0 + β1x1 + ε.

FIGURE 7 | Node strength for the consensus features that best predict

age for Procedure 8 in (A), Procedure 5 in (B), and Procedure 10 in (C).

Within and between network comparisons are also presented for those

connections that get stronger with age vs. those that get weaker with age.

Using procedure 5, our predictions for ADHD-C relative to con-

trols showed 77.0% accuracy (75% sensitivity and 76.9% speci-

ficity), while our predictions for ADHD-I relative to controls

showed 80.8% accuracy (78.9% sensitivity and 82.7% speci-

ficity). Using procedure 8, our predictions for ADHD-C relative

to controls showed 63.4% accuracy (61.5% sensitivity, 65.4%

specificity), while our predictions for ADHD-I relative to con-

trols showed 78.8 % accuracy (75.0% sensitivity, 82.7% speci-

ficity). Last, using procedure 10, our predictions for ADHD-C

relative to controls showed 71.2% accuracy (73.1% sensitivity,

69.2% specificity), while our predictions for ADHD-I relative

to controls showed 82.7% accuracy (78.9% sensitivity, 86.5%

specificity).

We also attempted a 3-group classification for which chance

is 33%. For procedure 5, the 3-group classifier revealed results

that were highly significant (overall 69.2% accuracy; TDC =
67.3%, ADHD-C = 71.1%, ADHD-I = 69.2%). For procedure

8, the results were also promising albeit reduced (overall 56.4%;

TDC = 59.6%; ADHD-C = 44.2%; ADHD-I = 65.4%). For pro-

cedure 10 the findings again revealed largely consistent strong

findings (overall 68.6%; TDC = 71.2%, ADHD-C = 63.5%,

ADHD-I = 71.2%).

Characterizing the neural correlates of ADHD subtypes

To examine the potential neurobiological differences in subjects

with inattentive and hyperactive symptoms (i.e., combined type),

and those with inattentive symptoms only (i.e., predominantly

inattentive type), we examined the features that most strongly

differentiated the groups for each of the movement correction

procedures. That is, we calculated node strength for each group

comparison as described in methods.

For procedure 10, visualization of those nodes whose strength

most strongly separated each of the two ADHD subtypes consid-

ered from TDC (i.e., Node Strength), revealed stark differences

between the two (Figure 8; Figures A4, A5; Table A1). Nodes

most strongly differentiating ADHD-C and TDC were distributed

across the cortex (Figure 8), but were most prominent in the

medial prefrontal and posterior parietal nodes of the default

network. Other atypical regions included nodes of the senso-

rimotor, visual, and cingulo-opercular systems. Findings with

regard to consensus features and ADHD-I were similar to those

of ADHD-C in that they were largely distributed across systems

including prominent features in the sensorimotor systems; how-

ever, the patterns between the subtypes were also quite distinct.

In the case of ADHD-I, atypical nodes in left and right dorso-

lateral prefrontal regions along with the cerebellum were more

strongly predictive. These particular nodes (see Figure A6) have

been empirically linked with community detection methods to

fronto-parietal systems (black/yellow) (Dosenbach et al., 2010).

Table 3 | Subject characteristics for ADHD and control comparisons.

N Age (mean) % Female IQ FD mean (pre-censor) FD mean (post-censor)

Total TDC 52 11.12 0.48 115.83 0.12 0.10

ADHD-I 52 11.63 0.23 108.27 0.14 0.10

ADHD-C 52 10.98 0.17 109.04 0.13 0.10
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FIGURE 8 | Post-hoc comparisons on the consensus features from the

2-group classification for Procedure 10 (see SI Figure 4 for Procedures

5 and 8). The two most common subtypes of ADHD (ADHD-I and ADHD-C)

show distributed patterns of atypical connectivity relative to TDC, as

measured with node strength. (A) Node strength for TDC vs. ADHD-C

shows strong differentiation in regions of the medial prefrontal cortex

among other distributed systems. (B) Node strength for TDC vs. ADHD-I

shows differentiation distributed throughout the cortex as well, with

prominent nodes including bilateral dorsolateral prefrontal, and cerebellar

regions among others. (C) Comparisons between the subtypes show

similar trends. [Node colors represent network categorization from a

community detection procedure performed for a previous report

(Dosenbach et al., 2010). Red—default; blue—cerebellum;

yellow—fronto-parietal; black—cingulo-opercular; green—occipital;

cyan—sensorimotor].

In addition, similar to ADHD-C, sensorimotor regions (light

blue) (Figure 8) were also atypical in ADHD-I. The direct com-

parison between ADHD-I and ADHD-C were largely consistent

with the distinctions noted above (Figure 8). As can be seen

in Figure A4, procedures 8 and 10 revealed largely consistent

findings with regard to overall patterns.

DISCUSSION

Consistent with recent work demonstrating the utility of data

aggregation (Biswal et al., 2010), and in the spirit of the ADHD-

200 Global Competition (ADHD-200-Consortium, 2012), we

used the large-scale aggregate ADHD-200 dataset to highlight

the need for stringent micro-movement correction. The work

also provides the first insights into common and distinct neural

substrates of the two most common ADHD subtypes. Application

of graph-theoretic metrics implicated atypical connectivity across

multiple systems in the combined subtype (ADHD-C), partic-

ularly in the default network. Although similar observations

were present in the predominantly inattentive subtype (ADHD-I)

functional connectivity differences were more evident in bilat-

eral dorsolateral prefrontal regions, and in the cerebellum, rather

than in the default mode network. Classification analyses aimed at

predicting individual diagnostic status based on patterns of func-

tional connectivity further highlight differential neural substrates

for the two subtypes, and serve to provide a vision for future

clinical applications of neuroimaging.

MOTION CORRECTION IMPROVES ADHD CHARACTERIZATION

There were several notable findings regarding motion correction.

For example, we showed that the relationship between movement

measurements based on traditional reference frame calculations

can, in some instances, be misleading. In particular, the relation-

ship between traditional movement measurements and the BOLD

signal is markedly non-linear. As such, traditional functional

connectivity and fMRI movement correction that utilize linear

regression are likely to be limited with regard to micro-movement

correction. Importantly, however, while frame-to-frame measure-

ments (i.e., FD), appear to be superior with relation to the

assumption of linearity, they too share a non-linear relation-

ship with the BOLD signal. Thus, simple linear regression of

these measurements from the BOLD signal also provides only

limited improvement with regard to motion artifacts (Figure 4).

With that said, we found several methods that appeared relatively

robust at controlling for motion artifact in the BOLD signal. All

of these additional approaches reduced the distinction between

short- and long-range connections in terms of their relationships

with age.

Age-related growth curves were improved with several of the

motion correction procedures, with the strongest age-related

effects occurring when using DVARS and matching as the sur-

rogate measure for frame removal (Figure 3). Nevertheless, there

are some concerns with approaches that require frame removal.

In particular, the approaches reduce sample size due to “match-

ing” (i.e., subject exclusion) or, effectively removing subjects due

to the high percentage of frames removed. Thus, statistical power

is reduced. The large sample size here afforded us the ability to

examine these conservative approaches, but other samples may

not support the same opportunity.

Another concern relates to the potentially undesirable effects

of frame removal on time-series analyses. Our simulations sug-

gest that the correlation structure can be altered with frame

removal; however, the concern appears to be largest only after sig-

nificant portions of the frames are removed. One potential way

to overcome this limitation for the frame removal procedures

would be to interpolate missing values. While in theory we agree

with this suggestion, our simulations suggest that the introduc-

tion of interpolation as a means of minimizing data-loss can be

counter-productive, unless more elaborate approaches are devel-

oped and validated beyond the common methods attempted here

[e.g., Carp (2011)]. Another alternative to avoid frame removal

is provided with Procedure 10. This procedure utilized censoring
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techniques to generate a polynomial capable of correcting the

original r-values, and was quite productive at motion correction.

The results were promising, but the method is not able to com-

pletely resolve the issues noted by frame removal. The method still

relies on a valid estimate of the correlation structure after remov-

ing frames, and thus still requires participant removal when a high

degree of motion is present.

The use of mean movement parameter (i.e., mean FD) as a

covariate in the group analyses also appeared to be a productive

method to reduce motion-related artifact in the BOLD signal.

This procedure was similar to that originally proposed by Van

Dijk et al. (2012). The results using this procedure also show a

significant reduction in short- and long-range indices, albeit less

than frame censoring methods (see Figures 2 and 4). Importantly,

the method does not suffer from the inherent reduction of power

or generalizability from decreasing sample size.

Nonetheless, the three techniques reveal similar, albeit not

identical findings. It should be emphasized, however, that while

these approaches appear to perform respectably for reducing arti-

fact induced by changes in head position, work in this area is

currently ongoing and even more robust procedures are likely to

emerge.

Similar to a recent report (Satterthwaite et al., 2012), our find-

ings show that many of the developmental principles identified

previously are still present even after stringent motion correc-

tion, while others are not. For example, age-related predictions

are still possible and were even improved with motion correc-

tion procedures (Dosenbach et al., 2010). However, while the

changes in short- and long-range connectivity appear to remain,

this phenomena is significantly reduced after motion correc-

tion procedures (and becomes only weakly significant for some

procedures)—highlighting that the distance between those con-

nections that get weaker with age and those that get stronger

overlap more than was previously appreciated. Network con-

figuration, while not identical, appears to be similar to that

of adults, even in our younger ages, as shown in Figure A7

and in Power et al. (2012a). Thus, while significant changes do

occur throughout development, the general network structure

appears to be intact at early ages. It is possible that similar find-

ings will unfold for the aging literature as well (Meunier et al.,

2009; Van Dijk et al., 2012). Most importantly, however, these

data in aggregate highlight the need to take careful consider-

ation of movement related artifact in all connectivity studies,

particularly during classification of clinical samples as noted

below.

THE FUNCTIONAL NEUROBIOLOGY OF ADHD-C AND ADHD-I IS

DISTINCT

Over the course of the last decade, the validity of DSM-IV sub-

type classifications has been repeatedly challenged. Combining

statistical analysis with a variety of neuropsychological, behav-

ioral and clinical observation approaches, some have questioned

the validity of distinguishing between combined and inattentive

subtypes, while others have called for considerations of further

subgroupings [for a review see Willcutt et al. (2012)]. Until now,

neuroimaging studies have contributed little to this debate—

largely for lack of sufficient data. Using rs-fcMRI, we found that

while commonalities exist in the neural substrates of the two sub-

types, distinctions are also present—suggesting that ADHD-I may

capture not simply a “less severe” form of ADHD-C, but a neu-

robiologically distinct syndrome. This reinforces the conclusion

from Willcutt et al. (2012) that additional neuroimaging data on

the question of ADHD subtypes is sorely needed. It will remain to

be seen whether longitudinal brain imaging data can help resolve

the problem of subtype instability (Lahey and Willcutt, 2010) in

the disorder.

Consistent with recent work emphasizing the value of

network-based approaches for understanding psychiatric illnesses

such as ADHD (Castellanos et al., 2008; Fair et al., 2010; Costa

Dias et al., 2012; Mills et al., 2012), observed differences among

the subtypes can be understood in terms of their network dis-

tributions. Findings for both subtypes were relatively distributed,

with each affecting only a subset of regions in any one network.

However, most notable in the ADHD-I group was the prominence

of differences in specific regions of the fronto-parietal and cere-

bellar systems—specifically dorsolateral prefrontal regions. The

fronto-parietal network is believed to be an important system for

task level control (Dosenbach et al., 2008). Given that ADHD-I

subtype symptoms are predominantly those of inattention, this

finding is largely consistent with the idea that this subtype is char-

acterized mainly by problems in task level control systems. While

both subtypes revealed largely distributed atypical connectivity,

findings for the ADHD-C were more prominent in the default

network. These findings for ADHD-C are consistent with a grow-

ing body of studies implicating the default network in ADHD

(Castellanos et al., 2008; Fassbender et al., 2009; Fair et al., 2010),

and is intriguing given a growing number of studies highlight-

ing the motivational as well as affective aspects of the disorder

(Sagvolden et al., 2005; Musser et al., 2011) [for a reviews see

Nigg and Casey (2005); Castellanos et al. (2006)]. In particular,

impairments in incentive salience, motivation, and reward pro-

cessing are increasingly appreciated in ADHD. While speculative,

it should be noted that key components of the functional neu-

roanatomy of these processes are based within the default network

(e.g., ventral striatum, ventromedial cortex). Recent theories sug-

gest the default network is associated with remembering the past,

as well as planning for, and anticipating future events (Buckner

and Carroll, 2007; Buckner et al., 2008). As stated by Buckner and

colleagues, the default network may support a “set of processes by

which mental simulations are used adaptively to imagine events

beyond those that emerge from the immediate environment.”

Analogous to this notion, the nature of “motivational”-based the-

ories is that children with ADHD are unable to correctly explore,

anticipate, and “value” outcomes between present action and

future rewards. If the default network is indeed important for

using past experiences to explore and anticipate future events,

one might anticipate that aberrations in this network and its

links to other systems would map onto the ADHD phenotype

and, in particular, the impulsive and hyperactive behavior of the

ADHD-C subtype, as found here. Studies of gray matter thick-

ness (Shaw et al., 2007) and connectivity measurements (Shannon

et al., 2011) have shown that many of these same regions corre-

spond to various forms of impulsivity measures, supporting this

claim.
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Along with the other systems noted above, ADHD-associated

differences in connectivity of primary sensorimotor systems

was observed across both subtypes. Children with ADHD often

demonstrate difficulties with motor control, paralleling diffi-

culties with higher-order executive control (Pennington and

Ozonoff, 1996; Mostofsky et al., 2003). A consistent characteris-

tic of children with ADHD is that they fail to meet age-norms on

timed repetitive and sequential movements and manifest a greater

amount of motor overflow than age-matched controls (Denckla

and Rudel, 1978; Mostofsky et al., 2003). Furthermore, in par-

allel with numerous recent studies showing ADHD-associated

increases in intrasubject response time variability (Castellanos

et al., 2005; Vaurio et al., 2009; Epstein et al., 2011), children

with ADHD show increased variability during performance of

simple motor skills and during motor adaptation (Izawa et al.,

2012). Both overflow and variability in motor execution have

been found to be related to ADHD-associated impairments at

the behavioral level (Mostofsky et al., 2003). Converging evidence

from behavioral, imaging, and electrophysiologic studies suggest

that ADHD is associated with dysfunction across multiple par-

allel frontal-subcortical circuits and while it may not be the case

that ADHD is a primary motor disorder, it does seems likely that

core ADHD impairments are reflected in motor function in prac-

tically measurable and biologically meaningful ways (Mostofsky

and Simmonds, 2008). To that end, recent studies of motor cor-

tex physiology using Transcranial Magnetic Stimulation (TMS)

reveal that subjects with ADHD show reduced Short Interval

Cortical Inhibition (SICI) and that lower SICI is robustly cor-

related with parent ratings of more severe hyperactive/impulsive

and inattentive behavior (Gilbert et al., 2006). The findings from

the current study further suggest that patterns of sensorimotor

connectivity may prove effective in identifying ADHD, particu-

larly those with the combined subtype.

In summary, our findings demonstrate the potential utility

of functional MRI approaches in characterizing clinical hetero-

geneity in ADHD, which should be similarly useful with other

psychiatric disorders. While the present work focused on test-

ing the existing categorization among individuals with ADHD,

the previous work highlighted above and the distributed nature

of our current findings is likely suggestive of significantly more

heterogeneity in this population. Future work is likely to benefit

from stronger, perhaps more homogenous subgroupings via the

application of data-driven methods that identify clinical subtypes

based upon variation in the patterns of neuropsychological mea-

sures (Fair et al., 2012) or brain connectivity itself. Additionally,

given clinical observations that children with ADHD-C over the

course of development later present as ADHD-I based on currend

diagnostic measures, future work may benefit from comparison

of “converters” with those who were diagnosed with ADHD-I

throughout their childhood. Such endeavors will undoubtedly

require the acquisition of large and tightly coordinated data

acquisition across centers.

TOWARD IMAGING-BASED CLASSIFICATION OF DIAGNOSTIC STATUS

Beyond a simple characterization of the neural signatures of

ADHD subtypes, the findings presented here highlight the trans-

lational potential of rs-fcMRI for developmental neuropsychiatric

disorders in general by demonstrating the ability of SVM-based

MVPA to classify individuals with the disorder using the rs-

fcMRI. This demonstration was accomplished even after our most

conservative motion correction procedures. The work provides

several important outcomes, and suggests that there is an ability

to classify individuals based on disease status using information

available from a brief MRI brain scan. While this particular effort

did not focus on maximizing our supervised learning algorithm

and feature selection, we were able to make significant disease

status predictions well above chance.

We anticipate classification rates with the current ADHD-200

sample will continue to improve with optimization of supervised

and unsupervised learning approaches. Optimization and exten-

sion of feature sets to include other potential markers is also likely

to enhance classification. However, it is only through the future

creation of a large-scale datasets, with coordinated recruitment,

deep phenotyping, multimodal data acquisition (e.g., rs-fcMRI,

diffusion imaging, ASL), and likely improved homogeneity in our

subgrouping (Fair et al., 2012) that a fair assessment of the predic-

tive potential of MR-based approaches will be realized. Inclusion

of complementary measures from non-MR modalities such as

EEG and genetics may further enhance the completeness and

accuracy of predictive models.

LIMITATIONS

The findings of the present work should be considered in light of

several cautions. Notably, while our movement correction proce-

dures were carefully considered, there is still room for improve-

ment in controlling for this confound. In addition, the present

work made use of data aggregated across imaging sites that were

not coordinated with respect to their recruitment, diagnostic, or

imaging protocols—as such, marked site-related variation exists.

Our findings suggest that despite potential differences across cen-

ters, there are brain features related to the presence of ADHD and

ADHD subtype that are robust to this variation. However, future

studies with tightly coordinated imaging and phenotypic data

acquisition will be required to replicate the findings of present

work and identify additional ADHD-related features that may

have been overlooked in the present work due to site-related vari-

ation. We note that ADHD relies on strict symptom counts and

the DSM-IV system for identifying ADHD-I includes participants

who are subthreshold for hyperactivity. Thus, future work may

consider examining the extremes (e.g., <3 hyperactive symptoms

for ADHD-I) in order to avoid confounds with regard to the

imprecise nature of the diagnostic system. Last, we mention that

this work does not consider the possibility that the differences

noted here could be unique to the effort required to remain still

in the ADHD population. Nonetheless, the ability to make valid

predictions in individuals with atypical functional neuroanatomy

using rs-fcMRI data acquired across multiple institutions pro-

vides evidence that this approach can be fruitfully applied in

translational studies of disorders with developmental origins.

CONCLUSIONS

Taken together, these results suggest that ADHD-I has distributed

atypical connectivity, with prominent findings in control systems,

which may underlie the prominent inattentive symptoms in this
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population. ADHD-C also shows distributed atypical

connectivity, with prominent findings in systems such as the

default network, which may mark for an inability to exert top-

down attentional control—perhaps in the context of an inability

to integrate contextual information supported by default mode

processing. Both populations showed atypical nodes in primary

sensorimotor systems, supporting previous work implicating this

system in ADHD (Mostofsky et al., 2006). These findings point

to potential distinct connectivity patterns underlying ADHD

subtypes, but also emphasizes the vast heterogeneity in these

populations, which will need to be considered in future clinical

investigations of ADHD.
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APPENDIX

PARTICIPANTS AND MEASURES

Data from Brown University, Beijing Normal University, Kennedy

Krieger Institute, NYU Child Study Center, and Oregon Health

and Science University were aggregated for youth aged 7–14 years.

The resulting dataset comprised of 455 control subjects and 193

subjects with a DSM-IV-TR diagnosis of ADHD. A summary of

the primary demographics for each sample is provided in Table 1.

Informed written consent or assent was obtained for all partic-

ipants, and procedures complied with the Human Investigation

Review Board at respective universities. As data for this inves-

tigation were aggregated retrospectively (as a large collaborative

effort), slightly different ADHD assessment protocols were used

across institutions. These procedures are detailed below.

Oregon Health and Science University

Psychiatric diagnoses were based on evaluations with the Kiddie

Schedule for Affective Disorders and Schizophrenia—KSADS-I

(Puig-Antich and Ryan, 1986, Kaufman et al., 1997) adminis-

tered to a parent; parent and teacher (short form) Conners’

Rating Scale-3rd Edition (Conners, 2008); and a clinical review

by a child psychiatrist and neuropsychologist who had to agree

on the diagnosis. Estimates of intelligence were evaluated with

a three-subtest short form (Block Design, Vocabulary, and

Information) of the Wechsler Intelligence Scale for Children,

Fourth Edition (WISC-IV) (Wechsler, 1999, 2003).

Children (7–11 years) were excluded if they did not meet cri-

teria for ADHD or non-ADHD groups (i.e., children deemed

sub-threshold by the clinicians were excluded). Children were

also excluded for an IQ < 80, if a history of neurological illness,

chronic medical problems, sensorimotor handicap, autistic disor-

der, mental retardation, or significant head trauma (with loss of

consciousness) was identified by parent report, or if they had evi-

dence of psychotic disorder or bipolar disorder on the structured

parent psychiatric interview. Children prescribed short-acting

stimulant medications were scanned after a minimum washout

of five half-lives (i.e., 24–48 h depending on the preparation).

Typically developing control children (TDC) were excluded for

presence of conduct disorder, major depressive disorder, or his-

tory of psychotic disorder, as well as for presence of ADHD. All

children were right handed.

Kennedy Krieger Institute

Psychiatric diagnoses were based on evaluations with the

Diagnostic Interview for Children and Adolescents, Fourth

Edition [DICA-IV(Reich et al., 1997)], a structured parent inter-

view based on DSM-IV criteria. Estimates of intelligence were

evaluated with the WISC-IV (Wechsler, 1999, 2003) and aca-

demic achievement was assessed with the Wechsler Individual

Achievement Test-II.

All study participants were between 8.0 and 13.0 years, and had

a Full Scale IQ of 80 or higher. Children with a specific language

disorder or a Reading Disability (RD) were either screened out

before a visit or based on school assessment completed within

1 year of participation. RD was based on a statistically signifi-

cant discrepancy between a child’s FSIQ score and his/her Word

Reading subtest score from the Wechsler Individual Achievement

Test-IIa, or a standard score below 85 on the Word Reading

subtest, regardless of IQ score. Participants with visual or hear-

ing impairment, or history of other neurological or psychiatric

disorder were excluded.

Children assigned to the ADHD group met criteria for ADHD

on the DICA-IV and either had: (1) a T-score of 65 or greater

on Conners’ Parent Rating Scale-Revised, Long Form [CPRS-R;

(Epstein et al., 1997)] subscales “L” (DSM-IV Inattentive) and/or

“M” (DSM-IV Hyperactive/Impulsive), or (2) met criteria on the

DuPaul ADHD Rating Scale IV (DuPaul et al., 1998) with six out

of nine items scored 2 or higher from Inattention items and/or six

out of nine scored 2 or higher from the Hyperactivity/Impulsivity

items. Children with comorbid DSM-IV diagnoses other than

Oppositional Defiant Disorder or Specific Phobias were excluded.

DSM-IV criteria and the aforementioned rating scales were also

used to evaluate the three ADHD subtypes (Inattentive: ADHD-

I; Hyperactive/Impulsive: ADHD-HI; Combined: ADHD-C).

Children with ADHD were assigned to the ADHD-I group if they

met criteria for inattentiveness but not hyperactivity/impulsivity

on the DICA-IV, and had a T-score of 65 or greater on the

CPRS Scale L, and a T-score of 60 or less on the CPRS Scale,

or had a rating of 2 or 3 on six out of nine Inattention items

on the ADHD Rating Scale IV and a rating of 2 or 3 on four

or fewer items on the Hyperactivity/Impulsivity scale. Children

were assigned to the ADHD-HI if they met criteria for hyper-

activity/impulsivity but not inattention on the DICA-IV, and a

T-score of 65 or greater on the CPRS Scale M and a T-score of

60 or less on the CPRS Scale L, or had a rating of 2 or 3 on

six out of nine Hyperactivity/Impulsivity items on the ADHD

Rating Scale IV and a rating of 2 or 3 on four or fewer items

on the Inattention scale. All other children who met criteria

for ADHD were assigned to the ADHD-C (Combined subtype)

group. Children with ADHD taking psychoactive medications

other than stimulants were excluded. Children who were tak-

ing stimulant medication were asked to withdraw from these

medications the day before and the day of testing/scanning.

TDC participants were required to have T-scores of 60 or

below on the DSM-IV Inattention (L) and DSM-IV Hyperactivity

(M) subscales of CPRS-R and no history of behavioral, emotional,

or serious medical problems. Additionally, TDC individuals were

not included if there was a history of school-based intervention

services as established by parent interview, or if they met DSM-

IV psychiatric disorder except specific phobia as reported on the

DICA-IV.

New York University

Psychiatric diagnoses were based on evaluations with the

Schedule of Affective Disorders and Schizophrenia for Children—

Present and Lifetime Version (KSADS-PL) administered to

parents and children and the CPRS-LV (Epstein et al., 1997).

Intelligence was evaluated with the Wechsler Abbreviated Scale

of Intelligence (WASI) (Wechsler, 1999, 2003). Inclusion in the

ADHD group required a diagnosis of ADHD based on parent

and child responses to the KSADS-PL as well as on a T-score

greater than or equal to 60 on at least one ADHD related index

of the CPRS-R: LV. ADHD subtype identification was based on

interview and review of available records. Psychiatric comorbidity

Frontiers in Systems Neuroscience www.frontiersin.org February 2013 | Volume 6 | Article 80 | 19

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Fair et al. Differentiating ADHD subtypes with rs-fcMRI

Table A1 | Node strength values represented in Figures 7 and 8.

Procedure 5 Procedure 5 Procedure 5

TDC vs ADHD-C TDC vs ADHD-I ADHD-I vs ADHD-C

Rank

X Y Z

node strength node strengthnode strength

Rank

X Y Z

Rank

X Y Z

1 -35 14 5 28.06 1 -5 -78 -33 25.58 1 37 -72 12 14.00

2 -11 -59 15 26.87 2 -41 3 36 24.71 2 5 -75 -12 13.15

3 27 -39 -13 26.39 3 -43 22 34 21.63 3 -26 -12 53 11.55

4 5 -75 -12 21.67 4 41 3 36 17.77 4 -7 12 36 10.69

5 -6 44 4 18.37 5 2 -66 -24 17.61 5 -26 -43 -11 10.44

6 -7 12 36 16.63 6 10 -26 3 14.91 6 5 57 9 10.11

7 8 45 21 16.46 7 -17 23 55 14.87 7 27 -39 -13 9.04

8 31 -42 63 14.83 8 27 50 23 14.78 8 7 37 0 8.40

9 -2 23 42 13.79 9 41 -54 45 13.69 9 44 33 -9 7.80

10 38 -27 54 13.63 10 14 -77 29 13.63 10 -4 -33 -3 7.61

11 -26 -43 -11 13.04 11 37 30 33 13.51 11 -32 -60 -6 7.57

12 -1 45 36 10.98 12 35 -61 -8 13.50 12 14 -75 -21 7.41

13 -41 42 6 10.73 13 -9 -72 37 13.12 13 27 -74 27 7.17

14 -32 -60 -6 10.60 14 10 -69 39 13.09 14 37 36 21 6.81

15 37 36 21 10.46 15 25 42 30 12.35 15 8 45 21 5.94

16 -34 -48 45 10.45 16 -17 -51 0 12.03 16 32 -81 -3 5.81

17 5 57 9 10.45 17 31 -42 63 11.45 17 -35 14 5 5.70

18 10 -26 3 10.25 18 27 -39 -13 11.10 18 -42 -63 -8 5.62

19 -6 -57 27 10.22 19 32 -81 -3 10.96 19 4 -52 31 5.59

20 41 -15 39 10.10 20 27 -74 27 10.87 20 -1 -5 52 5.47

21 28 -81 12 9.96 21 13 2 10 10.80 21 27 50 23 5.09

22 -29 -30 9 9.89 22 -5 -45 24 10.77 22 36 16 4 4.90

23 8 0 51 9.86 23 -34 -54 -36 10.58 23 2 -66 -24 4.90

24 40 -48 21 9.78 24 -46 -21 48 10.55 24 25 42 30 4.55

25 26 -90 0 7.63 25 26 -90 0 10.42 25 40 -27 18 4.46

26 -11 39 21 7.51 26 -28 51 15 10.30 26 49 -33 7 4.30

27 -1 -5 52 7.47 27 -12 -15 7 10.22 27 -43 22 34 4.18

28 51 -47 42 7.43 28 37 12 42 10.20 28 -32 -66 -29 4.18

29 -44 6 15 7.29 29 -53 -24 36 10.10 29 -22 -54 -21 3.94

30 55 6 18 7.22 30 -32 -60 -6 9.85 30 -35 -69 36 3.90

31 -53 -45 27 7.14 31 30 -15 4 7.59 31 55 -7 20 3.85

32 27 50 23 7.10 32 -28 -87 5 7.31 32 55 -43 20 3.81

33 41 -45 9 7.07 33 -6 -57 27 7.29 33 41 -45 9 3.81

34 14 -75 -21 7.05 34 -53 -45 27 7.07 34 48 -61 33 3.74

35 -1 10 46 7.02 35 8 -45 24 6.92 35 -41 42 6 3.61

36 -10 -72 -15 6.98 36 -4 -33 -3 6.73 36 18 -66 -2 3.57

37 -47 -48 45 6.84 37 -26 -45 -24 6.68 37 -46 -21 48 3.57

38 25 42 30 6.84 38 44 33 -9 6.63 38 13 -90 0 3.51

39 -42 -63 -8 6.84 39 -4 -40 43 6.61 39 35 -61 -8 3.51

40 10 -15 8 6.74 40 -23 -60 -33 6.56 40 -29 -16 2 3.50

41 -46 -63 31 6.74 41 52 -33 -15 6.51 41 -11 -59 15 3.36

42 37 -72 12 6.73 42 40 -48 21 6.51 42 -29 -30 9 3.22

43 13 2 10 6.69 43 55 -43 20 6.43 43 -3 25 30 3.22

44 50 -7 34 6.67 44 -44 6 15 6.34 44 -5 -78 -33 3.19

45 56 3 36 6.58 45 -8 -42 3 4.31 45 -35 -82 -5 3.09

46 -46 -21 48 6.56 46 -25 45 30 4.28 46 -46 3 3 3.07

47 56 -17 11 6.53 47 56 -17 11 4.03 47 8 33 24 2.91

48 4 -52 31 6.50 48 10 -15 8 3.99 48 8 -45 24 2.84

49 32 -73 -29 6.36 49 -29 -16 2 3.97 49 -12 -15 7 2.78

50 48 -61 33 6.30 50 -3 25 30 3.85 50 41 -15 39 2.65

51 42 -73 27 3.96 51 5 -75 -12 3.80 51 28 -81 12 2.63

52 -22 -54 -21 3.94 52 -40 -42 39 3.80 52 30 -15 4 2.57

53 55 -43 20 3.81 53 0 -29 30 3.80 53 -10 -72 -15 2.56

54 -53 3 24 3.79 54 55 -7 20 3.77 54 -38 -18 57 2.55

55 -34 -54 -36 3.78 55 -11 -59 15 3.77 55 19 -78 -3 2.54

56 -5 -80 7 3.74 56 -35 -82 -5 3.77 56 32 27 12 2.44

57 -41 3 36 3.73 57 8 -76 12 3.75 57 37 12 42 2.37

58 -46 3 3 3.73 58 55 6 18 3.73 58 -51 -38 12 2.31

59 -25 45 30 3.68 59 7 -42 48 3.70 59 -19 -78 -33 2.31

60 -52 -24 9 3.67 60 -42 -63 -8 3.68 60 -4 -93 9 2.28

61 -51 -38 12 3.57 61 8 0 51 3.68 61 14 -77 29 2.12

62 -12 -6 14 3.57 62 -41 42 6 3.65 62 21 27 49 2.10

63 -5 -45 24 3.52 63 41 -15 39 3.65 63 -15 -64 -21 2.06

64 0 -29 30 3.50 64 43 -12 26 3.65 64 -28 51 15 2.02

65 -35 -15 15 3.47 65 -35 14 5 3.59 65 -6 -57 27 1.89

66 35 -61 -8 3.46 66 50 -18 -9 3.48 66 -17 -51 0 1.88

67 36 16 4 3.45 67 40 -27 18 3.47 67 -46 -63 31 1.74

68 43 -24 45 3.44 68 -26 -12 53 3.47 68 18 -80 -33 1.68

69 9 -56 16 3.44 69 -38 -18 57 3.45 69 -40 -76 22 1.64

70 44 33 -9 3.44 70 -46 3 3 3.42 70 -44 6 15 1.57

Coordinates Coordinates Coordinates
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Procedure 5 Procedure 5 Procedure 5

TDC vs ADHD-C TDC vs ADHD-I ADHD-I vs ADHD-C

Rank

X Y Z

node strength node strengthnode strength

Rank

X Y Z

Rank

X Y Z

Coordinates Coordinates Coordinates

71 41 3 36 3.42 71 -5 -80 7 3.42 71 -25 45 30 1.52

72 7 37 0 3.41 72 9 -56 16 3.39 72 -28 -75 24 1.49

73 -40 -6 12 3.40 73 40 42 3 3.36 73 31 -15 18 1.47

74 18 -66 -2 3.37 74 51 -47 42 3.35 74 -1 45 36 1.44

75 -40 -33 45 3.36 75 -6 44 4 3.33 75 -17 23 55 1.37

76 10 -69 39 3.36 76 -10 -72 -15 3.32 76 -26 -45 -24 1.36

77 -26 -12 53 3.36 77 36 16 4 3.27 77 -53 -45 27 1.35

78 -32 -66 -29 3.31 78 -52 -24 9 3.27 78 -53 3 24 1.35

79 -17 23 55 3.29 79 32 -73 -29 3.25 79 -9 -72 37 1.33

80 16 -69 18 3.28 80 -32 -66 -29 3.25 80 -2 -75 29 1.29

81 55 -7 20 3.27 81 -52 -12 23 3.24 81 -12 -6 14 1.22

82 31 -15 18 3.26 82 -40 -76 22 3.23 82 -11 39 21 1.19

83 31 -61 -29 3.25 83 14 -75 -21 3.19 83 13 2 10 1.11

84 -26 -45 -24 3.25 84 -35 -15 15 3.16 84 -39 -38 15 1.01

85 -3 25 30 3.25 85 4 -52 31 3.16 85 -8 -42 3 1.01

86 -17 -51 0 3.25 86 -35 -69 36 3.16 86 -43 -9 48 1.01

87 -46 -15 35 3.23 87 -26 -43 -11 3.15 87 -34 -48 45 0.85

88 8 -76 12 3.22 88 -50 23 19 3.14 88 -31 -59 42 0.74

89 32 -81 -3 3.21 89 7 37 0 3.14 89 10 -15 8 0.73

90 14 -77 29 3.20 90 31 -61 -29 3.14 90 38 -27 54 0.70

91 -28 -75 24 3.20 91 -1 45 36 3.14 91 -56 -26 -14 0.64

92 -4 -33 -3 3.18 92 -58 -42 -3 3.14 92 40 42 3 0.63

93 -8 -42 3 3.17 93 -40 -6 12 3.14 93 42 -73 27 0.54

94 -52 -12 23 3.17 94 -5 -53 16 3.13 94 -34 -54 -36 0.50

95 49 -33 7 3.15 95 -53 3 24 3.13 95 32 -73 -29 0.50

96 -46 -15 35 3.12 96 10 -69 39 0.48

97 13 -90 0 3.12 97 -41 3 36 0.48

98 7 -42 48 0.33

99 37 30 33 0.28

1 27 -39 -13 30.47 1 -41 3 36 28.33 1 -26 -43 -11 28.20

2 -26 -43 -11 27.79 2 -5 -78 -33 21.12 2 27 -39 -13 19.94

3 5 57 9 20.62 3 37 30 33 20.23 3 37 -72 12 17.98

4 5 -75 -12 17.95 4 -46 -21 48 19.93 4 5 57 9 14.70

5 19 -78 -3 17.84 5 -34 -54 -36 18.40 5 32 -81 -3 12.66

6 -32 -60 -6 16.96 6 -17 23 55 18.33 6 5 -75 -12 8.86

7 -11 -59 15 16.85 7 -23 -60 -33 17.45 7 19 -78 -3 8.80

8 -41 3 36 16.78 8 14 -77 29 15.96 8 4 -52 31 8.12

9 -10 -72 -15 14.93 9 41 -54 45 13.87 9 -26 -12 53 8.06

10 40 -48 21 13.07 10 41 3 36 13.84 10 -6 -57 27 7.70

11 -11 39 21 10.68 11 32 -81 -3 13.69 11 44 33 -9 7.30

12 -53 3 24 10.41 12 27 50 23 13.56 12 41 -15 39 6.94

13 2 -66 -24 10.29 13 -5 -45 24 13.37 13 36 16 4 6.64

14 -6 44 4 10.26 14 -10 -72 -15 12.95 14 -17 -51 0 6.57

15 -1 45 36 10.16 15 -43 22 34 12.26 15 -10 -72 -15 6.43

16 -35 14 5 10.12 16 2 -66 -24 11.37 16 -53 3 24 6.10

17 55 6 18 10.11 17 -3 25 30 11.15 17 -22 -54 -21 5.79

18 42 -73 27 9.96 18 -40 -48 27 10.49 18 27 -74 27 5.44

19 -5 -80 7 9.94 19 35 -61 -8 10.39 19 -32 -60 -6 5.43

20 8 0 51 9.72 20 30 -15 4 10.29 20 27 50 23 5.39

21 8 45 21 9.60 21 7 -42 48 9.65 21 40 -27 18 5.30

22 18 -66 -2 7.74 22 -32 -60 -6 9.56 22 -46 -63 31 5.25

23 55 -43 20 7.71 23 -25 45 30 9.48 23 37 12 42 5.16

24 36 16 4 7.56 24 49 -33 7 9.43 24 18 -66 -2 5.09

25 31 -42 63 7.46 25 -17 -51 0 8.68 25 -35 -82 -5 4.97

26 -35 -15 15 7.30 26 25 42 30 7.69 26 -5 -45 24 4.93

27 -41 42 6 7.21 27 -53 -45 27 7.55 27 -38 -18 57 4.93

28 -22 -54 -21 7.18 28 -32 -66 -29 7.55 28 -43 -9 48 4.45

29 -32 -66 -29 7.10 29 -6 -57 27 7.54 29 -43 22 34 4.32

30 -29 -30 9 7.02 30 -12 -15 7 7.45 30 56 -17 11 4.32

31 32 27 12 6.97 31 -41 42 6 7.33 31 -46 -21 48 4.27

32 -6 -57 27 6.95 32 -5 -80 7 7.25 32 55 -43 20 4.25

33 -44 6 15 6.95 33 40 -27 18 7.15 33 41 -45 9 4.25

34 -12 -6 14 6.80 34 56 -17 11 7.12 34 16 -30 60 3.69

Procedure 8 Procedure 8 Procedure 8

TDC vs ADHD-C TDC vs ADHD-I ADHD-I vs ADHD-C

Rank

X Y Z

node strength node strengthnode strength

Rank

X Y Z

Rank

X Y Z

Coordinates Coordinates Coordinates
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Table A1 | Continued

35 44 -63 5 6.68 35 55 -7 20 6.98 35 -12 -15 7 3.57

36 56 -17 11 6.57 36 -28 -87 5 6.91 36 8 15 36 3.48

37 31 -15 18 6.51 37 -8 -42 3 6.86 37 13 -90 0 3.41

38 13 2 10 6.51 38 9 -56 16 6.76 38 -28 51 15 3.23

39 -32 -66 -29 6.40 39 -35 -82 -5 6.61 39 -11 -59 15 3.13

40 37 -72 12 6.39 40 -1 -5 52 6.53 40 -41 42 6 2.91

41 41 -3 15 6.38 41 -58 -42 -3 6.52 41 -8 -42 3 2.90

42 41 -45 9 4.25 42 -1 45 36 6.48 42 -35 14 5 2.90

43 41 -15 39 4.18 43 -40 -42 39 6.44 43 30 -15 4 2.89

44 -15 -64 -21 4.06 44 -53 -24 36 6.39 44 -15 -64 -21 2.83

45 -1 -5 52 4.06 45 28 -81 12 6.32 45 -24 -33 61 2.79

46 -34 -48 45 3.95 46 -53 3 24 6.18 46 -40 -33 45 2.79

47 -5 -60 -15 3.95 47 8 -76 12 4.90 47 38 -27 54 2.75

48 -43 -9 48 3.86 48 26 -90 0 4.33 48 -19 2 9 2.69

49 -40 -33 45 3.74 49 32 -73 -29 4.25 49 32 27 12 2.69

50 30 -61 39 3.74 50 37 12 42 3.96 50 56 3 36 2.55

51 14 -75 -21 3.73 51 -29 -16 2 3.87 51 55 -7 20 2.53

52 38 -27 54 3.69 52 -26 -12 53 3.86 52 35 -61 -8 2.51

53 -42 -63 -8 3.65 53 55 6 18 3.77 53 -32 -66 -29 2.51

54 -43 22 34 3.61 54 44 33 -9 3.73 54 16 -69 18 2.42

55 -4 -33 -3 3.59 55 31 -42 63 3.69 55 26 -90 0 2.40

56 8 33 24 3.54 56 27 -74 27 3.61 56 -16 -76 29 2.30

57 -40 -6 12 3.51 57 0 -29 30 3.55 57 -11 39 21 2.29

58 40 -27 18 3.51 58 -6 44 4 3.47 58 14 -77 29 2.27

59 4 -52 31 3.49 59 -38 -18 57 3.46 59 18 -80 -33 2.26

60 -46 3 3 3.48 60 10 -15 8 3.45 60 41 -3 15 2.17

61 8 15 36 3.48 61 32 27 12 3.43 61 -39 -38 15 2.14

62 10 -15 8 3.45 62 40 -48 21 3.41 62 21 27 49 1.96

63 52 -33 -15 3.42 63 44 -63 5 3.41 63 -7 12 36 1.95

64 -8 -42 3 3.39 64 8 33 24 3.41 64 -4 -33 -3 1.93

65 -4 -93 9 3.38 65 -46 -15 35 3.39 65 -44 6 15 1.90

66 -2 23 42 3.37 66 48 -61 33 3.39 66 -5 -78 -33 1.84

67 10 -26 3 3.36 67 -4 -33 -3 3.37 67 -17 23 55 1.69

68 -53 -45 27 3.34 68 -56 -26 -14 3.37 68 49 -33 7 1.68

69 -26 -45 -24 3.34 69 -9 -72 37 3.33 69 -28 -75 24 1.65

70 0 -29 30 3.34 70 5 -75 -12 3.31 70 -56 -26 -14 1.57

Procedure 8 Procedure 8 Procedure 8

TDC vs ADHD-C TDC vs ADHD-I ADHD-I vs ADHD-C

Rank

X Y Z

node strength node strengthnode strength

Rank

X Y Z

Rank

X Y Z

Coordinates Coordinates Coordinates

71 -12 -15 7 3.33 71 -40 -76 22 3.29 71 -5 -53 16 1.46

72 -47 -48 45 3.33 72 18 -80 -33 3.29 72 -3 25 30 1.37

73 43 -12 26 3.33 73 -50 -63 12 3.28 73 50 -7 34 1.21

74 -1 10 46 3.32 74 -4 -40 43 3.28 74 50 -18 -9 1.12

75 -19 2 9 3.30 75 4 -52 31 3.27 75 40 42 3 1.04

76 41 3 36 3.30 76 -51 -38 12 3.25 76 -58 -42 -3 0.97

77 31 -61 -29 3.30 77 -11 -59 15 3.24 77 -4 -93 9 0.96

78 25 42 30 3.27 78 -19 2 9 3.24 78 25 42 30 0.93

79 -23 -60 -33 3.27 79 -46 3 3 3.24 79 -35 -69 36 0.80

80 -3 25 30 3.25 80 10 -26 3 3.23 80 -40 -42 39 0.78

81 21 27 49 3.23 81 7 37 0 3.21 81 -34 -54 -36 0.74

82 37 36 21 3.22 82 10 -69 39 3.21 82 32 -73 -29 0.74

83 48 18 12 3.21 83 -28 -75 24 3.17 83 48 -61 33 0.73

84 35 -61 -8 3.19 84 8 0 51 3.17 84 -1 45 36 0.59

85 -17 -51 0 3.17 85 38 -27 54 3.16 85 43 22 34 0.59

86 32 -73 -29 3.17 86 -29 -30 9 3.16 86 -29 -16 2 0.40

87 10 -69 39 3.17 87 -40 -6 12 3.16 87 -53 -24 36 0.21

88 -17 23 55 3.16 88 13 2 10 3.15 88 -6 44 4 0.16

89 43 22 34 3.15 89 30 -61 39 3.15 89 10 -69 39 0.06

90 31 -61 -29 3.14 90 37 36 21 3.14 90 -41 3 36 0.06

91 -46 -15 35 3.13 91 27 -39 -13 3.14 91 -53 -45 27 0.04

92 -26 -12 53 3.13 92 19 -78 -3 3.13

93 14 -77 29 3.12 93 50 -18 -9 3.12

94 -50 23 19 3.11 94 -35 14 5 3.10

95 32 -81 -3 3.10 95 51 -47 42 3.08

96 -43 -9 48 3.08

97 41 -15 39 3.05

98 8 -45 24 3.04
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1 -35 14 5 27.84 1 -41 3 36 27.87 1 37 -72 12 15.28

2 -11 -59 15 26.73 2 -5 -78 -33 21.70 2 27 -39 -13 14.24

3 27 -39 -13 26.24 3 41 3 36 21.51 3 -26 -12 53 10.28

4 5 -75 -12 21.43 4 27 50 23 18.34 4 5 57 9 7.96

5 38 -27 54 16.56 5 -43 22 34 18.21 5 5 -75 -12 7.91

6 8 45 21 16.27 6 -5 -45 24 17.52 6 27 50 23 7.83

7 -6 44 4 15.05 7 37 30 33 16.41 7 -4 -33 -3 7.54

8 31 -42 63 14.72 8 10 -69 39 15.99 8 4 -52 31 7.35

9 -2 23 42 13.68 9 31 -42 63 14.96 9 -46 3 3 7.28

10 5 57 9 13.58 10 -34 -54 -36 14.11 10 -26 -43 -11 7.10

11 -7 12 36 13.09 11 -46 -21 48 14.09 11 27 -74 27 7.08

12 -26 -43 -11 13.00 12 14 -77 29 13.81 12 2 -66 -24 6.30

13 -1 45 36 10.86 13 41 -54 45 13.59 13 -11 -59 15 5.84

14 -32 -60 -6 10.63 14 35 -61 -8 12.86 14 32 -81 -3 5.70

15 -41 42 6 10.59 15 25 42 30 12.20 15 -35 14 5 5.68

16 37 36 21 10.45 16 -17 -51 0 11.72 16 8 45 21 5.38

17 -44 6 15 10.35 17 -17 23 55 11.42 17 37 12 42 5.26

18 -34 -48 45 10.29 18 10 -26 3 11.18 18 13 -90 0 5.25

19 -6 -57 27 10.25 19 27 -74 27 10.96 19 -1 45 36 5.16

20 41 -15 39 10.07 20 27 -39 -13 10.87 20 -6 -57 27 5.06

21 10 -26 3 10.00 21 13 2 10 10.58 21 44 33 -9 4.89

22 56 -17 11 9.66 22 2 -66 -24 10.53 22 36 16 4 4.87

23 40 -48 21 9.66 23 26 -90 0 10.40 23 48 18 12 4.63

24 8 0 51 9.66 24 -28 51 15 10.08 24 -7 12 36 4.48

25 26 -90 0 7.64 25 -12 -15 7 9.94 25 40 -27 18 4.38

26 -1 -5 52 7.42 26 37 12 42 9.78 26 -46 -21 48 4.33

27 -11 39 21 7.41 27 51 -47 42 9.45 27 -38 -18 57 4.30

28 51 -47 42 7.36 28 -32 -60 -6 9.43 28 -53 3 24 4.19

29 55 6 18 7.27 29 -6 -57 27 7.41 29 -22 -54 -21 3.90

30 27 50 23 7.11 30 30 -15 4 7.41 30 -32 -60 -6 3.86

31 -53 -45 27 7.06 31 -28 -87 5 7.37 31 -35 -69 36 3.84

32 -10 -72 -15 6.95 32 32 -81 -3 7.34 32 14 -75 -21 3.81

33 41 -45 9 6.90 33 -40 -42 39 7.29 33 55 -7 20 3.75

34 25 42 30 6.90 34 -53 -45 27 7.15 34 55 -43 20 3.69

35 -1 10 46 6.88 35 -53 -24 36 7.07 35 41 -45 9 3.69

36 -42 -63 -8 6.83 36 -23 -60 -33 7.06 36 -41 42 6 3.50

37 -47 -48 45 6.77 37 -3 25 30 6.96 37 -29 -16 2 3.50

38 14 -75 -21 6.73 38 55 -43 20 6.81 38 -43 22 34 3.40

39 37 -72 12 6.72 39 8 -45 24 6.81 39 -44 6 15 3.36

40 -46 -63 31 6.71 40 40 -48 21 6.68 40 -28 -75 24 3.35

41 -29 -30 9 6.66 41 -4 -33 -3 6.67 41 -1 -5 52 3.22

42 28 -81 12 6.65 42 -32 -66 -29 6.64 42 8 33 24 2.86

43 36 16 4 6.64 43 50 -18 -9 6.41 43 8 -45 24 2.80

44 9 -56 16 6.63 44 -4 -40 43 6.37 44 -5 -78 -33 2.79

45 13 2 10 6.63 45 9 -56 16 6.34 45 -12 -15 7 2.77

46 50 -7 34 6.61 46 -26 -45 -24 6.33 46 40 42 3 2.76

47 41 3 36 6.54 47 -53 3 24 6.32 47 41 -15 39 2.63

48 10 -15 8 6.53 48 -8 -42 3 4.43 48 30 -15 4 2.58

49 56 3 36 6.51 49 56 -17 11 4.09 49 -10 -72 -15 2.55

50 4 -52 31 6.51 50 5 -75 -12 4.03 50 28 -81 12 2.52

51 -4 -33 -3 6.33 51 -35 -82 -5 3.99 51 -2 23 42 2.51

52 32 -73 -29 6.32 52 10 -15 8 3.87 52 35 -61 -8 2.48

53 42 -73 27 3.92 53 8 -76 12 3.84 53 -32 -66 -29 2.48

54 -22 -54 -21 3.90 54 -35 14 5 3.78 54 19 -78 -3 2.45

55 -53 3 24 3.76 55 -25 45 30 3.73 55 49 -33 7 2.29

56 -46 3 3 3.74 56 40 -27 18 3.72 56 -4 -93 9 2.23

57 -25 45 30 3.72 57 -26 -12 53 3.72 57 -35 -82 -5 2.23

58 -5 -80 7 3.71 58 55 -7 20 3.70 58 56 -17 11 2.21

59 -34 -54 -36 3.70 59 -11 -59 15 3.70 59 -52 -12 23 2.16

60 -41 3 36 3.70 60 -41 42 6 3.68 60 41 -3 15 2.16

61 -52 -24 9 3.70 61 -29 -16 2 3.66 61 14 -77 29 2.13

62 55 -43 20 3.69 62 55 6 18 3.65 62 -15 -64 -21 2.08

63 -12 -6 14 3.54 63 0 -29 30 3.64 63 16 -30 60 2.05

64 -5 -45 24 3.51 64 -42 -63 -8 3.61 64 -8 -42 3 2.05

65 -51 -38 12 3.51 65 8 0 51 3.61 65 -28 51 15 1.92

66 43 -24 45 3.49 66 44 33 -9 3.51 66 -42 -63 -8 1.90

67 -46 -21 48 3.46 67 32 -73 -29 3.51 67 25 42 30 1.81

68 0 -29 30 3.43 68 7 -42 48 3.48 68 -46 -63 31 1.77

69 -35 -15 15 3.43 69 40 42 3 3.39 69 -40 -76 22 1.61

70 35 -61 -8 3.42 70 36 16 4 3.39 70 18 -66 -2 1.60

Procedure 10 Procedure 10 Procedure 10

TDC vs ADHD-C TDC vs ADHD-I ADHD-I vs ADHD-C

Rank

X Y Z

node strength node strengthnode strength

Rank

X Y Z

Rank

X Y Z

Coordinates Coordinates Coordinates
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71 -40 -6 12 3.41 71 -5 -80 7 3.38 71 21 27 49 1.57

72 44 33 -9 3.39 72 32 27 12 3.38 72 -40 -42 39 1.56

73 7 37 0 3.38 73 -34 -48 45 3.37 73 48 -61 33 1.42

74 -26 -12 53 3.33 74 -10 -72 -15 3.36 74 -53 -45 27 1.36

75 -32 -66 -29 3.32 75 -26 -43 -11 3.34 75 -17 23 55 1.34

76 55 -7 20 3.32 76 31 -61 -29 3.31 76 8 0 51 1.33

77 18 -66 -2 3.32 77 -40 -76 22 3.28 77 -2 -75 29 1.27

78 16 -69 18 3.30 78 -52 -12 23 3.21 78 -9 -72 37 1.27

79 -17 23 55 3.28 79 52 -33 -15 3.21 79 -12 -6 14 1.18

80 -40 -33 45 3.28 80 -35 -15 15 3.21 80 18 -80 -33 1.18

 

81 10 -69 39 3.28 81 814 -52 31 3.21 13 2 10 1.15

82 -17 -51 0 3.23 82 -46 -15 35 3.21 82 -34 -48 45 0.86

83 -46 -15 35 3.23 83 13 -90 0 3.21 83 10 -15 8 0.83

84 31 -15 18 3.23 84 -5 -53 16 3.20 84 -3 25 30 0.67

85 -26 -45 -24 3.22 85 -1 45 36 3.19 85 38 -27 54 0.66

86 14 -77 29 3.21 86 -58 -42 -3 3.19 86 -56 -26 -14 0.62

87 -28 -75 24 3.21 87 -46 3 3 3.19 87 50 -18 -9 0.62

88 31 -61 -29 3.20 88 37 -72 12 3.18 88 -34 -54 -36 0.50

89 49 -33 7 3.18 89 41 -3 15 3.18 89 32 -73 -29 0.50

90 -3 25 30 3.18 90 -52 -24 21 3.15 90 10 -69 39 0.49

91 32 -81 -3 3.15 91 -38 -18 57 3.12 91 -41 3 36 0.49

92 48 -61 33 3.14 92 38 -27 54 3.12 92 55 6 18 0.44

93 -52 -12 23 3.13 93 -35 -69 36 3.11 93 7 -42 48 0.33

94 8 -76 12 3.13 94 -16 -76 29 3.11 94 37 30 33 0.30

95 -56 -26 -14 3.13 95 48 18 12 3.11 95 37 36 21 0.14

96 -9 -72 37 3.08 96 50 -7 34 0.12

97 -6 44 4 3.08 97 35 -6 0 0.12

Procedure 10 Procedure 10 Procedure 10

TDC vs ADHD-C TDC vs ADHD-I ADHD-I vs ADHD-C

Rank

X Y Z

node strength node strengthnode strength

Rank

X Y Z

Rank

X Y Z

Coordinates Coordinates Coordinates

FDR Concensus FDR Concensus FDR Concensus

1 30 -15 4 77.18 15.09 1 -29 -16 2 18.40 15.99 1 -19 2 9 68.60 0.00

2 -29 -16 2 76.76 14.77 2 30 -15 4 16.48 14.20 2 -29 -16 2 59.92 7.00

3 -19 2 9 71.04 14.58 3 -52 -12 23 14.14 12.63 3 14 -77 29 54.10 8.53

4 13 2 10 70.05 11.24 4 -53 -45 27 13.16 10.71 4 -35 14 5 53.11 12.59

5 -6 -57 27 61.32 7.23 5 -19 2 9 12.69 11.35 5 30 -15 4 50.79 9.03

6 14 -77 29 60.78 7.58 6 13 2 10 12.65 11.33 6 -6 -57 27 49.82 9.22

7 16 -69 18 60.69 6.85 7 14 -77 29 12.31 11.53 7 16 -69 18 47.17 0.00

8 -53 -45 27 60.34 8.11 8 10 -26 3 11.74 11.14 8 51 -47 42 46.66 2.04

9 -35 14 5 60.23 7.29 9 -6 -57 27 10.95 9.17 9 -26 -12 53 46.58 7.30

10 10 -26 3 59.34 8.96 10 -46 3 3 10.23 8.88 10 13 2 10 46.50 3.29

11 10 -69 39 58.58 6.61 11 -35 -15 15 9.75 8.44 11 38 -27 54 45.52 4.26

12 -12 -6 14 58.06 8.68 12 31 -42 63 9.30 8.00 12 -53 -45 27 44.93 8.48

13 -4 -33 -3 57.33 8.67 13 -7 12 36 9.29 7.30 13 5 57 9 44.49 6.84

14 -46 3 3 56.45 7.97 14 51 -47 42 9.25 8.60 14 -52 -12 23 43.82 0.00

15 -5 -53 16 55.22 6.56 15 -1 -5 52 9.08 7.16 15 10 -69 39 43.75 3.82

16 10 -15 8 54.36 9.14 16 -35 14 5 8.69 6.71 16 -12 -6 14 42.65 0.00

17 36 16 4 51.73 5.20 17 10 -15 8 8.29 7.80 17 -38 -30 57 42.52 0.00

18 4 -52 31 51.69 5.42 18 8 0 51 8.21 7.00 18 -5 -53 16 42.51 0.00

19 38 -27 54 51.69 6.94 19 36 16 4 8.09 7.45 19 10 -26 3 42.06 4.10

20 31 -42 63 51.01 6.28 20 38 -27 54 7.90 7.39 20 36 16 4 42.04 0.00

21 -1 45 36 49.49 6.07 21 -38 -30 57 7.86 5.90 21 8 0 51 41.28 0.00

22 -7 12 36 49.40 6.09 22 4 -52 31 7.72 6.89 22 -38 -18 57 40.81 0.00

23 51 -47 42 49.13 6.84 23 -38 -18 57 7.48 6.95 23 31 -42 63 40.33 3.65

24 -38 -30 57 49.11 5.44 24 -35 -69 36 7.33 6.09 24 -7 12 36 39.71 3.22

25 55 -43 20 49.10 2.90 25 48 18 12 7.18 6.03 25 -4 -33 -3 39.10 7.55

26 8 45 21 47.70 7.25 26 -5 -53 16 7.13 5.76 26 10 -15 8 38.26 2.76

27 8 0 51 47.54 4.74 27 -29 -30 9 6.72 4.94 27 4 -52 31 38.12 7.93

28 -6 44 4 47.39 6.26 28 -12 -6 14 6.51 5.46 28 -1 -5 52 37.94 1.99

29 -52 -12 23 47.24 8.00 29 8 45 21 6.49 5.21 29 -1 45 36 37.74 4.90

30 -1 -5 52 47.06 4.67 30 5 57 9 6.44 5.96 30 -46 3 3 37.29 6.86

31 -26 -12 53 45.93 3.89 31 35 -6 0 6.41 5.35 31 7 -42 48 36.23 3.22

32 -24 -33 61 45.84 3.08 32 32 -73 -29 6.39 4.62 32 -24 -33 61 36.06 0.00

33 41 -3 15 45.60 3.52 33 18 -66 -2 6.28 5.95 33 -35 -15 15 35.20 0.00

34 25 42 30 45.49 2.26 34 -17 -51 0 6.19 5.83 34 48 -61 33 35.02 0.00

35 -29 -30 9 45.34 3.83 35 -46 -15 35 6.01 5.67 35 41 -3 15 34.93 0.00

36 -12 -15 7 45.19 4.75 36 -1 45 36 5.93 4.79 36 -50 23 19 34.64 0.00

37 -35 -69 36 44.49 5.48 37 16 -69 18 5.88 4.84 37 35 -6 0 33.76 0.00

38 -38 -18 57 44.21 5.97 38 10 -69 39 5.88 5.50 38 18 -66 -2 33.35 3.55

Age - Procedure 5 Age - Procedure 10Age - Procedure 7Rank

X Y Z

Rank

X Y Z

Rank

X Y Z

Coordinates Coordinates Coordinates
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45 -46 -15 35 39.34 4.54 45 -31 -59 42 5.56 4.45 45 55 6 18 29.70 5.05

46 18 -66 -2 39.11 5.72 46 40 -27 18 5.40 5.13 46 41 3 36 28.94 5.64

47 48 18 12 38.21 5.46 47 55 -7 20 5.28 4.99 47 43 -24 45 28.29 0.00

48 55 6 18 38.01 5.63 48 -12 -15 7 5.10 4.13 48 -46 -15 35 28.18 0.00

49 -8 -42 3 37.99 2.41 49 -4 -33 -3 4.81 4.54 49 -1 10 46 27.88 1.60

50 -53 -24 36 37.93 2.17 50 55 6 18 4.81 4.40 50 55 -43 20 27.75 3.45

51 -17 23 55 37.14 2.42 51 7 -42 48 4.63 2.90 51 -41 42 6 26.99 1.34

52 -34 -54 -36 36.31 3.69 52 -26 -12 53 4.27 3.97 52 -51 -51 36 26.96 0.00

53 43 -12 26 35.76 2.25 53 56 -17 11 4.24 3.99 53 -12 -15 7 26.67 7.06

54 55 -7 20 34.16 4.16 54 48 -61 33 4.10 3.85 54 -29 -30 9 26.60 0.00

55 -1 10 46 32.77 3.77 55 31 -61 -29 4.07 3.82 55 31 -15 18 25.95 0.00

56 21 27 49 32.71 1.45 56 -11 -59 15 3.93 1.61 56 37 36 21 25.67 2.16

57 -17 -51 0 31.49 5.63 57 -34 -54 -36 3.84 2.22 57 -17 -51 0 25.33 2.47

58 40 -27 18 31.48 4.77 58 55 -43 20 3.82 2.88 58 -58 -42 -3 24.74 0.00

59 -52 -24 9 31.13 2.20 59 -42 -63 -8 3.81 2.17 59 -42 -63 -8 24.73 3.15

60 -50 23 19 30.88 2.12 60 -51 -38 12 3.41 3.21 60 -8 -42 3 24.49 2.91

61 49 -33 7 30.53 1.66 61 25 42 30 3.29 1.69 61 -46 -63 31 24.47 3.74

62 41 3 36 30.52 4.42 62 -6 44 4 3.27 2.30 62 49 -33 7 24.38 3.37

63 -31 -59 42 29.78 3.63 63 -24 -33 61 3.24 3.05 63 16 -30 60 24.25 0.00

64 -46 -21 48 29.45 2.26 64 16 -30 60 3.24 3.00 64 8 15 36 24.19 0.00

65 43 -24 45 28.94 4.38 65 -50 23 19 3.16 2.92 65 -52 -24 9 24.11 0.00

66 -40 -6 12 28.74 1.61 66 41 -3 15 3.15 2.97 66 -46 -21 48 24.08 10.58

67 31 -15 18 28.67 4.37 67 -52 -24 9 3.13 2.94 67 -17 23 55 23.98 6.06

68 -23 -60 -33 28.59 1.44 68 13 -90 0 3.08 2.22 68 -40 -6 12 23.96 0.00

69 27 -39 -13 27.80 0.78 69 -41 42 6 3.00 2.80 69 -34 -54 -36 23.62 4.06

70 -26 -43 -11 27.56 2.05 70 -17 23 55 2.62 2.43 70 -23 -60 -33 23.30 0.75

71 8 15 36 27.44 1.34 71 49 -33 7 2.58 2.43 71 25 42 30 23.01 11.79

72 -40 -33 45 27.11 1.50 72 -8 -42 3 2.53 2.35 72 8 -45 24 22.86 2.40

73 -47 -48 45 27.04 0.68 73 -52 -24 21 2.47 1.61 73 41 -54 45 22.69 0.00

74 8 33 24 26.52 2.17 74 44 33 -9 2.46 1.62 74 21 27 49 22.40 0.00

75 -58 -42 -3 26.51 0.71 75 40 -48 21 2.45 2.33 75 -35 -69 36 22.19 3.80

76 41 -54 45 26.42 2.25 76 35 -61 -8 2.45 2.32 76 -11 39 21 22.18 1.99

77 -51 -51 36 26.29 2.10 77 8 33 24 2.44 2.29 77 -40 -33 45 22.08 0.00

78 40 -48 21 26.05 1.40 78 9 -56 16 2.40 2.22 78 35 -61 -8 21.87 8.56

79 -32 -60 -6 25.91 0.71 79 -58 -42 -3 2.39 1.55 79 43 -12 26 21.85 0.00

80 16 -30 60 25.78 2.98 80 -32 -66 -29 2.25 0.74 80 -11 -59 15 21.43 3.36

39 35 -6 0 42.87 6.62 39 43 -24 45 5.83 4.06 39 -6 44 4 32.36 5.94

40 -35 -15 15 42.59 6.85 40 43 -12 26 5.73 4.72 40 48 18 12 32.30 0.00

41 5 57 9 42.15 5.13 41 -1 10 46 5.69 4.60 41 -53 -24 36 32.16 0.00

42 7 -42 48 40.76 4.17 42 41 3 36 5.66 4.58 42 8 45 21 31.24 3.22

43 -46 -63 31 39.80 2.81 43 31 -15 18 5.63 4.64 43 -31 -59 42 31.13 0.00

44 48 -61 33 39.50 3.05 44 -46 -63 31 5.62 4.48 44 40 -27 18 30.20 3.60

81 -11 -59 15 25.72 2.93 81 18 -80 -33 1.99 1.88 81 -47 -48 45 21.04 0.00

82 -32 -66 -29 25.23 0.77 82 -26 -45 -24 1.75 1.65 82 56 -17 11 20.93 1.21

83 -41 42 6 24.94 0.66 83 -39 -38 15 1.75 1.65 83 -3 25 30 20.75 3.25

84 18 -80 -33 24.73 2.33 84 -53 -24 36 1.74 1.63 84 40 42 3 20.44 3.40

85 -16 -76 29 24.42 1.57 85 -51 -51 36 1.72 1.61 85 55 -7 20 20.35 3.66

86 37 30 33 23.93 0.65 86 -46 -21 48 1.71 1.57 86 -32 -60 -6 19.61 6.06

87 56 -17 11 23.66 3.19 87 41 -54 45 1.68 1.58 87 8 33 24 19.52 0.00

88 -43 22 34 23.44 0.69 88 -40 -6 12 1.64 0.86 88 37 12 42 19.44 0.00

89 -11 39 21 23.40 0.00 89 27 -39 -13 1.63 1.54 89 -41 3 36 19.14 7.62

90 27 -74 27 23.11 0.00 90 -40 -33 45 1.63 1.54 90 32 -73 -29 19.11 3.97

91 8 -45 24 23.10 2.04 91 37 -72 12 1.61 1.51 91 -5 -78 -33 18.72 20.14

92 44 -63 5 22.90 0.00 92 8 15 36 1.61 1.49 92 44 33 -9 18.03 0.00

93 -9 -72 37 22.46 0.77 93 41 -45 9 1.59 1.49 93 -52 -24 21 17.83 0.00

94 37 36 21 22.23 0.77 94 -32 -60 -6 1.58 1.45 94 31 -61 -29 17.78 0.00

95 13 -90 0 22.14 1.44 95 -19 -78 -33 1.56 0.79 95 27 -39 -13 17.61 10.71

96 50 -7 34 21.60 1.44 96 14 -75 -21 1.55 1.43 96 -44 6 15 16.69 1.46

97 35 -61 -8 21.43 1.50 97 21 27 49 1.55 1.45 97 50 -18 -9 16.62 2.56

98 41 -15 39 21.38 0.74 98 -9 -72 37 1.54 1.47 98 18 -80 -33 16.59 0.00

99 37 -72 12 21.24 0.76 99 40 42 3 1.54 0.73 99 27 50 23 16.29 23.09

100 -42 -63 -8 21.19 0.72 100 -47 -48 45 1.53 1.41 100 37 30 33 16.06 4.65

101 -34 -48 45 21.13 0.64 101 37 12 42 1.52 0.73 101 -40 -42 39 15.79 2.00

102 -43 -9 48 20.79 0.00 102 8 -45 24 1.52 1.39 102 -51 -38 12 15.77 0.39

103 37 12 42 20.74 0.70 103 43 22 34 1.51 1.42 103 -34 -48 45 15.75 0.09

104 -52 -24 21 20.68 2.29 104 -2 23 42 1.51 0.73 104 41 -15 39 15.71 10.07

105 -5 -78 -33 20.11 0.73 105 37 36 21 1.49 0.72 105 13 -90 0 15.64 3.73

106 41 -45 9 19.66 0.77 106 -28 -87 5 1.47 0.69 106 -39 -38 15 15.52 0.00

107 -28 -75 24 19.42 0.00 107 -3 25 30 0.91 0.86 107 41 -45 9 15.47 3.45

108 44 33 -9 19.39 1.53 108 -16 -76 29 0.90 0.84 108 -26 -45 -24 15.44 0.00

109 9 -56 16 19.12 2.88 109 28 -81 12 0.88 0.83 109 27 -74 27 15.42 6.06

110 50 -18 -9 19.08 0.00 110 42 -73 27 0.87 0.82 110 -32 -66 -29 15.40 0.38

111 7 37 0 18.98 0.00 111 19 -78 -3 0.87 0.82 111 -16 -76 29 15.16 0.00

112 40 42 3 18.94 1.51 112 -40 -42 39 0.80 0.77 112 -5 -45 24 15.12 4.55

FDR Concensus FDR Concensus FDR Concensus

Age - Procedure 5 Age - Procedure 10Age - Procedure 7Rank

X Y Z

Rank

X Y Z

Rank

X Y Z

Coordinates Coordinates Coordinates
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113 32 -73 -29 18.86 2.91 113 -22 -54 -21 0.80 0.73 113 50 -7 34 15.03 0.00

114 31 -61 -29 18.09 1.57 114 -44 6 15 0.80 0.74 114 9 -56 16 14.56 0.00

115 -51 -38 12 17.93 2.20 115 50 -7 34 0.79 0.75 115 -28 -87 5 13.81 4.61

116 -40 -42 39 17.72 1.39 116 -2 -75 29 0.77 0.71 116 -43 -9 48 13.77 0.00

117 -15 -64 -21 17.59 0.00 117 32 27 12 0.77 0.71 117 43 22 34 13.74 0.00

118 -44 6 15 17.43 0.77 118 32 -81 -3 0.76 0.72 118 -26 -43 -11 13.52 10.99

119 -39 -38 15 17.02 2.31 119 -56 -48 9 0.76 0.71 119 7 37 0 13.42 0.00

120 -5 -45 24 16.97 2.14 120 -5 -78 -33 0.76 0.72 120 40 -48 21 12.57 1.32

121 -50 -63 12 16.92 0.69 121 -26 -43 -11 0.75 0.69 121 -43 22 34 12.42 10.51

122 -26 -45 -24 16.29 1.60 122 37 30 33 0.74 0.66 122 -56 -26 -14 12.16 0.00

123 27 50 23 16.04 1.37 123 -43 22 34 0.74 0.65 123 28 -81 12 11.79 0.00

124 -28 -87 5 15.85 0.69 124 -56 -26 -14 0.74 0.69 124 -9 -72 37 11.52 0.00

125 28 -81 12 15.69 0.76 125 -41 3 36 0.74 0.00 125 -50 -63 12 11.21 0.00

126 -53 3 24 15.15 0.70 126 8 -76 12 0.74 0.00 126 -28 -75 24 10.67 0.00

127 -10 -72 -15 14.20 0.69 127 -50 -63 12 0.74 0.00 127 44 -63 5 10.51 0.00

128 -3 25 30 13.45 0.81 128 -53 3 24 0.73 0.00 128 37 -72 12 10.32 10.77

129 -56 -26 -14 12.80 0.00 129 -34 -48 45 0.73 0.00 129 -53 3 24 10.06 5.84

130 -2 23 42 12.63 0.00 130 7 37 0 0.73 0.00 130 -28 51 15 9.76 0.00

131 14 -75 -21 12.29 0.66 131 -5 -45 24 0.72 0.00 131 -22 -54 -21 9.70 3.23

132 -25 45 30 12.22 0.00 132 -5 -80 7 0.00 0.00 132 32 -81 -3 9.49 7.20

133 19 -78 -3 12.05 0.77 133 44 -63 5 0.00 0.00 133 -35 -82 -5 9.20 4.53

134 32 27 12 12.04 1.45 134 -35 -82 -5 0.00 0.00 134 42 -73 27 8.72 1.46

135 -19 -78 -33 11.88 0.76 135 31 -61 -29 0.00 0.00 135 -19 -78 -33 8.53 0.00

136 43 22 34 11.86 0.68 136 -15 -64 -21 0.00 0.00 136 0 -29 30 8.30 0.00

137 -56 -48 9 11.84 0.00 137 27 -74 27 0.00 0.00 137 2 -66 -24 8.00 6.00

138 0 -29 30 11.83 0.00 138 5 -75 -12 0.00 0.00 138 -15 -64 -21 7.53 0.00

139 -28 51 15 11.80 0.00 139 -40 -48 27 0.00 0.00 139 -2 23 42 7.48 1.25

140 -4 -40 43 11.67 0.00 140 26 -90 0 0.00 0.00 140 30 -61 39 7.36 0.00

141 2 -66 -24 11.63 0.00 141 50 -18 -9 0.00 0.00 141 -10 -72 -15 7.27 2.20

142 32 -81 -3 11.58 0.00 142 -23 -60 -33 0.00 0.00 142 -25 45 30 7.16 4.63

143 -22 -54 -21 11.25 0.00 143 -10 -72 -15 0.00 0.00 143 -40 -76 22 7.14 0.00

144 -41 3 36 11.22 0.00 144 2 -66 -24 0.00 0.00 144 14 -75 -21 6.55 3.51

145 42 -73 27 10.87 0.00 145 -4 -93 9 0.00 0.00 145 56 3 36 6.26 0.00

146 -40 -76 22 10.84 0.00 146 -25 45 30 0.00 0.00 146 -32 -66 -29 6.13 0.00

147 30 -61 39 10.74 0.00 147 -11 39 21 0.00 0.00 147 -4 -93 9 6.02 0.00

148 -35 -82 -5 9.67 0.00 148 -5 -60 -15 0.00 0.00 148 52 -33 -15 5.89 0.00

149 -32 -66 -29 8.97 0.68 149 41 -15 39 0.00 0.00 149 32 27 12 5.86 0.00

150 -2 -75 29 8.74 0.72 150 56 3 36 0.00 0.00 150 19 -78 -3 5.79 3.70

151 8 -76 12 7.68 0.00 151 -32 -66 -29 0.00 0.00 151 -2 -75 29 5.37 3.60

152 56 3 36 7.55 0.00 152 -43 -9 48 0.00 0.00 152 8 -76 12 5.17 1.64

153 52 -33 -15 5.64 0.00 153 -28 -75 24 0.00 0.00 153 26 -90 0 4.98 6.33

154 -5 -80 7 4.91 0.00 154 -28 51 15 0.00 0.00 154 -5 -80 7 4.86 0.00

155 -5 -60 -15 4.80 0.00 155 27 50 23 0.00 0.00 155 -4 -40 43 3.76 0.00

156 26 -90 0 4.75 0.00 156 0 -29 30 0.00 0.00 156 -5 -60 -15 3.64 0.00

157 31 -61 -29 3.60 0.00 157 30 -61 39 0.00 0.00 157 -56 -48 9 2.85 0.00

158 5 -75 -12 2.42 0.00 158 -40 -76 22 0.00 0.00 158 31 -61 -29 2.44 0.00

159 -4 -93 9 2.34 0.00 159 -4 -40 43 0.00 0.00 159 5 -75 -12 0.00 11.59

160 -40 -48 27 0.00 0.00 160 52 -33 -15 0.00 0.00 160 -40 -48 27 0.00 0.00

FDR Concensus FDR Concensus FDR Concensus

Age - Procedure 5 Age - Procedure 10Age - Procedure 7Rank

X Y Z

Rank

X Y Z

Rank

X Y Z

Coordinates Coordinates Coordinates

was not exclusionary except for Conduct Disorder, Bipolar and

Major Depressive Disorders, as well as any psychotic disorders.

Psychostimulant drugs were withheld at least 24 h before scan-

ning. Inclusion criteria for TDC required absence of any Axis-I

psychiatric diagnoses per parent and child KSADS-PL interview,

as well as T-scores below 60 for all the CPRS-R: LV ADHD sum-

mary scales. Estimates of FSIQ above 80, right-handedness and

absence of other chronic medical conditions were required for all

children.

Peking University/Beijing Normal University

Study participants with the diagnosis of ADHD were initially

identified using the Computerized Diagnostic Interview Schedule

IV (C-DIS-IV) (Shaffer et al., 2000). Upon referral for partici-

pation to the study participation, all participants (ADHD and

TDC) were evaluated with the Schedule of Affective Disorders

and Schizophrenia for Children—Present and Lifetime Version

(KSADS-PL) with one parent for the establishment of the

diagnosis for study inclusion. Thus, identification of the ADHD

subtype was based on this psychiatric interview. Additional inclu-

sion included: (1) right-handedness, (2) no history of neuro-

logical disease and no diagnosis of either schizophrenia, affec-

tive disorder, or pervasive development disorder, and (3) full

scale Wechsler Intelligence Scale for Chinese Children-Revised

(WISCC-R) score of greater than 80. Psychostimulant medica-

tions were withheld at least 48 h prior to scanning. Informed

consent was also obtained from the parent of each subject and

all of the children agreed to participate in the study.

Brown University and Bradley Hospital

Psychiatric diagnoses were based on evaluation by the same

board-certified child/adolescent psychiatrist (DPD) for all partic-

ipants, using the Child Schedule for Affective Disorders Present

and Lifetime version (KSADS-PL) administered to parents and

children separately (Puig-Antich and Ryan, 1986). All partici-

pants completed the WASI as an overall measure of cognitive

Frontiers in Systems Neuroscience www.frontiersin.org February 2013 | Volume 6 | Article 80 | 26

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Fair et al. Differentiating ADHD subtypes with rs-fcMRI

FIGURE A1 | For procedures 2 (A), 3 (B), and 4 (C) (as in Figure 2) on left

histograms of Euclidean distance for functional connections that get

stronger with age and those that get weaker with age (FDR corrected).

As in Figure 3 (middle) SVR-based MVPA brain maturation curves and on

right Euclidean distance of consensus features that grow up with age vs.

those that grow down with age.

ability (Wechsler, 1999, 2003). Children in the ADHD group

had to meet Diagnostic and Statistical Manual 4th Edition Text

Revision (DSM-IV-TR) criteria for ADHD, as determined by

parent and child answers to the KSADS-PL and were required

to have ongoing psychiatric treatment. Exclusion criteria were

comorbid mood or anxiety disorders, any autism spectrum disor-

der, medical illness that was unstable, or could cause psychiatric

symptoms, or substance abuse within ≤2 months of participa-

tion. All ADHD participants taking psychostimulant medications

(i.e., derivatives of methylphenidate or dextroamphetamine) were

scanned when medication-free for five drug half-lives. TDC par-

ticipant inclusion criteria were a negative history of psychiatric

illness in the participant and their first-degree relatives. Exclusion

criteria were pregnancy, ongoing medical or neurological illness

or past/present psychiatric, or substance disorder. All participants

had an IQ greater than 70.

DATA ACQUISITION AND PROCESSING

Oregon Health and Science University

Participants were scanned using a 3.0 Tesla Siemens Magnetom

Tim Trio scanner (Siemens, Erlangen, Germany) with a 12-

channel head-coil at the OHSU Advanced Imaging Research

Center. One high-resolution T1-weighted MPRAGE sequence

lasting 9 min and 14 s (TR = 2300 ms, TE = 3.58 ms, orien-

tation = sagittal, 256 × 256 matrix, resolution = 13 mm) was

collected. Blood-oxygen level dependent (BOLD)-weighted func-

tional imaging data were collected in an oblique plane (parallel

to the ACPC) using T2∗-weighted echo-planar imaging (EPI)

(TR = 2500 ms, TE = 30 ms, flip angle = 90◦, FOV = 240 mm,

36 slices covering the whole brain, slice thickness = 3.8 mm, in-

plane resolution = 3.8 × 3.8 mm). Steady state magnetization was

assumed after five frames (∼10 s). Three runs of 3.5 min each

were obtained. During rest periods subjects were instructed to
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FIGURE A2 | Site-by-site histograms of Euclidean distance for functional connections identified in the whole group analysis that get stronger with

age and those that get weaker with age (FDR corrected) using procedure 8.

stay still, and fixate on a standard fixation-cross in the center of

the display.

Kennedy Krieger Institute

Participants were scanned using a 3.0 Tesla Philips scanner with

an eight-channel head-coil. One high-resolution T1-weighted

MPRAGE sequence (TR = 7.99 ms, TE = 3.76 ms, flip angle = 8◦)

was collected. BOLD-weighted functional imaging data were col-

lected using T2∗-weighted EPI (TR = 2500 ms, TE = 30 ms, flip

angle = 75◦, 2D-SENSE EPI). The run lasted either 5 min 20 s or

6 min 30 s. During rest participants were instructed to relax, stay

as still as possible, keep eyes open, and fixate on a center cross.

New York University

Participants were scanned using a Siemens Allegra 3.0 Tesla scan-

ner at the NYU Center for Brain Imaging. For each participant a

T1-weighted MPRAGE sequence was acquired using a magneti-

zation prepared gradient echo sequence (TR = 2530 ms; TE =
3.25 ms; TI = 1100 ms; flip angle = 7◦; 128 slices; FOV =

256 mm; acquisition voxel size = 1.31 × 1.3 mm). A 6-minute

resting scan comprising 180 contiguous whole-brain functional

volumes was also acquired for each participant using a multi-

echo EPI sequence (TR = 2000 ms; flip angle = 90◦; 33 slices;

voxel size = 3 × 3 × 4 mm; effective TE = 30 ms, FOV = 240 ×
192 mm). During rest periods participants were instructed to lie

still and relax with their eyes open, while a standard fixation-cross

was presented in the center of the display.

Peking University samples

Dataset #1. Images were acquired using a Siemens Trio 3.0 Tesla

scanner in National Key Laboratory of Cognitive Neuroscience

and Learning, Beijing Normal University. For each participant,

FIGURE A3 | As with Figure 7, Node strength for the consensus

features that best predict age for Procedure 8 in (A), Procedure 5 in (B),

and Procedure 10 (C). Included are the vectors, which are used to

calculate node strength.
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FIGURE A4 | Post-hoc comparisons on the consensus features

from the 2-group classification for Procedures 5 and 8. While

not identical, patterns across all of these movement correction

procedures is largely consistent. Top: TDC vs. ADHD-C. Middle: TDC

vs. ADHD-I. Bottom: ADHD-C vs. ADHD-I. Left: Procedure 5. Right:

Procedure 8 [Node colors represent network categorization stemming

from a community detection procedure performed for a previous

report (Dosenbach et al., 2010). Red—default; blue—cerebellum;

yellow—fronto-parietal; black—cingulo-opercular; green—occipital;

cyan—sensorimotor].

FIGURE A5 | As in Figures 8 and A4, Post-hoc comparisons on

the consensus features from the 3-group classification. Included

are the vectors, which are used to calculate node strength. Top:

TDC vs. ADHD-C. Middle: TDC vs. ADHD-I. Bottom: ADHD-C

vs. ADHD-I. Left: Procedure 5. Middle: Procedure 8. Right:

Procedure 10.
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FIGURE A6 | A re-examination of SVR-based MVPA brain maturation

curve for Procedure 7 (frame removal) while including only those

subjects with <60% of their frames removed.

a high-resolution T1-weighted anatomical image was acquired

[128 sagittal slices, slice thickness/gap = 1.33/0 mm, in-plane res-

olution = 256 × 192, TR = 2530 ms, TE = 3.39 ms, inversion

time (TI) = 1100 ms, flip angle = 7◦, FOV = 256 × 256 mm2].

A resting-state scan was obtained for each participant (33 axial

slices, TR = 2000 ms, TE = 30 ms, flip angle = 90◦, thickness/gap

= 3.5/0.7 mm, FOV = 200 × 200 mm2, matrix = 64 × 64, 240

volumes), as well as diffusion tensor imaging (not reported here).

Dataset #2. Images were acquired using a Siemens Trio 3.0 Tesla

scanner in National Key Laboratory of Cognitive Neuroscience

and Learning, Beijing Normal University. All of the resting-state

functional data were acquired using an EPI sequence with the fol-

lowing parameters: 33 axial slices, TR = 2000 ms, TE = 30 ms,

flip angle = 90◦, slice thickness/skip = 3.0/0.6 mm, FOV =
200 × 20 mm, in-plane resolution = 64 × 64, 240 volumes. For

each patient, T1-weighted structural images were acquired using

a spoiled gradient-recalled sequence covering the whole brain

and used for the purpose of image registration (see Data pre-

processing). The T1-weighted structural images were acquired

with the following parameters: 176 sagittal slices, TR = 2530 ms,

TE = 3.45 ms, flip angle = 7◦, slice thickness/skip = 1.0/0 mm,

FOV = 256 × 256 mm, in-plane resolution = 256 × 256.

Children with ADHD were scanned twice, in a double-blinded,

randomized, counterbalanced way. The two scans were at least 2

days apart, and each scan was taken 1 h after either 10 mg MPH

administration or placebo (Vitamin B6, 10 mg). All the patients

FIGURE A7 | Network categorization of each ROI was based on labels

designated in a previous report (Dosenbach et al., 2010). This

categorization stemmed from a community detection procedure conducted

on combined correlation matrices across adult subjects [e.g., see Fair et al.

(2009)]. The modularity optimization algorithm of Newman was used

(Newman, 2006). The modules (i.e., communities) used to categorize regions

had a high quality index (Q) and were the most resistant to perturbation by

randomization, measured by variation of information (VOI) (Karrer et al.,

2008). These community assignments were re-examined here for both

children and adults after applying procedure 8. In this instance, the weight

conserving community detection algorithm used was based on the work by

Rubinov and Sporns (2011). Network assignments largely agreed with the

previous report and were similar in children and adults. On the left network

assignments are visualized on the brain and on the right in matrix form.
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FIGURE A8 | Sample corrected subject data for Procedure 10. For a given

subject, correlation matrices are re-created after censoring (i.e., scrubbing).

Differences in the correlation values from the original matrix and the

censored matrix are then plotted as a function of distance. The red curve

shows the trend of delta r based on LOWESS smoothing. The blue curve

shows the polynomial (see Methods) fit. The method is applied on each

subject individually such that every subject will have a fit for their respective

curve. The fit is then used to regress the effect of movement on the original

r-values. Censoring the frames as in Procedure 7 after applying this

procedure reveals no effect of movement (Right panel).

had not received stimulant treatment for at least 2 days before

the first scan, and were asked not to take any stimulant between

two scans. The control boys were scanned once without MPH or

placebo taken for ethical reasons. Only placebo scans were used

for the present study.

Dataset #3. This dataset was previously employed in a prior

study (Cao et al., 2009).

Images were acquired using a Siemens Trio 3.0 Tesla scan-

ner in the Institute of Biophysics, Chinese Academy of Sciences.

Rest scans were acquired using an EPI sequence with the fol-

lowing parameters: 30 axial slices, TR = 2000 ms, TE = 30 ms,

flip angle = 90◦, thickness/skip = 4.5/0 mm, FOV = 220 ×

220 mm, matrix = 64 × 64, 240 volumes. Participants were asked

simply to remain still, close their eyes, think of nothing sys-

tematically, and not fall asleep. Additionally, for each partici-

pant, a high-resolution T1-weighted anatomical image using a

spoiled gradient-recalled sequence covering the whole brain was

acquired. The data were collected in a period of about 2 years

and some modifications were made in the sequence of the struc-

tural images. Most of the subjects (see details below) were scanned

with one of the following two kinds of parameters: (1) 192 slices,

TR = 2000 ms, TE = 3.67 ms, inversion time = 1100 ms, flip

angle = 12◦, FOV = 240 × 240 mm, matrix = 256 × 256, used

in 8 patients and 12 controls; (2) 176 slices, TR = 1770 ms, TE

= 3.92 ms, inversion time = 1100 ms, flip angle = 12◦, FOV =
256 × 256 mm, matrix = 512 × 512, used in 9 patients and 11

controls. Other scanning sessions, which have no relation to the

present study, are not described here.

Brown University

Scans were acquired on a Siemens Tim Trio 3.0 Tesla scanner with

a 12-channel head-coil. A high-resolution T1-weighted MPRAGE

anatomical image was acquired for normalization and localiza-

tion (TR = 2250 ms, TE = 2.98 ms, T1 = 900 ms, flip angle = 9◦,

slices = 160, FOV = 256 mm, voxels = 1 × 1 × 1 mm). The

resting-state functional connectivity scan contained 256 continu-

ous BOLD volumes (TR = 2000 ms, TE = 25 ms, flip angle = 90◦,

slices = 35, FOV = 192 mm, voxels = 3 × 3 × 3 mm). The scan

lasted for 8 min and 36 s. During the scan, participants were

instructed to rest with their eyes open while the word “relax” was

back-projected via LCD projector.

Washington University

Scans were acquired on a Siemens Tim Trio 3.0 T Scanner with

a Siemens 12-channel Head Matrix Coil. A T1-weighted sagittal

MP-RAGE anatomical image was acquired (TE = 3.06 ms, TR-

partition = 2.4 s, TI = 1000 ms, flip angle = 8◦, 176 slices with

1 × 1 × 1 mm voxels). The resting-state functional connectivity

scan were obtained using a BOLD contrast sensitive gradient

echo echo-planar sequence (TE = 27 ms, flip angle = 90◦, in-

plane resolution = 4 × 4 mm; volume TR = 2.5 s). Whole-brain

coverage for the functional data was obtained using 32 contiguous

interleaved 4 mm axial slices.
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