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Abstract

Plankton communities normally consist of few abundant and many rare species, yet little is known about the ecological role

of rare planktonic eukaryotes. Here we used a 18S ribosomal DNA sequencing approach to investigate the dynamics of rare

planktonic eukaryotes, and to explore the co-occurrence patterns of abundant and rare eukaryotic plankton in a subtropical

reservoir following a cyanobacterial bloom event. Our results showed that the bloom event significantly altered the

eukaryotic plankton community composition and rare plankton diversity without affecting the diversity of abundant

plankton. The similarities of both abundant and rare eukaryotic plankton subcommunities significantly declined with the

increase in time-lag, but stronger temporal turnover was observed in rare taxa. Further, species turnover of both

subcommunities explained a higher percentage of the community variation than species richness. Both deterministic and

stochastic processes significantly influenced eukaryotic plankton community assembly, and the stochastic pattern (e.g.,

ecological drift) was particularly pronounced for rare taxa. Co-occurrence network analysis revealed that keystone taxa

mainly belonged to rare species, which may play fundamental roles in network persistence. Importantly, covariations

between rare and non-rare taxa were predominantly positive, implying multispecies cooperation might contribute to the

stability and resilience of the microbial community. Overall, these findings expand current understanding of the ecological

mechanisms and microbial interactions underlying plankton dynamics in changing aquatic ecosystems.

Introduction

Disturbance can have profound and multiple effects on

ecosystems, greatly altering natural community structure

[1]. In aquatic systems, cyanobacterial blooms are a

common biological disturbance affecting plankton com-

munities [2]. Eukaryotic plankton play an important role

in the trophic web structure [3], and cyanobacterial

blooms may change food webs by inhibiting the growth of

other phytoplankton, further influencing resource use

efficiency in phytoplankton and zooplankton communities

[4, 5]. As important components of food webs, eukaryotic

plankton carry out a range of ecological roles, such as

primary producers, bacterivores, planktivores, parasites,

and saprotrophs [6, 7]. Thus their responses to environ-

mental fluctuations may directly influence aquatic eco-

system functioning [8]. However, there are significant

knowledge gaps about how environmental conditions

shape whole eukaryotic plankton communities (including

Protists and Fungi) [9]. Reservoirs are one of suitable

freshwater ecosystems in which to study the succession of

eukaryotic plankton communities, owing to their highly

dynamic environment dominated by diverse microorgan-

isms [10].

Eukaryotic plankton are extremely diverse with relatively

few abundant species co-existing with a large number of

rare species, the latter often referred to as the “rare bio-

sphere” [11, 12]. Owing to methodical limitations, previous

analyses of eukaryotic plankton communities have mainly
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focused on relatively abundant taxa through microscope

observation [13]. These abundant taxa contribute to the

fluxes of organic matter and biomass production [14],

thereby studying their community composition is important

for understanding ecological function. Rapid advances in

molecular approaches have substantially boosted our

knowledge of rare microbial diversity. In particular, high-

throughput sequencing technologies have been successfully

applied to compare the composition and dynamics of

abundant and rare eukaryotic communities in various

aquatic ecosystems, including coastal waters and intertidal

sediments [15], epipelagic waters [16], and reservoirs [17].

Recent studies have increasingly emphasized the eco-

logical importance of the rare biosphere, because rare taxa

can include more metabolically active microorganisms

than abundant taxa (as measured by RNA to DNA ratios),

and they may be keystone species in regulating the

functioning of aquatic environments [18, 19]. The rare

microbes have been shown to fulfill essential functions

associated with nutrient cycling, and may enhance func-

tionality of the abundant microbes (as reviewed in Jousset

et al. [20]). Additionally, as part of the microbial “seed

bank”, rare taxa can potentially drive ecosystem respon-

ses to environmental changes and become dominant

under favorable conditions [21], therefore providing a

mechanism for community persistence and stability [22].

In aquatic ecosystems, the response of plankton com-

munities to environmental change is mediated by their

properties, such as physiological tolerance, dispersal

capacity, and taxonomic, and functional diversity [8, 23].

Abundant and rare community assemblages are likely

subject to different controlling factors. For example,

previous marine studies showed that in surface waters,

abundant taxa were primarily influenced by dispersal

limitations, while rare taxa were mainly controlled by

environmental filtering [16].

Cyanobacterial blooms can have a major impact on the

microbial community through both direct (e.g., species

interactions) and indirect (e.g., bloom-induced changes in

water properties) effects [2, 24]. While there has been

considerable research conducted on the interactions

between the abundant planktonic eukaryotes and cyano-

bacteria [25, 26], few studies have investigated how cya-

nobacterial blooms affect rare planktonic eukaryotes in the

water column. A complex network of interrelationships can

reveal the intrinsic mechanisms of microbial interactions in

response to environmental disturbance [27]. When con-

sidering the whole eukaryotic community, the complex co-

occurrence networks between interacting microorganisms

(e.g., autotrophs, heterotrophs, and parasites; abundant and

rare taxa) and the topological features of these networks can

be explored. Such networks have been constructed to unveil

bacterial interactions in a range of systems, such as river

[28], oil-contaminated soil [29], and marine [30] ecosys-

tems. Until now, however, the co-occurrence patterns of

rare and abundant eukaryotes, particularly in reservoir and

lake ecosystems, have not been investigated.

Here, for the first time, we investigated the temporal

patterns of eukaryotic plankton communities using 18S

rRNA gene-based high-throughput sequencing and

explored the associations between abundant and rare

planktonic eukaryotes based on network analysis in a

subtropical reservoir. This reservoir system was experi-

encing a cyanobacterial bloom at the beginning of the

sampling period, and we tracked the biotic and abiotic

changes through the three months following the bloom

event. Our main objectives are to (i) compare the diversity

and composition of abundant and rare eukaryotic plankton

communities, and their relative contributions to commu-

nity shift over time; (ii) uncover the co-occurrence patterns

of abundant and rare planktonic eukaryotes; (iii) identify

the controlling mechanisms and factors that influence the

dynamics of the eukaryotic plankton community. Taken

together, this research will enhance our understanding of

the dynamics of eukaryotic plankton communities in

variable environments, with special emphasis on the rare

biosphere.

Materials and methods

Sampling and environmental information

The study site (Xidong Reservoir, 24°49′ N, 118°10′ E),

and the sampling design have been previously described in

Xue et al. [24]. Briefly, water samples (n= 18) were col-

lected twice a month from October to December 2014

across three discrete depths: surface (0.5 m), middle (ther-

mocline or oxycline at 12, 14, 17, 17, 20, and 18 m, for the

six sampling dates) and bottom (25 m) water layers.

The cyanobacterial bloom was observed in October, and the

reservoir recovered in November based on chlorophyll a

concentration and water transparency (Fig. S1). Micro-

scopic inspection showed that this bloom was almost

exclusively (>80% of phytoplankton biomass) composed of

Microcystis aeruginosa (Fig. S2). A temporal frame work

divided into three successional periods is used here: the

bloom period in October, post-bloom period 1 in Novem-

ber, and post-bloom period 2 in December. Water samples

were divided into two subsamples: one for eukaryotic

plankton community analyses and the other for water

chemistry. For the eukaryotic plankton, 500 mL of water

was filtered through 0.22 μm polycarbonate filters (47 mm

diameter, Millipore, Billerica, MA, USA). Filters were

stored at –80 °C until further processing. In total, 17 mea-

sured environmental variables in the water were taken
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directly from our previous study [24]. Transparency was

determined with a 30 cm Secchi disk. Chlorophyll a was

measured with a PHYTO-PAM Phytoplankton Analyzer

(Heinz Walz GmbH, Eichenring, Germany).

DNA extraction, PCR, and Illumina sequencing

Extraction and purification of plankton DNA from filters

were carried out using the FastDNA spin kit for soil (MP

Biomedicals, Santa Ana, CA, USA) following the manu-

facturer’s instructions. The V9 region of the eukaryotic

small-subunit 18S rRNA gene was amplified using the

primer set 1380F (5′-CCCTGCCHTTTGTACACAC-3′)

and 1510R (5′-CCTTCYGCAGGTTCACCTAC-3′) [31].

Each plankton DNA sample was PCR-amplified in tripli-

cate. The 30 μL PCR mixture contained 15 μL of Phusion

High-Fidelity PCR Master Mix (New England Biolabs,

Beverly, MA, USA), 0.2 μM of each primer, and 10 ng of

sample DNA. The PCR reaction conditions were 98 °C for

1 min, followed by 30 cycles of 10 s at 98 °C, 50 °C for 30

s, 72 °C for 30 s, and a final extension at 72 °C for 5 min.

The triplicate PCR products for each sample were pooled in

equal quantity for purification and sequenced on the Illu-

mina HiSeq2500 platform (Illumina, Inc., San Diego, CA,

USA) using a paired-end (2×250 bp) approach [17].

Bioinformatics

Paired-end reads from the raw DNA fragments were

assembled with FLASH and the mean contig read length

was 137 ± 0.6 bp [32]. For the 18 water samples, we

obtained 2,532,735 raw reads, ranging from 127,914 to

155,100 with a mean of 140,707 reads per sample.

Sequence processing was performed using the quantitative

insights into microbial ecology (QIIME v.1.8.0) pipeline

with the following settings: reads with an average Phred

score <25 were discarded; maximum number of consecutive

low-quality base= 3; minimum of continuous high-quality

base= 75% of total read length; maximum number of

ambiguous bases= 0, last quality score= 3 [33]. Chimeric

sequences were identified by UCHIME and removed before

downstream analysis [34]. The UPARSE pipeline was used

to pick operational taxonomic units (OTUs) at 97% simi-

larity level [35]. Subsequently, a representative sequence

from each OTU was aligned against the SILVA 123 refer-

ence alignment using the RDP classifier [36]. To minimize

inclusion of sequencing errors, singletons (OTUs with only

one sequence) were eliminated in the whole data set, and

then we used a randomly selected subset of

123,090 sequences from each sample to normalize

sequencing effort across samples. The final total data set

retained 2305 OTUs and 2,215,620 reads at 97% similarity

level.

Definition of abundant and rare taxa

The definition of abundant and rare taxa depends on the

cutoff level of relative abundance, setting 0.1 or 0.01% as

rare OTUs and 1% as abundant OTUs [11, 15, 17]. These

classifications can neglect the intermediate taxa (i.e., rela-

tive abundance between 0.1 or 0.01 and 1%) and the

oscillating taxa (i.e., rare and abundant under different

conditions). In this study, we classified all OTUs into six

categories following recent studies [12, 37]: always abun-

dant taxa (AAT) with a relative abundance ≥1% in all

samples; conditionally abundant taxa (CAT) with a relative

abundance ≥0.01% in all samples and ≥1% in some sam-

ples; always rare taxa (ART) with a relative abundance

<0.01% in all samples; conditionally rare taxa (CRT) with a

relative abundance <0.01% in some samples but never ≥1%

in any sample; moderate taxa with a relative abundance

between 0.01% and 1% in all samples (MT); conditionally

rare and abundant taxa (CRAT) with a relative abundance

ranging from rare (<0.01%) to abundant (≥1%). Then, for

the comparative study of abundant and rare taxa, the

abundant taxa (AT) consisted of always abundant and

conditionally abundant taxa, and the rare taxa (RT) com-

posed of always rare and conditionally rare taxa. Detailed

and general descriptions of abundant and rare data sets are

presented in Supplementary Tables S1 and S2.

Ecological inference

We tentatively performed a basic functional annotation to

discriminate OTUs corresponding to pigmented and non-

pigmented taxa. Ecological inference was based on the lit-

erature describing the presence or absence of chloroplasts in

microbial eukaryotic groups [3, 38, 39]. Pigmented groups

comprised both obligate phototrophs (e.g., Chlorophyta and

Diatomea) and mixotrophs (e.g., Chrysophyceae, Crypto-

phyceae, and Dinophyceae). OTUs distributed within

groups of free-living heterotrophs (e.g., Ciliophora, Cerco-

zoa, and osmotrophic Fungi) and parasites (Apicomplexa,

Chytridiomycota, Perkinsidae, Peronosporomycetes, and

Pirsonia) were reliably assigned to non-pigmented taxa.

When OTUs could not be precisely identified (i.e., to at

least the genus level), they were assigned to “unknown”

ecological roles (e.g., unidentified Alveolata).

Statistical analyses

Alpha-diversity analysis

Alpha-diversity indices were computed using the diversity

function in the “vegan” R package. Spatiotemporal effects

on alpha-diversity were examined with two-way analysis of

variance (two-way ANOVA) using SPSS Statistics for

Abundant and rare eukaryotic plankton dynamics 2265



Windows v.22.0 (IBM Corp., Armonk, NY, USA). To

estimate sampling effort, we fitted our data to a truncated

Preston log-normal distribution using the prestonfit and

prestondistr functions of the “vegan” R package [40].

Beta-diversity analysis

Beta-diversity was measured using Bray–Curtis dissim-

ilarity [41]. The beta-diversity values of different sub-

communities were partitioned into two components, the

balanced variation (richness) and abundance gradient

(turnover), using the bray.part function of the “betapart” R

package [29]. To reveal temporal patterns in eukaryotic

plankton communities, a time-lag analysis was used to

quantify the Bray–Curtis dissimilarity between each pair of

samples, and the time difference (lag) was then plotted

against the dissimilarity [42]. Eukaryotic plankton com-

munity composition was visualized using non-metric mul-

tidimensional scaling (NMDS) based on Bray–Curtis

dissimilarities. Analysis of similarity (ANOSIM) was used

to investigate differences in eukaryotic plankton commu-

nities between groups. The contribution of each species

(i.e., OTU) to community dissimilarity over time was cal-

culated using similarity percentage (SIMPER) analysis. The

NMDS, ANOSIM, and SIMPER analyses were performed

using PRIMER v.7.0 and PAST v.2.12. Finally, to further

explain the patterns of beta-diversity, we calculated Levin’s

niche breadth index separately for the abundant and rare

taxa [43].

Indicator OTUs associated with environmental changes

We determined which OTUs could explain the time effect in

diversity by identifying indicator species in the “indic-

species” R package [44]. This analysis calculates an indicator

value that measures the association between OTUs and

groups of samples and then identifies the group corre-

sponding to the highest association value. For this study, we

compared samples across three periods (cyanobacterial

bloom period, post-bloom period 1, and post-bloom period 2)

to determine temporal indicators based on an indicator value

>0.7 and P-value < 0.05 assessed after 999 permutation tests.

Network analysis

To reduce the complexity of the data sets, OTUs present in

more than six samples with more than 20 sequences were

retained for the construction of networks. A total of 1058

OTUs were used for the network analyses. Subsequently, all

possible pairwise Spearman’s rank correlations (r) between

those OTUs were calculated within the “picante” R package.

Only robust (r > 0.8 or r <−0.8) and statistically significant

(P-value < 0.01) correlations were incorporated into network

analyses [28]. Network visualization and modular analysis

were made with Gephi version 0.8.2. Node-level topological

properties (i.e., degree, betweenness, closeness, and eigen-

vector) were further calculated in the “igraph” R package.

Statistical differences in measured node-level attributes across

different taxa were determined using nonparametric

Mann–Whitney U test. Nodes with high degree (>100) and

low betweenness centrality values (<5000) are recognized as

keystone species in co-occurrence networks [45]. Hubs (i.e.,

highly linked species within their own module) and con-

nectors linking different modules in co-occurrence network

were identified based on their connectivity as described pre-

viously [46]. Meanwhile, 1000 Erdös–Réyni random net-

works, which had the identical number of nodes and edges as

the real networks, were generated in the “igraph” R package,

with each edge having the same probability of being assigned

to any node [47]. Topology characteristics of both real and

random networks were calculated and compared, including

modularity, clustering coefficient, and average path length.

Relationships between community composition and

environment variables

We implemented the Mantel test using the “vegan” package

in R to select significant environmental factors correlated

with the variations of eukaryotic plankton communities.

Prior to the analysis, the normality of the physicochemical

variables was checked using the Shapiro–Wilk test, and log

(x+1) transformed, with the exception of pH, to improve

normality and homoscedasticity. Additionally, Spearman

correlations were calculated to discern the relationship

between the OTUs of each major module and environ-

mental variables in the “picante” R package. Only robust

(Spearman’s r > 0.8 or r <−0.8) and statistically significant

(P-value < 0.01) correlations were considered in this study.

Neutral community model

A neutral community model was used to determine the

potential contribution of neutral processes to eukaryotic

plankton community assembly by predicting the relation-

ship between OTUs occurrence frequency and their relative

abundance [48]. This model predicts that rare taxa will be

lost with time due to ecological drift, while abundant taxa

are more likely to be dispersed by chance and thus present

in more samples. In this model, R2 and Nm values indicate

the fit to the neutral model and metacommunity size times

immigration, respectively.

Accession numbers

All raw sequences data from this study have been submitted

to the NCBI Sequence Read Archive (SRA) database under

2266 Y. Xue et al.



the BioProject number PRJNA348137 and the accession

number SRP091963.

Results

General patterns of species richness and alpha-
diversity

Overall, the sequencing of 18S rRNA genes yielded

2,215,620 high-quality sequences and 2305 OTUs at 97%

similarity level. The total number of OTUs (2305) in all

samples was roughly equivalent to the richness estimated by

Chao 1 (2372 ± 15) and ACE (2371 ± 24) (Table S2). The

rarefaction curves almost approached saturation for the total

and three separate periods (Fig. S3a). Further, we fitted our

community data to the truncated Preston log-normal model

(Fig. S3b), and estimated that our sampling found 87–88%

of the OTUs in the studied reservoir. These results indicated

that the majority of the eukaryotic plankton diversity had

been recovered by the deep sequencing.

In the whole data set, 44 OTUs (1.91%) representing

73.04% of all sequences were abundant and persistent

across all periods, whereas 2167 OTUs (94.01%) con-

tributing 13.84% of all sequences were affiliated to rare taxa

(Table S2). The non-pigmented taxa (mainly Ciliophora,

Fungi, and Cercozoa) dominated the OTU richness, toge-

ther representing 40.5% of the total OTUs (Table S3).

Pigmented groups, dominated by Chlorophyta (117 OTUs),

Chrysophyceae (99 OTUs), and Cryptophyceae (94 OTUs),

accounted for only 20.7% of all OTUs.

Alpha-diversity of all and abundant taxa showed a

similar pattern, and did not differ over depth and time

(Table 1). However, rare taxa exhibited a significant tem-

poral pattern with an increase in Shannon–Wiener diversity,

Simpson diversity, and Pielou’s evenness from bloom to

post-bloom 1, followed by a loss of these indices during

post-bloom 2 (Table 1 and Fig. S4). Venn diagram analysis

indicated that most of the OTUs were shared among three

periods, and all of the period-specific OTUs belonged to

rare taxa (Fig. 1b). Additionally, we found high variability

in the number of strict indicator OTUs over time (ranging

from 41 during bloom period, 3 during post-bloom period

1 to 87 during post-bloom period 2). The taxonomic com-

positions of strict indicators were significantly different

among three different periods (Table S4).

Temporal dynamics in microbial community
composition

Generally, the time-lag regression analysis had significant

positive slopes, indicating both microbial plankton com-

munities and environmental conditions were undergoing a

directional change (Fig. 2a–c and Fig. S5). However, the

slope for the rare taxa was significantly steeper than those in

the all and abundant taxa. Beta-diversity partitioning further

revealed that species replacement (turnover), rather than

species richness, accounted for the majority of the beta-

diversity, and drove the shift in community composition

over time (Fig. 2d–f and Fig. S6).

Our results revealed that eukaryotic plankton commu-

nities clustered strongly by time rather than depth, and three

groups of samples were clearly defined: bloom, post-bloom

1, and post-bloom 2 (Fig. 1a). The Mantel test results also

demonstrated that eukaryotic plankton communities were

mainly governed by temporal factors (Table 2). Rare taxa

showed a striking separation compared with the all and

abundant taxa, confirmed by the comparison of between-

Table 1 Two-way ANOVA showing the effects of time and depth on

the alpha-diversity of eukaryotic plankton

All Abundant Rare

F P F P F P

Time

Richness 1.789 0.222 1.792 0.221

ACE 1.674 0.241 1.678 0.240

Chao 1 1.646 0.246 1.658 0.244

Shannon–Wiener 1.264 0.328 1.025 0.397 11.561 0.003

Simpson 1.373 0.302 1.382 0.300 9.422 0.006

Pielou’s evenness 1.333 0.311 1.025 0.397 20.786 0.000

Depth

Richness 1.356 0.306 1.353 0.306

ACE 1.166 0.354 1.170 0.354

Chao 1 1.378 0.301 1.384 0.299

Shannon–Wiener 1.419 0.291 1.366 0.303 0.571 0.584

Simpson 1.806 0.219 1.492 0.276 0.142 0.870

Pielou’s evenness 1.437 0.287 1.366 0.303 0.016 0.984

Time × Depth

Richness 1.814 0.210 1.802 0.213

ACE 1.470 0.289 1.452 0.294

Chao 1 1.511 0.278 1.508 0.279

Shannon–Wiener 1.207 0.372 0.857 0.525 0.357 0.833

Simpson 0.865 0.520 0.686 0.619 0.567 0.693

Pielou’s evenness 1.125 0.403 0.857 0.525 0.188 0.939

Note that abundant OTUs were persistent across all samples, and the F

and P values of richness, ACE, and Chao 1 indices cannot be

calculated

Time indicates three successional periods, including bloom, post-

bloom 1, and post-bloom 2 periods

Depth denotes surface, middle, and bottom water layers

All, whole eukaryotic plankton; Abundant, abundant eukaryotic

plankton; Rare, rare eukaryotic plankton

Bold font means the significance at P < 0.05 level

Abundant and rare eukaryotic plankton dynamics 2267



group distances among different periods and the results of

ANOSIM analyses (Fig. 1c and Table 3). Further, abundant

taxa exhibited greater niche breadth values than rare taxa

among three periods (Fig. S7).

A greater number of taxonomic groups were present

among rare planktonic eukaryotes than abundant ones

(Fig. S8). The abundant taxa entailed only two major con-

tributors to the community rearrangements, including

Arthropoda (6.76%), for which the relative abundance of

sequences declined over time, and Cryptophyceae (2.72%)

characterized by a marked increase from bloom to post-

bloom periods (Fig. S8c). By contrast, a large number of

rare OTUs predominantly contributed to the dissimilarity in

community composition. Altogether, they explained

65.76% of the total dissimilarity over time (Table S1). The

main contributors to the rearrangement were unclassi-

fied eukaryotic groups (14.76%), Ciliophora (7.02%),

Chrysophyceae (4.64%), Cryptophyceae (3.16%), which

had the lowest abundance in post-bloom period 1, Chlor-

ophyta (3.03%), Chytridiomycota (2.22%), which were

particularly abundant during post-bloom period 2, and

Cercozoa (3.11%), which were abundant during the bloom

period (Fig. S8d).

Co-occurrence networks of different
subcommunities

A metacommunity co-occurrence network was built based

on correlation relationships (Fig. 3a). The resulting network

consisted of 791 nodes linked by 9628 edges (Table S5),

with a much higher number of strong positive correlations

observed than negative ones (Fig. 3a). The network

obtained exhibited scale-free characteristics (power-law: R2

= 0.956, Fig. S9), indicating that the network structure was

non-random. The observed modularity, average clustering

coefficient and average path length were all greater than

those of their respective Erdös–Réyni random networks,

suggesting the network had “small-world” properties and

modular structure (Table S5). Non-rare taxa (abundant,

moderate, and conditionally rare and abundant taxa)

Fig. 1 Community structuring of eukaryotic plankton across bloom event. a Non-metric multidimensional scaling (NMDS) ordination of

eukaryotic plankton communities based on Bray–Curtis distances. b Venn diagram showing the numbers of unique and shared OTUs between

three different periods. c The pairwise Bray–Curtis dissimilarity of eukaryotic plankton communities between different periods. The top and

bottom boundaries of each box indicate the 75th and 25th quartile values, respectively, and lines within each box represent the median values (n =

36). Different letters above bars indicate a significant difference at the P < 0.05 level according to nonparametric Mann-Whitney U test. All, whole

eukaryotic plankton communities; Abundant, abundant plankton subcommunities; Rare, rare plankton subcommunities

2268 Y. Xue et al.



frequently interacted more with rare taxa than with them-

selves (Fig. 3a).

We compared unique node-level topological features of

four subcommunities. Both the degree and closeness cen-

trality values of conditionally rare and abundant OTUs were

highest among four subcommunities (Fig. 3b,e). Sig-

nificantly lower betweenness centrality values were found

for rare OTUs than for moderate taxa (Fig. 3c). However,

eigenvector centrality values showed no significant differ-

ences between the four subcommunities (Fig. 3d). Keystone

species, which play key roles in maintaining the structure

and function of microbial communities, usually have high

degree (>100) and low betweenness centrality values

(<5000) in co-occurrence networks. Based on this criterion,

a total of 17 OTUs were defined as keystone species,

including Dinophyceae (1 OTU), Chlorophyta (2 OTUs),

Cryptophyceae (2 OTUs), Cercozoa (2 OTUs), Chryso-

phyceae (3 OTUs), unidentified Stramenopiles (4 OTUs),

and unclassified eukaryotic groups (3 OTUs), and all but

two of these keystone species belonged to rare taxa

(Table S6).

Modular structure of the co-occurrence network

The entire network was clearly parsed into 6 major mod-

ules, of which modules I and II respectively accounted for

30.47 and 18.96% of the whole network (Fig. 4). Ternary

plot analysis indicated that most modules were specific

(relatively more abundant) to a particular period (Fig. 5).

For example, most of the OTUs from the largest module I

had higher relative abundances in the bloom period than

post-bloom periods, whereas the majority of the OTUs from

Fig. 2 Time-lag regression analysis of total beta-diversity (a–c), and the turnover (green dots) and richness (red dots) components of beta-diversity

(d–f) for all, abundant and rare eukaryotic plankton communities

Table 2 Spearman’s correlations of the eukaryotic plankton

community with environmental factors based on Mantel tests

Environmental factors All Abundant Rare Co-occurring

network

Time 0.334 0.222 0.652 0.334

Depth −0.037 −0.015 −0.120 −0.036

Temperature 0.215 0.211 0.235 0.220

Electrical conductivity −0.121 −0.120 −0.106 −0.128

Turbidity −0.094 −0.094 −0.062 −0.089

pH 0.100 0.070 0.175 0.111

Oxidation reduction

potential

−0.132 −0.139 −0.027 −0.141

Dissolved oxygen 0.075 0.071 −0.039 0.069

Total carbon 0.283 0.202 0.452 0.286

Total organic carbon 0.226 0.193 0.293 0.233

Total nitrogen −0.119 −0.121 −0.055 −0.130

Ammonium nitrogen −0.039 −0.049 0.014 −0.051

Nitrate nitrogen 0.100 0.110 0.042 0.098

Nitrite nitrogen 0.206 0.167 0.248 0.208

Total phosphorus −0.011 −0.018 0.035 −0.032

Phosphate phosphorus −0.105 −0.073 −0.156 −0.121

Total nitrogen and

total phosphorus ratio

0.148 0.117 0.224 0.136

Chlorophyll a 0.179 0.130 0.311 0.184

Time indicates three successional periods, including bloom, post-

bloom 1, and post-bloom 2 periods

Depth denotes surface, middle, and bottom water layers

All, whole eukaryotic plankton communities; Abundant, abundant

plankton subcommunities; Rare, rare plankton subcommunities

The significances are tested based on 999 permutations, and bold

values indicate P < 0.05
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modules II, III, and VI had higher relative abundances in

post-bloom period 2 than the other two periods. Impor-

tantly, taxonomic relatedness played a key role in deter-

mining the modular structure (Fig. 4a vs. Fig. 4b). The 6

major modules composed of substantial rare OTUs and few

non-rare OTUs (abundant, moderate, and conditionally rare

and abundant OTUs) were primarily occupied by Chryso-

phyceae, Cryptophyceae, Dinophyceae, Chlorophyta,

Ciliophora, Cercozoa and Fungi (Fig. S10). Based on the

values of connectivity, the co-occurrence network had 6

module hubs that belonged to rare taxa, and 12 OTUs were

classified as connectors, including 2 abundant OTUs, 3

moderate OTUs, and 7 rare OTUs (Fig. S11). These module

hubs and connectors primarily came from module I, IV, V,

and VI (Table S7).

Factors related to variation of the eukaryotic
plankton community

The Mantel test results indicated that the changes of all, rare

and network communities were correlated with temperature,

total carbon (TC), total organic carbon (TOC), and

nitrite nitrogen (NO2-N) (Table 2). In addition, pH, total

nitrogen and total phosphorus ratio (TN:TP), and chlor-

ophyll a (Chl-a) were also significantly related to the var-

iation of rare community composition. In contrast to rare

taxa, only temperature and TC were significantly correlated

with the abundant taxa. More interestingly, the neutral

community model successfully explained a large fraction of

variation in both all (R2
= 0.895) and rare (R2

= 0.879)

plankton communities (Fig. S12).

To investigate the modules’ responses to environmental

conditions, significant edge numbers between environ-

mental factors and OTUs from each module were calculated

(Spearman’s r > 0.8 or r <−0.8, and P-value < 0.01).

Among environmental factors, we found that temperature,

TC, TOC, NO2-N, and Chl-a were frequent drivers of net-

work connections (Fig. S13).

Discussion

Eukaryotic plankton in freshwater ecosystems are con-

sidered to be one of the indicators of environmental change

and ecosystem state owing to their fast and strong responses

to environmental disturbances [2, 23]. We found that

abundant and rare eukaryotic plankton communities

exhibited different and complex responses to environmental

changes. Therefore, elucidating the mechanisms of abun-

dant and rare eukaryotic succession under changing envir-

onments is crucial for understanding the process of

ecosystem recovery from disturbance events (e.g., cyano-

bacterial blooms).

Dynamics of abundant and rare eukaryotic plankton
communities

Our results showed that the effect of the cyanobacterial

bloom was detectable by its influence on the composition of

the eukaryotic plankton community (Fig. 1). The similarity

between samples significantly decreased with the increase

in time-lag, illustrating that eukaryotic plankton commu-

nities were not resilient and had reached an alternative state

(Fig. 2a-c). Usually, resilience is defined as the degree to

which a system returns to the original state after a pertur-

bation [49]. However, resilience can also be described as

the recovery process to an alternative stable state following

a disturbance [2]. More importantly, our results indicated

that different taxa did not respond equally to the cyano-

bacterial bloom. Rare taxa showed greater differences in

Table 3 Analysis of similarity

(ANOSIM) statistics testing

differences of eukaryotic

plankton community groupings

at spatiotemporal scales

Grouping by All Abundant Rare

R P R P R P

Global time (month) 0.757 0.001 0.568 0.001 0.825 0.001

Bloom vs. Post-bloom 1 0.583 0.002 0.454 0.002 0.739 0.002

Post-bloom 1 vs. Post-bloom 2 0.656 0.002 0.485 0.002 0.761 0.002

Bloom vs. Post-bloom 2 0.989 0.002 0.713 0.002 0.996 0.002

Global space (depth) −0.129 0.961 −0.115 0.944 −0.152 0.991

Surface vs. Middle −0.087 0.729 −0.017 0.506 −0.144 0.903

Middle vs. Bottom −0.172 0.972 −0.213 0.996 −0.159 0.937

Surface vs. Bottom −0.120 0.851 −0.094 0.790 −0.152 0.939

An R-statistic less than 0 represents complete random grouping

All, whole eukaryotic plankton communities; Abundant, abundant plankton subcommunities; Rare, rare

plankton subcommunities

Bold font indicates significant value (P < 0.01)
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both diversity and community composition between three

periods than abundant taxa (Tables 1 and 3), and the tem-

poral turnover of rare taxa (R2
= 0.649, P < 0.001) was

significantly higher than that of the abundant ones (R2
=

0.120, P < 0.001) (Fig. 2b,c). These results indicated that

the stable predominance of a few highly abundant taxa is

contrasted by a highly dynamic turnover of rare species, as

previously observed in Austrian lakes [50].

We found that the cyanobacterial bloom event sig-

nificantly altered the eukaryotic plankton community com-

position without affecting overall diversity. This may reflect

the fact that microorganisms usually have a high population

density, and more individuals with versatile physiology

contributing to the high resistance in biodiversity [51]. The

rare subcommunities had ~50 times higher richness than

the abundant subcommunities, supporting the idea that

rare microbes are important contributors to microbial

diversity [19]. Meanwhile, the diversity indices of rare

subcommunities exhibited temporal differences, but the

abundant subcommunities had no significant difference

among three periods. This may be due to the immigration

and emigration of rare species and the recovery of dormant

taxa [29]. Due to their high diversity, rare populations could

increase the functional redundancy of the community [52],

further providing biological buffering capacity to withstand

environmental changes [53].

Controlling mechanisms and factors shaping the
eukaryotic plankton community

A central challenge in ecology is to quantify the relative

roles of deterministic and stochastic processes that shape the

assembly of microbial communities [54]. Niche theory

holds that microbial communities are shaped by determi-

nistic processes (e.g., habitat heterogeneity or species sort-

ing) owing to different habitat preferences and fitness of

Fig. 3 Properties of the

correlation-based network. a

The networks analysis showing

the intra-associations within

each subcommunity and inter-

associations between different

subcommunities. A connection

stands for a strong (Spearman’s

r > 0.8 or r <−0.8) and

significant (P-value < 0.01)

correlation. The size of each

node is proportional to the

number of connections (i.e.,

degree). Numbers outside and

inside parentheses represent

positive edge numbers and

negative edge numbers,

respectively. b–e Comparison of

node-level topological features

among four different

subcommunities. The top and

bottom boundaries of each box

indicate the 75th and 25th

quartile values, respectively, and

lines within each box represent

the median values. Different

letters indicate the significant

level at P < 0.05 level

determined by nonparametric

Mann–Whitney U test. AT

abundant taxa, RT rare taxa, MT

moderate taxa, CRAT

conditionally rare and abundant

taxa
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species, whereas according to neutral theory, microbial

communities are shaped by random fluctuations in species

abundance (birth and death) and limited dispersal [55]. Both

deterministic and stochastic processes can act concurrently

to regulate the assembly of microbial communities [12]. In

this study, water temperature, TC, TOC, NO2-N and TN:TP

were significantly related to the temporal variability of

eukaryotic community composition (Table 2). These rela-

tionships have also been reported in previous studies of

eukaryotic plankton communities from both a shallow lake

and a subtropical river [25, 56]. As expected, rare taxa were

more sensitive to environmental filtering compared with

abundant taxa. It is possible that abundant taxa competi-

tively utilize a broad array of resources and are well adapted

to a particular ecosystem through active growth [57],

whereas rare taxa have less competition capability and

intrinsically low growth rates [58], thereby being restricted

to fewer samples. This suggests that environmentally-

induced species sorting has a strong impact on the com-

position of microbial communities [59]. Furthermore,

abundant taxa had wider temporal niche breadths than rare

ones, and a significant positive abundance-occurrence

relationship was observed (Fig. S7). The analysis of

abundance-occurrence can be a highly valuable approach

Fig. 4 The co-occurrence

patterns among OTUs revealed

by network analysis. The nodes

were colored according to

different types of modularity

classes (a) and supergroups (b),

respectively. A connection

stands for a strong (Spearman’s

r > 0.8 or r <−0.8) and

significant (P-value < 0.01)

correlation. The size of each

node is proportional to the

number of connections (i.e.,

degree). Major modules have

more than 40 nodes. Other

modules include all small

modules (n= 26) with nodes

<18 per module

Fig. 5 Ternary plots showing

relative abundance of OTUs

from modules I–VI in the three

different periods. Each circle

represents one individual OTU.

For each OTU, abundance was

averaged over all samples at

each period
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for distinguishing where shifts in microbial communities

occur across environmental gradients. Our samples spanned

contrasting environmental conditions, where continuous

environmental change resulted in the existence of multiple

niches. A total of 131 strict indicator OTUs were found

across three different periods, and the majority of strict

specialists were affiliated to rare taxa (Table S4). This

feature suggests that the occurrence and disappearance of

cyanobacterial blooms can induce environmental hetero-

geneity, with local habitat conditions selecting for specific

taxonomic groups.

We also found that stochastic processes may play an

important role in eukaryotic plankton community assembly.

In our study, rare taxa gave a good fit to the neutral model,

and over 80% of community turnover for rare taxa was well

explained by stochastic processes (Fig. S12). By investi-

gating the distribution of abundant and rare estuarine fish

communities over 21 years, Magurran and Henderson [60]

found that abundant species associated with estuarine

habitats were log normally distributed, while rare species

had different habitat requirements and followed a log

series distribution. The stochastic pattern was particularly

pronounced for the rare taxa, and so overall the

plankton data set was a good fit to the neutral model

(R2
= 0.895, Fig. S12). Moreover, the proportion of turn-

over partitioning in the beta-diversity for rare taxa was

higher than that of abundant ones (Fig. S6), suggesting that

rare taxa with a low abundance are more likely to be lost

due to ecological drift (i.e., the stochastic loss and repla-

cement of individuals) [61]. Overall, both deterministic and

stochastic processes appear to significantly influence the

temporal dynamics of eukaryotic plankton community

composition. Recent studies showed that two types of

processes, deterministic and stochastic, influence the

microbial community assembly with varying relative effects

depending on geographic scales and strength of environ-

mental gradients [54, 62]. In aquatic ecosystems, cyano-

bacterial blooms can generate sequential changes both

in the overall planktonic structure and in environmental

conditions [4]. Future studies should pay more attention to

whether the strength of ecological selection and rates of

dispersal vary with different cyanobacterial states (e.g.,

bloom vs. non-bloom) with large sample size, thereby

providing directions to better understand the mechanisms

governing the balance between deterministic and stochastic

processes in plankton succession under changing

conditions.

Effect of interspecies interactions on the dynamics
of eukaryotic plankton community

Network analysis can potentially provide deep and unique

perspectives on microbial interactions and ecological

assembly rules beyond those of simple richness and com-

position [63]. Here, for the first time, we applied

correlation-based network analysis to explore the co-

occurrence patterns of abundant and rare eukaryotic

plankton communities cross a cyanobacterial bloom event.

The resulting plankton network had statistical and structural

characteristics similar to those of bacterial ecological net-

works [28, 64], such as non-randomly connected properties,

power-law distribution, and modular structure. The topol-

ogy of the networks can reflect interactions between

microorganisms. For example, the degree value describes

the level of connectedness between OTUs, and the

betweenness centrality value provides information on how

critical an OTU is to the connectedness of a network [45].

Our results showed that rare OTUs had higher degree

value but a lower betweenness centrality value than

abundant OTUs, but the differences were not significant.

According to the generation process of a scale-free

topology, keystone nodes are commonly recognized as

initiating components in networks [65], which tend

to have high degree and low betweenness centrality values

[66]. All keystone species in our co-occurrence networks

were affiliated to rare taxa with the exception of a con-

ditionally abundant OTU and a conditionally rare and

abundant OTU. This suggests that rare species may play an

irreplaceable role in maintaining the structure of microbial

communities. In a co-occurrence network, the positive

interaction is mainly regarded as cooperation [67]. We

found that rare taxa showed more positive interactions to

non-rare taxa (abundant, moderate, and conditionally rare

and abundant taxa) than negative ones. Interactions

between microorganisms can support ecosystem function

and stability, for instance, rare Symbiodinium taxa can

cause a significant increase in the stability of the coral-

symbiont community under environmental changes [63].

Similarly, the cooperation between rare and non-rare taxa

might contribute to the resilience of the microbial

plankton community under a changing environment,

because the interaction network of plankton can provide a

buffer against the environmental disturbance [49]. On the

other hand, species played different roles with respect to

modularity. In our study, all 6 module hubs (i.e., nodes

highly linked within their own module) and 7 out of 12

connectors (i.e., nodes linking different modules together)

belonged to rare OTUs. Shi et al. [68] recently reported that

less-abundant taxa can act as important keystone taxa in the

rhizosphere networks. The disappearance of these key

species may cause modules and networks to break apart

[46], and thus rare species can be as important as or more

important than the abundant ones in maintaining ecosystem

stability.

By comparing the taxonomy of OTU nodes with the

network modular structure, we found that the assembly of
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the eukaryotic plankton community was non-randomly

determined by taxonomic relatedness, that is, closely related

taxa tended to be highly interconnected and clustered

together. This non-random pattern was evident in our net-

work modules, because most modules exhibited a distinct

temporal variation. Modularity may reflect synergistic

relations, competitive interactions, and niche differentiation,

leading to non-random patterns of interaction and ultimately

contributing to the complexity of ecological networks [69].

The division of the network into modules may shed light on

the different groups of nodes performing different functions

[70]. For instance, module I was dominated by hetero-

trophic Ciliophora and Cercozoa, which are important

consumers of picophytoplankton and bacteria [71, 72].

Phytoplankton blooms can boost the rate of bacterial

growth and production [73]. Therefore, the increase in the

abundance of these taxa is most likely derived from the

increase in the abundance of their prey or food. Module II,

III, and VI were specific to the post-bloom period 2 and

were phototroph-dominated (e.g., Chrysophyceae and

Cryptophyceae). Cryptophyceae was previously found to be

favored by reductions of nutrient loading in shallow

lakes [74], providing evidence for the existence of

distinct ecological niches over temporal scales in the

reservoir ecosystem in tandem with the disappearance of

cyanobacterial bloom. In this study, rare species were

widely located in all modules as central hubs, linking

diverse abundant, moderate, and conditionally rare and

abundant taxa. Rare microbes sustain a vast functional gene

pool and can indirectly enhance functionality of abundant

microbes [20]. Similarly, the interactions between rare taxa

and non-rare taxa (abundant, moderate, and conditionally

rare and abundant taxa) may affect biogeochemical

cycles. For example, ciliates grazing upon picophyto-

plankton and bacteria likely play an essential role in

transferring carbon and nutrients to higher trophic levels

[75]. In both the modules I and II, ciliates showed more

interactions with Chlorophyta and total (organic) carbon

(Fig. S13). Parasitic fungal chytrids are common parasites

of phytoplankton (e.g., colonial cyanobacteria and

diatoms), which had an important influence on food web

dynamics [76]. In the module II, the change in Chy-

tridiomycota abundance was concomitant with the change

in the abundance of Diatomea (Fig. S13). Such a synchro-

nous change can affect the transfer of carbon from primary

production to higher trophic levels [77]. Moreover, we

found total (organic) carbon was significantly related to

eukaryotic plankton dynamics (Fig. S13). Through these

results, network analysis exhibited potential importance in

unraveling the intrinsic mechanisms of interspecific inter-

actions and understanding the roles of community members

in ecological processes like carbon dynamics. However, in

addition to considering species interactions based on the

statistical and structural features of networks, both micro-

bial parasites (e.g., chytrid parasitism on cyanobacteria) and

interspecific allelopathy in cyanobacteria based on experi-

ments and models can have large influences on food web

structure and function [76, 78], and are essential for a good

diagnosis, thereby providing directions for future ecology

studies on eukaryotic plankton during cyanobacterial

blooms.

Conclusions and implications

Our results clearly demonstrated that the community com-

position of rare eukaryotic plankton had a stronger temporal

pattern than that of abundant taxa following a cyano-

bacterial bloom. Due to high levels of dispersal, competition

for resources and growth rates, the temporal stability of

abundant taxa was greater than that of rare taxa. Both

deterministic and stochastic processes simultaneously

affected the community assembly of eukaryotic plankton,

and random patterns (e.g., ecological drift) were particularly

pronounced for the rare taxa. These results expanded our

knowledge of the temporal patterns and ecological pro-

cesses behind changes in the plankton community in a

changing environment with emphasize on rare sub-

communities. Co-occurrence network analysis further

revealed that the synergistic effects between rare and non-

rare taxa may play central roles in maintaining the stability

of eukaryotic community and ecological function (e.g.,

carbon transfer or flow within the ecosystem). Additionally,

eukaryotic plankton networks followed the same principles

as bacterial communities, such as power-law distribution,

non-randomly connected properties, module structure and

“small-world” properties. In summary, our results provide a

new perspective for the ecological significance of rare

eukaryotic plankton in aquatic ecosystems, reinforcing

recent ideas about microbial interactions among eukaryotic

plankton.
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