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persistent cortical activity

Michael T. Craig1,2, Elizabeth W. Mayne1,2, Bernhard Bettler3, Ole Paulsen2,4 and Chris J. McBain1

1Program in Developmental Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of

Health, Bethesda, MD 20892, USA
2Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
3Department of Biomedicine, Institute of Physiology, University of Basel, CH – 4056 Basel, Switzerland
4Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG,

UK

Key points

• GABAB receptors containing the GABAB1a subunit contribute to spontaneous termination of
UP states.

• GABAB receptors containing the GABAB1b subunit are essential for afferent-evoked termination
of UP states.

Abstract During slow-wave sleep, cortical neurons display synchronous fluctuations between
periods of persistent activity (‘UP states’) and periods of relative quiescence (‘DOWN states’).
Such UP and DOWN states are also seen in isolated cortical slices. Recently, we reported that
both spontaneous and evoked termination of UP states in slices from the rat medial entorhinal
cortex (mEC) involves GABAB receptors. Here, in order to dissociate the roles of GABAB1a-
and GABAB1b-containing receptors in terminating UP states, we used mEC slices from mice in
which either the GABAB1a or the GABAB1b subunit had been genetically ablated. Pharmacological
blockade of GABAB receptors using the antagonist CGP55845 prolonged the UP state duration
in both wild-type mice and those lacking the GABAB1b subunit, but not in those lacking the
GABAB1a subunit. Conversely, electrical stimulation of layer 1 could terminate an ongoing UP
state in both wild-type mice and those lacking the GABAB1a subunit, but not in those lacking the
GABAB1b subunit. Together with previous reports, indicating a preferential presynaptic location
of GABAB1a- and postsynaptic location of GABAB1b-containing receptors, these results suggest
that presynaptic GABAB receptors contribute to spontaneous DOWN state transitions, whilst
postsynaptic GABAB receptors are essential for the afferent termination of the UP state. Inputs
to layer 1 from other brain regions could thus provide a powerful mechanism for synchronizing
DOWN state transitions across cortical areas via activation of GABAergic interneurons targeting
postsynaptic GABAB receptors.
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Introduction

During slow-wave sleep, cortical neurons participate
in the slow oscillation during which these neurons
synchronously fluctuate between periods of persistent
activity (‘UP states’) and periods of relative quiescence
(‘DOWN states’) (Steriade et al. 1993). Such UP and
DOWN states can also be observed in brain slices
in vitro, prepared from a variety of animal species
and cortical regions such as the ferret visual cortex
(Sanchez-Vives & McCormick, 2000) or, more recently,
the rodent medial entorhinal cortex (mEC) (Cunningham
et al. 2006; Mann et al. 2009; Tahvildari et al.
2012).

UP states are synaptically driven, with increases in
both excitatory and inhibitory transmission relative to
DOWN states (Sanchez-Vives & McCormick, 2000; Shu
et al. 2003). During the UP state, inhibitory conductances
dynamically scale to match excitatory conductances (Shu
et al. 2003). Conversely, during the in vivo DOWN state,
few inhibitory postsynaptic potentials are seen in intra-
cellular recordings and fast-spiking interneurons appear
to be silent (Timofeev et al. 2001). The UP state originates
within the cortex but transitions between states can be
triggered in vivo by sensory input (Petersen, 2003) or in
vitro by electrical stimulation of synaptic inputs arising
within (Shu et al. 2003) or outwith the cortex (MacLean
et al. 2005).

Previous work from our group demonstrated that,
in the rat mEC, electrical stimulation in layer 3 could
evoke a DOWN-to-UP state transition, and subsequent
stimulation in layer 1 could terminate this UP state (Mann
et al. 2009). It was found that GABAA receptors balanced
the UP state and modulated firing frequency, while GABAB

receptors mediated the UP state termination: blockade
of GABAB receptors both prolonged spontaneous
UP states and prevented layer 1 stimulation from
evoking an UP-to-DOWN state transition (Mann et al.
2009).

Functional GABAB receptors exist as heterodimers
between GABAB1 and GABAB2 subunits, with the GABAB1

subunit existing in two isoforms, GABAB1a and GABAB1b

(Bettler et al. 2004). Evidence from both the hippocampus
and the neocortex suggests that GABAB receptors
containing GABAB1a subunits are preferentially located
presynaptically whilst those containing GABAB1b subunits
are preferentially located postsynaptically (Perez-Garci
et al. 2006; Vigot et al. 2006). In this study, we
sought to determine whether the location of GABAB

receptors affected their role in terminating the UP
state. Using mice in which either the GABAB1a subunit
or the GABAB1b subunit had been genetically ablated,
we could dissociate the effects of GABAB receptors
containing the different subunits. We found that GABAB

receptors containing the GABAB1a subunit modulate the

timing of the spontaneous UP state termination and
those containing the GABAB1b subunit are necessary for
terminating the UP state by electrical stimulation in
layer 1.

Methods

Ethical approval

All experiments were conducted in accordance with
the UK Animals Scientific Procedures Act (1986) and
in accordance with animal protocols approved by the
National Institutes of Health. Transgenic mice lacking
either the GABAB1a or the GABAB1b subunit (Vigot
et al. 2006), and wild-type controls (BALB/c mice; Harlan,
Bicester, UK) were used.

Slice preparation and electrophysiology

Horizontal slices (400 µm) containing the mEC were pre-
pared from postnatal day 14–21 mice of both sexes after
decapitation under deep isoflurane-induced anaesthesia.
Slices were cut in ice-cold (<4◦C) standard artificial
cerebrospinal fluid (aCSF) containing (in mM): NaCl
(126), KCl (3–3.5), NaH2PO4 (1.25), MgSO4 (2), CaCl2

(2) and NaHCO3 (26), and were incubated at room
temperature for 1 h in interface conditions with standard
aCSF, before being transferred to modified aCSF with
reduced MgSO4 (1 mM) and CaCl2 (1.2 mM). Slices were
maintained in interface conditions prior to recording;
they were then mounted on a coverslip (coated with
0.1% poly-L-lysine in ultrapure H2O) and transferred
to a submerged-style recording chamber where they
were superfused with modified aCSF at 4–5 ml min−1 at
32–34◦C, conditions that promote spontaneous network
activity (Hajos et al. 2009).

Whole-cell current-clamp recordings were made from
principal cells in layer 3 of mEC, using glass pipettes
pulled from standard borosilicate glass containing (in
mM): potassium gluconate (110), Hepes (40), ATP-Mg
(2), GTP (0.3), NaCl (4) and biocytin (2–4 mg ml−1)
(pH 7.2–7.3, osmolarity 275–290 mosmol l−1). Membrane
potential values were not corrected for the liquid junction
potential. Electrical stimulation was carried out using
Digitimer DS3 constant current stimulators with mono-
polar steel electrodes.

Data acquisition and analysis

Data were recorded using an Axon Multiclamp 700A
or 700B amplifier (Molecular Devices, Sunnyvale, CA,
USA) and low-pass filtered at 2 kHz. The signal was
digitized at 5 kHz using either an Axon Digidata 1322A
on a PC running Axon PClamp 9 or an Instrutech
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ITC-18 on a PC running Igor Pro using procedures
written in-house. Data acquired using PClamp were
imported into Igor Pro using Neuromatic (ThinkRandom;
http://www.thinkrandom.com/) for further analysis.

UP and DOWN state transitions were monitored
automatically with an algorithm that detected changes
in DC membrane potential and membrane potential
fluctuations using a moving average window method
(Craig, 2011). All detected UP states were confirmed
by visual inspection. Statistical comparisons were made
using analysis of variance (ANOVA) with post-hoc
Bonferroni multiple-comparison correction, or Student’s
two-sample and paired t tests as appropriate. Unless
otherwise stated, all values are given as mean ±

SEM.

Drugs and chemicals

CGP55845 was purchased from Tocris Bioscience
(Bristol, UK). All other chemicals were purchased from
Sigma-Aldrich (St Louis, MO, USA).

Results

Electrical stimulation in mouse mEC can evoke UP and

DOWN state transitions

Whole-cell recording from layer 3 pyramidal cells was
used to monitor UP and DOWN states, which occurred
spontaneously at a frequency of 3.1 ± 0.5 min−1 in
wild-type BALB/c mice (n = 5). As previously reported
in the rat (Mann et al. 2009), electrical stimulation
(100–250 µA for 100–150 µs) in layer 3 of the mEC
in BALB/c mice could evoke an UP state (Fig. 1A and
B). UP states evoked by layer 3 stimulation had a
similar duration and firing frequency to those occurring
spontaneously (UP state duration, spontaneous vs L3
stimulation: 1.9 ± 0.15 s vs 1.5 ± 0.14 s; P > 0.05; UP state
firing frequency, 4.6 ± 1.24 s−1 vs 3.7 ± 0.95 s−1; P > 0.05;
n = 11; Fig. 1C). Stimulation in layer 1 (150–250 µA for
100–150 µs) 500 ms after layer 3 stimulation could then
terminate the evoked UP state (Fig. 1A and B). Layer 1
stimulation significantly shortened the duration of the
evoked UP state (UP state duration, L3 stimulation vs L3
+ L1 stimulation: 1.5 ± 0.14 s vs 0.8 ± 0.07 s; P < 0.01;
n = 11; one-way ANOVA; Fig. 1C). The duration and
firing frequency of UP states displayed a large degree
of variation within an individual slice. Figure 1D and
E display the UP state duration (Fig. 1D) and firing
frequency (Fig. 1E) for 20 consecutive, spontaneously
occurring UP states observed in three different slices. The
range of the coefficient of variation (CV) in these examples
was 0.36–0.66 for UP state duration, and 0.35–0.86 for
firing frequency. These results confirm that the mouse

mEC shows UP and DOWN states with properties similar
to those of the rat mEC.

GABAB receptor-mediated inhibition contributes to the
spontaneous termination of UP states, as well as afferent
stimulation-evoked DOWN state transitions (Mann
et al. 2009). As GABAB receptors exist in at least two
forms, those containing the GABAB1a subunit and those
containing the GABAB1b subunit, respectively (Vigot et al.
2006), we sought to determine whether these receptors
were differentially involved in terminating the UP state.
This was done by comparing the effects of a GABAB

receptor antagonist and layer 1 stimulation in wild-type
mice with those in mice genetically engineered to lack
either the GABAB1a or the GABAB1b subunit (Vigot et al.
2006).

Spontaneous UP states do not differ significantly

between wild-type, GABAB1a
−/− and GABAB1b

−/− mice

Before examining the role of receptor type in terminating
the UP state, we compared the properties of spontaneous
UP states between the three genotypes. Representative
recordings from wild-type, GABAB1a

−/− and GABAB1b
−/−

mice are presented in Fig. 2A–C. We observed no
significant differences in the incidence, duration or firing
frequency of spontaneous UP states between the wild-type
and knockout mice (wildtype (n = 5) vs GABAB1a

−/−

(n = 10) vs GABAB1b
−/− (n = 5); UP state incidence:

3.1 ± 0.5 min−1 vs 2.6 ± 0.3 min−1 vs 4.4 ± 1.2 min−1;
P > 0.05; one-way ANOVA; Fig. 2D; UP state duration:
3.7 ± 0.6 s vs 2.1 ± 0.2 s vs 3.2 ± 0.7 s; P > 0.05; one-way
ANOVA; Fig. 2E; UP state firing frequency: 3.1 ± 0.5 Hz
vs 3.0 ± 0.5 Hz vs 4.4 ± 1.2 Hz; Fig. 2F).

GABAB1a receptors modulate the duration of the UP

state

Pharmacological blockade of GABAB receptors increases
the duration of spontaneous as well as evoked UP states
(Mann et al. 2009). We therefore investigated the effects
on UP state duration of a GABAB receptor blocker in
wild-type as well as GABAB1a

−/− and GABAB1b
−/− mice

(Fig. 3A). As expected, blockade of GABAB receptors
using 1 µM CGP55845, a selective GABAB receptor
antagonist, significantly prolonged the UP state duration
in wild-type mice (UP state duration relative to baseline,
DMSO vs 1 µM CGP55845: 96 ± 6.7% vs 142 ± 14.9%;
P = 0.0217; Student’s t test). Similar to wild-type controls,
1 µM CGP55845 significantly prolonged the UP state
duration in GABAB1b

−/− mice (UP state duration relative
to baseline, DMSO vs 1 µM CGP55845: 102 ± 10.0%
vs 139 ± 7.7%; P = 0.012; Student’s t test) but not
in GABAB1a

−/− mice (UP state duration relative to
baseline, DMSO vs 1 µM CGP55845: 104 ± 8.7% vs
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116 ± 7.4%; P = 0.311; Student’s t test). These data are
summarized in Fig. 3B and indicate that GABAB receptors
containing the GABAB1a but not the GABAB1b subunit are
responsible for the effect of CGP55845 on the duration
of the UP state, suggesting that presynaptic GABAB

receptors contribute to the spontaneous termination of UP
states.

GABAB1b receptors are necessary for afferent

termination of the UP state

Next, we investigated the effect of layer 1 stimulation
in GABAB1a

−/− and GABAB1b
−/− mice, compared to the

effect in wild-type animals. As in the rat, stimulation
in layer 1 significantly shortened an evoked UP state
in wild-type mice and this effect could be blocked by
1 µM CGP55845 (reduction in UP state duration, baseline
(n = 11) vs DMSO (n = 6) vs 1 µM CGP55845 (n = 7):
43 ± 4.5% vs 56 ± 4.6% vs 12 ± 8.2%; P = 0.0002;
one-way ANOVA, Fig. 4A–C). Under baseline conditions,
layer 1 stimulation also significantly shortened the UP
state in GABAB1a

−/− mice, an effect that was also blocked
by 1 µM CGP55845 (reduction in UP state duration, base-
line (n = 8) vs DMSO (n = 5) vs 1 µM CGP55845 (n = 6):
59 ± 4.3% vs 61 ± 4.7% vs 4.7 ± 5.7%; P < 0.0001; one

Figure 1. Electrical stimulation in the mouse mEC can turn on and off persistent activity

A, recording schematic. Whole-cell current-clamp recordings were made from principal cells in layer 3 of the

mEC. UP states were evoked by stimulating in layer 3 within 200 µm of the principal cell soma, and subsequent

stimulation in layer 1 was used to terminate the UP state. B, representative trace with expansions showing a

spontaneous UP state (lower left), an UP state evoked by layer 3 stimulation (lower middle) and an UP state

evoked with layer 3 stimulation and terminated with layer 1 stimulation (lower right). C, duration and firing

frequency of UP states evoked by layer 3 stimulation were not statistically significant from spontaneous UP states,

but layer 1 stimulation significantly shortened the UP state. The whiskers in the boxplots represent the minimum

and maximum values D, UP state duration plotted for 20 consecutive spontaneous UP states for three different

neurons. E, UP state firing frequency plotted for the same neurons and UP states as D. ∗∗P < 0.01.

C© 2013 The Authors. The Journal of Physiology C© 2013 The Physiological Society
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way ANOVA, Fig. 4A–C). In contrast, layer 1 stimulation
did not terminate an evoked UP state in GABAB1b

−/− mice
in any condition (reduction in UP state duration, baseline
(n = 8) vs DMSO (n = 5) vs 1 µM CGP55845 (n = 11):
−1.8 ± 3.6% vs −2.2 ± 7.8% vs 5.3 ± 4.3%; P > 0.05;
one-way ANOVA, Fig. 4A–C). From these results, we
conclude that GABAB1a subunit-containing receptors are
not required for the afferent-evoked termination of the
UP state and that this effect is mediated via GABAB1b

subunit-containing GABAB receptors.

Discussion

Here we have dissociated the contributions of GABAB1a-
and GABAB1b-containing GABAB receptors to the
termination of UP states in the mEC in vitro. For

all excitatory synapses that have been analysed for the
location of GABAB1a and GABAB1b subunits (hippocampal
CA3–CA1, hippocampal mossy fibre – CA3, thalamic
and cortical inputs to the lateral amygdala, thalamus
and neocortex), the GABAB1a subunit has predominantly
been found to be presynaptic and the GABAB1b sub-
unit predominantly postsynaptic (Gassman & Bettler,
2012). While the synaptic location of these subunits in
the entorhinal cortex has not been studied in detail,
we may assume that the distribution will be similar,
although we cannot rule out that either receptor may
exist in both locations. Hence we conclude that receptors
containing the GABAB1a subunit, presumably presynaptic,
help control the UP state duration by modulating
spontaneous UP-to-DOWN state transitions, whereas
receptors containing the GABAB1b subunit, most likely

Figure 2. Recordings from layer 3 principal cells

A–C, representative recordings made from layer 3 principal cells for 60 s for wild-type (WT) mice (A), GABAB1a
−/−

mice (B) and GABAB1b
−/− mice (C). D–F, overall, no significant differences in UP state incidence (D), duration (E)

or firing frequency (F) were observed between the three groups.

C© 2013 The Authors. The Journal of Physiology C© 2013 The Physiological Society
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Figure 3. GABAB1a-containing receptors contribute to the

spontaneous termination of UP states

A, representative traces taken from wild-type (WT), GABAB1a
−/− and

GABAB1b
−/− mice. B, the selective GABAB receptor antagonist

CGP55845 (1 µM) significantly prolonged the UP state in wild-type

and GABAB1b
−/− mice, but not in GABAB1a

−/− mice. Error bars are

SEM; number of slices in parentheses; ∗P < 0.05; Student’s t test.

located postsynaptically, are necessary for afferent-evoked
DOWN state transitions.

Presynaptic GABAB receptor activation can inhibit the
release of both excitatory and inhibitory neurotransmitters
(e.g. Pérez-Garci et al. 2006; Olah et al. 2009). As UP states
are characterized by a balanced increase in both synaptic
excitation and inhibition (Shu et al. 2003), it is possible
that a gradual build up of extracellular GABA during
the UP state progressively inhibits transmitter release
via GABAB receptors at both excitatory and inhibitory
synapses, and that the blockade of presynaptic GABAB

receptors prolongs the UP state by preventing this pre-
synaptic inhibition. As the blockade of GABAB receptors
can prolong UP states not only in mEC but also in other
cortical areas (Wang et al. 2010), this might imply that
GABAB receptor modulation of spontaneous termination
of the UP state is a shared mechanism across cortical
areas. Given our current findings, one might have expected
to see a prolongation in spontaneous UP state duration
in the GABAB1a

−/− mice compared to GABAB1b
−/− and

wild-type mice. However, the large degree of variation
of UP state properties observed within individual slices
(Fig. 1) and between slices from the same genotype
(Fig. 2) could have occluded these differences, necessita-
ting the use of GABAB receptor antagonists to unmask
the contribution of receptor location to spontaneous
termination, or compensatory mechanisms might have
developed in GABAB1a

−/− mice.
While GABAB receptors containing the GABAB1a sub-

unit contribute to the spontaneous termination of UP
states, those containing the GABAB1b subunit are necessary
for afferent-evoked DOWN state transitions. It might
seem surprising that, whilst essential for afferent-evoked
DOWN state transition, GABAB1b subunit-containing
receptors do not appear to contribute to spontaneous
DOWN state transition. A parsimonious explanation
would be that those interneurons that target these GABAB

receptors are not activated to a large degree by the local
circuitry during an UP state, but are rather activated
by external afferents. Indeed, it was recently reported
that neuropeptide-Y-positive interneurons in layer 2/3
are silent during mEC UP states in vitro (Tahvildari
et al. 2012). Neurogliaform cells are immunoreactive
for neuropeptide-Y (Price et al. 2005), making them an
attractive candidate for mediating afferent termination
of the UP state. Neurogliaform cells can elicit combined
GABAA and GABAB receptor-mediated responses from
single action potentials (Tamas et al. 2003), and, even at a
low density, they can exert a large inhibitory influence by
acting via volume transmission on extrasynaptic GABAB

receptors (Olah et al. 2009). Neurogliaform cells are pre-
sent in layer 1 of the neocortex (Hestrin & Armstrong,
1996), where they receive little or no input from superficial
pyramidal cells but can exert an inhibitory influence over
both excitatory (Wozny & Williams, 2011) and inhibitory

C© 2013 The Authors. The Journal of Physiology C© 2013 The Physiological Society
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Figure 4. GABAB1b-containing receptors are necessary for afferent-evoked termination of the UP state

A, representative traces taken from wild-type (WT), GABAB1a
−/− and GABAB1b

−/− mice. Three trials taken from

the same neuron are presented for each condition. B, layer 1 stimulation shortened the UP state in wild-type and

GABAB1a
−/− mice but not in GABAB1b

−/− mice. C, the selective GABAB receptor antagonist CGP55845 (1 µM)

prevented layer 1 stimulation from shortening the UP state. Error bars are SEM. ∗∗∗P < 0.001; paired t test.

C© 2013 The Authors. The Journal of Physiology C© 2013 The Physiological Society
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cells (Christophe et al. 2002). While further work is needed
to determine the source of the GABAB receptor-mediated
inhibition responsible for afferent-evoked termination of
the UP state, it is likely that the GABAB receptors terminate
the UP state through activation of inwardly rectifying
K+ (GIRK or Kir3) channels (Bettler et al. 2004) and/or
by inhibiting dendritic Ca2+ channels of pyramidal cells
(Perez-Garci et al. 2006).

Several mechanisms have been suggested to contribute
to the spontaneous DOWN state transitions, including
disfacilitation of the network (Contreras et al. 1996) or a
build up of intrinsic activity-dependent K+ conductances
(Sanchez-Vives & McCormick, 2000; Cunningham et al.
2006). However, more recent in vivo studies suggest
that the UP state can be actively terminated: it has
been reported that UP-to-DOWN state transitions occur
more synchronously than DOWN-to-UP state transitions
(Volgushev et al. 2006), and another study examining the
electroencephalogram in human patients suggested that
a DOWN state transition could occur independently of a
preceding UP state (Cash et al. 2009).

If the UP state is actively terminated, then our results
suggest that one mechanism could be through inputs
arriving in layer 1 activating GABAergic interneurons
acting on postsynaptic GABAB receptors. The question of
where these inputs arrive from has yet to be addressed.
In vivo, UP state propagation is fast, in the order of
1.5–7 m s−1 (Massimini et al. 2004), which is faster than
the reported local spread of the oscillation through cortical
tissue, which approaches 100 mm s−1 in vivo (Amzica &
Steriade, 1995) and 11 mm s−1 in vitro (Sanchez-Vives &
McCormick, 2000). This suggests that local propagation is
inconsistent with the synchrony of UP and DOWN state
transitions observed in vivo. The thalamus could play a role
in synchronizing the slow oscillation in vivo (Crunelli &
Hughes, 2010): the slow oscillation can be spontaneously
generated in thalamocortical neurons and also neurons
of the nucleus reticularis thalami (Crunelli & Hughes,
2010), and stimulation of the thalamus in vitro has been
shown to trigger UP states that are indistinguishable from
those generated spontaneously (MacLean et al. 2005).
Applying muscimol to the thalamus of the rat greatly
reduced the incidence of UP states (Doi et al. 2007),
and an early in vivo study demonstrated that electrical
stimulation of the thalamus could evoke a DOWN state
transition in cortical neurons (Contreras & Steriade,
1995). Together, these results suggest that the thalamus
may be able to synchronize cortical state transitions.
As the thalamus projects extensively to layer 1 of most
neocortical regions (Rubio-Garrido et al. 2009) as well
as the mEC (Herkenham, 1978), thalamic activation of
layer 1 interneurons could provide a plausible mechanism
for the active termination of the UP state. Other studies
have shown that cortico-cortical inputs also converge
on layer 1 cells (e.g. Anderson & Martin, 2006), and

interhemispheric projections to layer 1 are capable of
mediating a long-lasting inhibition of cortical neuron
firing, in a mechanism dependent on GABAB receptors on
apical dendrites activated via layer 1 interneurons (Palmer
et al. 2012).

While further work is needed to determine both the
origin of the input to layer 1 and the cell type(s)
mediating the effect, the present results provide further
evidence that GABAB receptors may play a powerful role
in regulating persistent network activity, and show that
receptors containing GABAB1a and GABAB1b subunits have
different roles in this regulation.
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