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Low-input agricultural systems aim at reducing the use of synthetic fertilizers and pesticides in
order to improve sustainable production and ecosystem health. Despite the integral role of the soil
microbiome in agricultural production, we still have a limited understanding of the complex
response of microbial diversity to organic and conventional farming. Here we report on the
structural response of the soil microbiome to more than two decades of different agricultural
management in a long-term field experiment using a high-throughput pyrosequencing approach of
bacterial and fungal ribosomal markers. Organic farming increased richness, decreased evenness,
reduced dispersion and shifted the structure of the soil microbiota when compared with
conventionally managed soils under exclusively mineral fertilization. This effect was largely
attributed to the use and quality of organic fertilizers, as differences became smaller when
conventionally managed soils under an integrated fertilization scheme were examined. The impact
of the plant protection regime, characterized by moderate and targeted application of pesticides,
was of subordinate importance. Systems not receiving manure harboured a dispersed and
functionally versatile community characterized by presumably oligotrophic organisms adapted to
nutrient-limited environments. Systems receiving organic fertilizer were characterized by specific
microbial guilds known to be involved in degradation of complex organic compounds such as
manure and compost. The throughput and resolution of the sequencing approach permitted to
detect specific structural shifts at the level of individual microbial taxa that harbours a novel
potential for managing the soil environment by means of promoting beneficial and suppressing
detrimental organisms.
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Introduction

With the advent of the green revolution, agricultural
productivity has been raised by increased fertiliza-
tion and pesticide application, improved irrigation,
soil management regimes and crops as well as
massive land conversions (Tilman et al., 2002).
There is increasing concern, however, that agricul-
tural intensification leads to large-scale ecosystem
degradation and loss of productivity in the long
term. Negative environmental implications include
soil degradation, increased greenhouse gas emis-
sions, accumulation of pesticides and diminished
availability and quality of water (Tilman et al., 2001;
Foley et al., 2005). In fact, agricultural intensifica-
tion is perceived as one of the greatest threats
to global biodiversity (Convention on Biological

Diversity, 2010). Low-input systems such as organic
farming, which substantially reduce the use
of synthetic fertilizers, pesticides, energy and
mechanic stress, aim at mitigating these negative
impacts in order to improve sustainable production
(Gomiero et al., 2011). However, we still have an
incomplete understanding of the challenges, bene-
fits and limitations of low-input farming (Tscharntke
et al., 2012) and the sustainability of organic farming
(Wu and Sardo, 2010).

One of the cornerstones of agricultural manage-
ment is proper stewardship of soil. Soil provides
fundamental ecosystem services including nutrient
cycling, water regulation, transformation of organic
materials and toxic compounds as well as control of
pests and diseases (Doran and Zeiss, 2000). At the
system level, the microbiome plays an integral role
in virtually all soil processes (Barrios, 2007), such
that microbial abundance, activity and composition
will largely determine sustainable productivity of
agricultural land (van der Heijden et al., 2008). In
this light, the ability to manage the soil microbiome
for the presence of beneficial and absence of
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CH-8046 Zürich, Switzerland.
E-mail: martin.hartmann@microbiome.ch
Received 11 April 2014; revised 5 September 2014; accepted 23
September 2014; published online 31 October 2014

The ISME Journal (2015) 9, 1177–1194
& 2015 International Society for Microbial Ecology All rights reserved 1751-7362/15

www.nature.com/ismej

http://dx.doi.org/10.1038/ismej.2014.210
mailto:martin.hartmann@microbiome.ch
http://www.nature.com/ismej


detrimental organisms could offer a promising
approach to improve sustainable agricultural pro-
duction. Effects of agricultural management on the
soil microbiome are, however, complex and diverse
(Bünemann et al., 2006; Nelson and Spaner, 2010),
and retrieving universally valid conclusions on
organic and conventional farming systems is diffi-
cult. In general, it has been reported that low-input
farming systems promote higher abundance and
diversity of most organisms, and although the
positive effects on the macrobiota are largely con-
sistent across studies, the impact on the microbiota
seems less clear (Hole et al., 2005; Postma-Blaauw
et al., 2010). The enormous complexity of microbial
life and the technical constraints to properly
measure its components have so far limited our
understanding of the relationships between low-
input farming and microbial diversity. Novel high-
throughput DNA sequencing technologies offer
ways to explore the soil microbiota at higher
resolution, coverage and throughput, and have
the potential to shed more light on the community-
as well as taxon-level responses to agricultural
management (Taberlet et al., 2012).

The broad spectrum of agricultural practices
further limits comparability among different studies
(Hole et al., 2005; Gomiero et al., 2011). Whereas
organic systems are commonly defined by manage-
ment practices lacking the application of synthetic
fertilizers and pesticides, the definition of conven-
tional management is more variable. Fertilization
and plant protection schemes as well as crop
rotation and soil tillage strategies often vary across
conventional farming systems. Commonly, conven-
tional management practices rely on the use of
synthetic fertilizers and pesticides and often avoid
the use of organic fertilizers. However, as organic
amendments have been shown to exert positive
effects on various soil properties (Rosen and Allan,
2007), more integrated conventional fertilization
strategies seek to use a combination of synthetic
and organic fertilizers.

However, only a few agroecosystem experiments
exist that compare organic and conventional man-
agement strategies with different fertilization and
plant protection regimes over an extended period of
time (Raupp et al., 2006) that is ultimately required
for evaluating sustainability of land-use regimes
(Rasmussen et al., 1998). The Swiss DOK (German
abbreviation for dynamic, organic and conventional
agricultural management) experiment represents a
unique system to compare the long-term effects of
organic and conventional management on ecosys-
tem properties (Raupp et al., 2006). Since 1978, 96
plots have been managed according to five different
farming systems along with a 7-year crop rotation in
three temporally shifted parallels (Mäder et al.,
2002). These farming systems differ in plant protec-
tion and fertilization regimes, whereas factors such
as tillage and crop rotation are kept constant.
The DOK experiment includes two conventional

approaches, an exclusively minerally fertilized
system and an integrated system with a fertilization
scheme combining mineral and organic fertilization,
and contrasts these to three organic systems with
different fertilization schemes but all lacking the use
of chemicals.

Over the years, organic systems revealed an
increase in microbial biomass and activity, largely
driven by quantity and quality of farmyard manure
(Fliessbach et al., 2007; Birkhofer et al., 2008).
Whereas management effects on microbial bulk
parameters have been well documented, the impact
on soil microbial community composition was more
difficult to assess. The first-generation molecular
tools used to examine shifts in community struc-
tures such as genetic profiling and phospholipid
fatty acid analyses demonstrated structural differ-
ences among the various organic and conventional
systems (Hartmann and Widmer, 2006; Hartmann
et al., 2006; Widmer et al., 2006; Esperschuetz et al.,
2007). However, diversity coverage and phyloge-
netic resolution strongly limited the assessment of
both a- and b-diversity as well as a thorough
identification of microbial groups indicative of
specific management regimes.

In this context, we employed a 454-pyrosequen-
cing approach (Margulies et al., 2005) of bacterial
and fungal ribosomal markers to examine the
response of soil microbial diversity to 420 years
of continuous organic and conventional farming in
the DOK experiment. At the farming system level,
we aim to identify the major agricultural factors
driving differences in a- and b-diversity across
management and crop regimes. Based on the initial
community-level assessment, we then aim at
harnessing the power of the sequencing approach
to identify soil microbial taxa that have adapted
to conditions characteristic of long-term agricultural
intensification or low-input farming. In the
long term, the capability to monitor individual
microbial taxa may improve our potential to manage
agricultural soils for sustainable productivity by
promoting beneficial and suppressing pathogenic
microorganisms.

Materials and methods

The DOK long-term experiment
The DOK experiment compares five different farm-
ing systems (three organic and two conventional)
that differ in fertilization and plant protection
regimes (Table 1). The biodynamic (BIODYN) and
bioorganic (BIOORG) systems exclusively receive
organic fertilizers (farmyard manure and slurry,
FYM), whereas one conventional system (CONFYM)
features an integrated fertilization scheme based on
a combination of organic and mineral fertilizers. All
three FYM-based systems received the same amount
of 1.4 livestock units per hectare and year, but of
different qualities. The system-specific manure
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types ranged from stacked (CONFYM) to rotted
(BIOORG) to composted (BIODYN) manure, with
increasing aeration resulting in carbon loss (Table 1)
and decreasing carbon-to-nitrogen ratios ranging
from 20 to 18 and 13, respectively (Fliessbach
et al., 2007). Between 1992 and 2007, the organic
system received B28% (BIODYN) and 13%
(BIOORG) less organic matter and B49% (BIODYN)
and 44% (BIOORG) less total nitrogen when com-
pared with the integrated conventional system
(CONFYM) (Table 1). The second conventional
system (CONMIN) exclusively received mineral
fertilizer. The third organic system (NOFERT)
received no fertilizer at all. Overall, the FYM-based
organic systems (BIODYN and BIOORG) received
58–77% of the nutrients (nitrogen, phosphorus,
potassium, calcium and magnesium) that were
applied to the conventional systems (CONFYM
and CONMIN) (Table 1).

Plant protection in the conventional systems was
performed with respect to thresholds using chemical
weed (herbicides), disease (fungicides) and insect

(insecticides) control as well as synthetic plant
growth regulators according to Swiss standards
(Federal Department of Economic Affairs
Education and Research, 2008a), similar to those in
the European Union. Organic plant protection was
performed according to the respective guidelines
(Lampkin, 1990). BIOORG was managed using
mechanical and biological but no chemical plant
protection strategies according to the Swiss organic
standards (Federal Department of Economic Affairs
Education and Research, 2008b). Both BIODYN and
NOFERT were managed according to biodynamic
regulations (Demeter Schweiz, 2012), using mechan-
ical and biological but no chemical plant protection
strategies as well as special biodynamic prepara-
tions (Reganold, 1995). It is important to understand
that the DOK experiment compares holistic farming
systems rather than controlling the variation of each
individual component. Therefore, the main factors
differentiating the systems, that is, plant protection
measures and differences in fertilization, cannot be
completely isolated.

Table 1 Detailed management characteristics of the DOK long-term field experiment (Therwil, Switzerland)

System Organic (low-input) farming systems Conventional (high-input) farming systems

Unfertilized
(NOFERT)

Biodynamic
(BIODYN)

Bioorganic
(BIOORG)

Conventional
(CONFYM)

Mineral
(CONMIN)

Fertilization scheme
Farmyard manure and slurry (FYM)a — Composted FYM Rotted FYM Stacked FYM —
Mineral — — Rock powder,

magnesia
Synthetic (NPK) Synthetic (NPK)

Inputs (kg ha� 1 y�1)b

Dry matter 0 3177±410 3303±494 3404±525 0
Organic matter 0 1818±243 2176±326 2514±419 0
Ntot 0 93±10 102±13 181±16 133±10
Nmin 0 27±3 34±5 120±10 133±10
P 0 18±3 24±4 36±3 36±2
K 0 220±22 189±22 269±22 262±19
Ca 0 150±25 125±20 159±38 238±70
Mg 0 27±4 25±4 34±5 34±6

Plant protection scheme
Weed control Mechanical Mechanical Mechanical Mechanical and herbicidesc Mechanical and

herbicidesc

Disease control Indirect methodsd Indirect methodsd Indirect methodsd Chemical (thresholds)c Chemical
(thresholds)c

Insect control Plant extracts,
biocontrol

Plant extracts,
biocontrol

Plant extracts,
biocontrol

Chemical (thresholds)c Chemical
(thresholds)c

Special treatments Biodynamic
preparationse

Biodynamic
preparationse

CuSO4 in potatoes Plant growth regulatorsc Plant growth
regulatorsc

Abbreviations: BIODYN, manured biodynamic; BIOORG, manured bioorganic; Ca, calcium; CONFYM, manured conventional; CONMIN,
minerally fertilized conventional; DOK, German abbreviation for dynamic, organic and conventional agricultural management; FYM, farmyard
manure and slurry; K, potassium; Mg, magnesium; NOFERT, unfertilized biodynamic; Nmin, mineral nitrogen; Ntot, total nitrogen; P, phosphorus.
aFYM was applied at 1.4 livestock units per hectare and year. FYM processing differed for the three stocked farming systems, that is, BIODYN
(composted for 8–12 months), BIOORG (rotted for 3 months) and CONFYM (stacked for 4–8 months).
bAverage (mean±s.e.) annual nutrient amendments between 1992 and 2007 (nutrient input through plant residues are not included). Ntot in FYM
was measured according to Kjeldahl and refers to the sum of organic and ammonium N. Nmin in FYM refers to ammonium N only.
cHerbicides (1–2 treatments per year) and fungicides (2–3 treatments per year) were applied according to threshold values. Pest control was
performed in potatoes on a regular basis and in winter wheat on a rare basis. Plant growth regulators (Cycocel, OHP Inc., Mainland, PA, USA)
were routinely applied to winter wheat.
dBacillus thuringiensis subsp. tenebrionis (Novodor FC, Valent BioScience Corporation, Libertyville, IL, USA) was applied in all organic farming
systems as biocontrol agent against potato beetle. No other microbial inoculants (for example, biocontrol, effective microorganisms) were used.
eBiodynamic preparations (Reganold, 1995) P500 (cow manure fermented in a cow horn) and P501 (silica incubated in a cow horn) were amended
at rates of 250 g and 4 g hectare and year, respectively. Composting additives were P502 (Achillea millefolium, L.), P503 (Matricaria recutita, L.),
P504 (Urticaria dioica, L.), P505 (Quercus robur, L.), P506 (Taraxacum offcinale, Wiggers) and P507 (Valeriana officinalis, L.). A decoct of shave-
grass (Equisetum arvense, L.) has been applied once during vegetational growth to wheat and potatoes as a protective agent against plant diseases
at rates of 1.5 kg ha�1.

Microbial diversity of different farming systems
M Hartmann et al

1179

The ISME Journal



Collection of soil samples (each representing a
pool of 8 to 14 cores per plot, 2.5 cm diameter,
0–20 cm depth) and extraction of total nucleic acids
have been described previously (Widmer et al.,
2006; Schneider et al., 2010). The DOK field
(1.4 ha) contains 96 plots (5� 20m each) arranged
as a randomized split–split block with four repli-
cates of each treatment and crop. For this study, 40
plots representing all five farming systems
(NOFERT, BIODYN, BIOORG, CONMIN and CON-
FYM) and two different stages in the crop rotation
(winter wheat and grass-clover) were selected.
Samples were collected in March 2000 (after 21
years of continuous management) and a complete
crop rotation later in March 2007. A total of 80
samples (5 systems� 2 crops� 2 time points� 4
replicates) were analysed.

Fertilizer and soil chemical properties
Chemical properties of fertilizers and soils have
been determined according to Swiss standard
protocols (Agroscope, 2011). Fertilizer contents have
been measured annually since 1992. In FYM, total
nitrogen (Ntot) as the sum of organic and ammonium
N was measured using the Kjeldahl method on a
AutoKjeldahl-System K-370 (Büchi Labortechnik AG,
Flawil, Switzerland). FYM organic matter was deter-
mined by combustion at 600 1C. Elemental analyses
of phosphorus (P), potassium (K), calcium (Ca) and
magnesium (Mg) were performed from dried and
ground material calcinated at 450 1C. After HCl
extraction of ashed filtrates, properties were mea-
sured by inductively coupled plasma-optical emis-
sion spectroscopy. Mineral fertilizers (NPK) in
CONMIN and CONFYM consisted of calcium ammo-
nium nitrate, triple superphosphate and potassium
magnesium sulphate.

Soil chemical properties have been measured
biannually. The pH of 601 dried soil samples was
determined in a soil suspension with deionized
water (1:10, w/v). Soil organic carbon was analysed
by titration after wet oxidation in concentrated
H2SO4 and 2M K2Cr2O7. Total soil nitrogen was
measured using the Kjeldahl method. Plant avail-
able soil P and K were determined photometrically
and by flame atomic emission spectroscopy, respec-
tively, in extracts from CO2 saturated water. Mg was
determined by flame atomic absorption spectro-
scopy in CaCl2 extracts.

Pyrosequencing of bacterial and fungal ribosomal
markers
Amplicon generation (bacterial 16SV1-V3 and fungal
ITS2 of the ribosomal RNA operon) was performed
as previously described (Hartmann et al., 2014).
Amplicons were unidirectionally sequenced using
the GS-FLX Titanium technology (Roche 454 Life
Sciences, Branford, CT, USA) at the Génome Québec
Innovation Center Montréal, Canada. Sequence data

were denoised according to Hartmann et al. (2014),
including elimination of sequencing errors (Quince
et al., 2009), PCR substitution errors (Quince et al.,
2011) and chimeras (Edgar et al., 2011) as implemen-
ted in MOTHUR (Schloss et al., 2009), as well as target
verification and extraction (Hartmann et al., 2010;
Nilsson et al., 2010). Denoised sequences were
clustered into operational taxonomic units (OTUs)
using CROP (Hao et al., 2011) at 97% sequence identity.
CROP centre sequences were queried against GREENGENES

(DeSantis et al., 2006; McDonald et al., 2011) and
UNITE (Abarenkov et al., 2010) using the naive
Bayesian classifier (Wang et al., 2007) implemented
in MOTHUR and a minimum bootstrap support of 60%.

Statistics
All statistical tests performed in this study were
considered significant at Po0.05 unless indicated
otherwise; however, we provide the precise P-values
wherever possible. Multivariate analysis of micro-
bial diversity was performed according to Anderson
and Willis (2003) and included (1) a robust
unconstrained ordination to determine the major
variance components, (2) a compatible constrained
analysis with reference to the hypothesis, (3) a
rigorous statistical test of the hypothesis and (4) a
characterization of the taxa responsible for the
multivariate patterns. For this purpose, we used
(1) principal coordinate analysis (PCO; Gower, 1966);
(2) canonical analysis of principal coordinates (CAP;
Anderson and Willis, 2003); (3) permutational
analysis of variance (PERMANOVA; Anderson, 2001),
permutational analysis of multivariate dispersions
(PERMDISP; Anderson, 2006) and analysis of similarity
(ANOSIM; Clarke, 1993); and (4) correlation-based
indicator species analysis (De Cáceres and
Legendre, 2009). Each method comes with its own
advantages and limitations such that the combined
use of these methods provides a robust assessment
of the hypothesis. Differences in b-diversity were
measured using Bray–Curtis similarities calculated
based on normalized and square root transformed
OTU abundances (Hartmann et al., 2012). PCO, CAP,
PERMANOVA, PERMDISP and ANOSIM were performed
using the homonymous routines in PRIMER6þ
(Clarke and Gorley, 2006). Significance levels calcu-
lated in CAP, PERMANOVA, PERMDISP and ANOSIM were
determined with 105 permutations. Adjustments
for multiple testing were performed using the
Benjamini–Hochberg correction (Benjamini and
Hochberg, 1995) in the R package MULTTEST (Pollard
et al., 2013). Correlations between resemblance
matrices were determined using a non-parametric
Mantel-type test implemented as the RELATE routine
in PRIMER6þ .

Estimates of a-diversity were based on evenly
rarefied OTU abundance matrices and included
observed richness Sobs and Smith–Wilson evenness
Evar (Smith and Wilson, 1996) as calculated in
MOTHUR. Sampling effort was estimated using Good’s
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coverage (Good, 1953). Rarefaction curves of the
observed richness were calculated in MOTHUR using
1000-fold resampling without replacement. Biplot
correlations between PCO scores and a-diversity
metrics were calculated using the ‘corr.axes’ func-
tion in MOTHUR. In order to maximize comparability
with analysis of b-diversity, management effects on
a-diversity were examined using univariate PERMA-

NOVA, ANOSIM and PERMDISP based on Euclidean
distances.

Overall management effects on soil chemistry
were examined using PCO combined with multi-
and univariate PERMANOVA and ANOSIM of Euclidean
distances based on z-transformed data. The relation-
ship between b-diversity and soil chemistry was
analysed using nonparametric multivariate regres-
sion between the soil chemical parameters and the
OTU-based resemblance matrices implemented as
distance-based linear modelling (McArdle and
Anderson, 2001) in PRIMER6þ and run with 105

permutations. Models were built using a step-wise
selection procedure and the adjusted R2 selection
criterion.

The association strength (that is, the point biserial
correlation coefficient R) of each OTU with a
particular farming system or farming system combi-
nation was determined using correlation-based
indicator species analysis (De Cáceres and
Legendre, 2009) with all possible combinations (De
Cáceres et al., 2010) and correction for unequal
sample sizes where necessary (Tichy et al., 2006).
Based on the rationale that an OTU can occupy a
certain niche provided by multiple farming systems,
considering all possible combinations is important
to detect these associations (De Cáceres et al., 2010).
The analyis was peformed in GINKGO (Bouxin, 2005)
with 105 permutations. P-value adjustments for
multiple comparisons were performed using the
false discovery rate correction according to Storey
(2002). Q-values were determined using QVALITY

(Käll et al., 2009) and associations were considered
significant at qo0.05. Singletons and doubletons,
that is, OTUs that were represented by only one or
two sequences across the whole data set, hold little
indicator potential and were not included in the
analysis.

Various network appproaches were used to ana-
lyse the data sets. Directed networks visualizing the
OTU distribution across the taxonomic tree were
generated using the prefuse layout algorithm in
CYTOSCAPE 3.0 (Shannon et al., 2003). Bipartite net-
works were generated using the systems as source
nodes and the OTUs as target nodes, with edges
(that is, lines connecting nodes) corresponding to
positive associations of particular OTUs with spe-
cific systems or system combinations. Bipartite
networks were generated using the edge-weighted
spring-embedded layout algorithm in CYTOSCAPE with
edges weighted according to the association
strength. OTU co-correlations between all pairs of
significantly (qo0.05) associated OTUs were

calculated using Spearman’s rank correlation coeffi-
cient. P-values were adjusted using QVALITY and co-
correlations were considered significant at qo0.01.
Based on this information, co-correlation networks
were construced using the edge-weighted spring-
embedded layout algorithm in CYTOSCAPE with edges
weighted according to the correlation coefficient.

Results

Management effects on bacterial and fungal diversity
A total of 594 340 (7429±2481 per sample) bacterial
16SV1-V2 and 523 928 (6549±1463 per sample)
fungal ITS2 high-quality sequences with an average
read length of 258±14 and 266±42 bp, respectively,
were obtained for the 80 soil samples. Sequence
clustering yielded 3877 (795±122 per sample)
bacterial and 2554 (357±40 per sample) fungal
OTUs, representing an average Good’s coverage of
95.7±1.1% and 98.4±0.4%, respectively. All high-
quality sequences as well as the CROP-derived centre
sequences that are representative of each OTU are
provided in Supplementary Data 1.

The farming systems and crop types were sig-
nificant drivers of bacterial and fungal b-diversity
(Figure 1 and Table 2). The bacterial and fungal
communities in the different farming systems were
on average 10% and 13% dissimilar. The commu-
nities under different crop types were 4% and 11%
dissimilar, respectively, revealing a stronger crop
effect on fungi than on bacteria. In fact, the crop
effect on the bacterial community was statistically
only supported by PERMANOVA, but not by ANOSIM

(Supplementary Table 1). These management effects
were accompanied by pronounced spatial and
temporal variabilities that contributed with
10–11% (plot) and 8–15% (year) to the explained
variance. The temporal component showed signifi-
cant interactions with the factors management and
crop (Table 2); however, the management and crop
effects were also significant when each year was
examined separately (data not shown). Overall,
bacterial and fungal community structures were
significantly correlated (RELATE R¼ 0.64, Po0.001).

Unconstrained PCO ordinations mainly separated
FYM-based and non-FYM-based systems on the first
axis, whereas the strong influence of the temporal
component became evident on the second axis
(Figure 1a). Despite substantial spatiotemporal
variability, PERMANOVA and ANOSIM suggested the
presence of distinct microbial communities in all
farming systems with the exception of no differ-
ences between NOFERT and CONMIN for bacteria
(Table 2). These differences became evident in the
constrained CAP ordination that largely eliminated
variation introduced by crop type and spatiotem-
poral variability (Figure 1b). All five farming
systems formed distinct clusters in the ordination
space, clusters that were quantitatively supported
by high CAP reclassification rates in the range of 75%
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to 94% that, in contrast to PERMANOVA and ANOSIM,
also discriminated NOFERT from CONMIN for
bacteria. FYM application exerted the strongest
effect on b-diversity and separated the data on the
first CAP axis with high canonical correlations and
reclassification rates between 91% and 100%.
The FYM application effect on b-diversity was
confirmed by ANOSIM with R-values of 0.54 and
0.71 (Po0.001) for bacteria and fungi, respectively
(Supplementary Table 1). Organic versus conventional

systems separated the data on the second CAP axis
with high reclassification rates between 84% and
98%. This effect was also confirmed by ANOSIM with
R-values of 0.24 and 0.53 (Po0.001) for bacteria and
fungi, respectively.

Differences in b-diversity between farming sys-
tems as detected by PERMANOVA and ANOSIM can arise
from differences in similarity, differences in disper-
sion or both. A separate test of dispersion using
PERMDISP revealed that differences among farming

Figure 1 Management effects on bacterial and fungal community structures. (a) PCO ordinations of Bray–Curtis similarities calculated
based on relative OTU abundances showing major differences induced by farmyard manure application, that is, FYM (brown symbols)
versus NoFYM (purple symbols), and year of sampling, that is, 2000 (triangles) versus 2007 (diamonds). The variance explained by each
PCO axis is given in parentheses. Joint biplots show the correlation between richness or evenness and the ordinations scores on each PCO

axis. Correlation coefficient r and level of significance (***Po0.001 and ns P40.05) are provided. (b) CAP ordinations of bacterial and
fungal communities maximizing discrimination among the different farming systems, that is, NOFERT (blue circles), CONMIN (pink
triangles), BIODYN (green circles), BIOORG (dark green squares) and CONFYM (red triangles). These symbols (same symbol reflects same
crop protection strategy) and colours (different farming systems) are used throughout the article where applicable. The canonical
correlation (d2) of each CAP axis, indicating the association strength between the multivariate data cloud and the hypothesis of differences
between farming systems, is given in parentheses. The third axes (not shown) further separate BIOORG and BIODYN with d2¼ 0.52 and
0.55 for bacteria and fungi, respectively. The CAP reclassification rates (in percent) for each farming system are given in parentheses next to
each cluster. The reclassification rate of the CAP model provides a quantitative estimate of the degree of discrimination among the systems
achieved by the canonical axes. The traceQ_m’HQ_m statistic (sum of canonical eigenvalues) given in the plots tests the null hypothesis of
no significant differences in multivariate location among farming systems and represents an overall test of rejecting the null hypothesis.
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systems were at least partially driven by different
within-system heterogeneities, whereas the factors
crop and sampling time had little effect on disper-
sion (Supplementary Table 1). FYM application
significantly reduced dispersion in both bacteria
and fungi, with the highest dispersion observed in
the unfertilized system (data not shown). Dispersion
for BIODYN, BIOORG and CONFYM was similar,
suggesting that differences in b-diversity between
FYM-based systems were largely driven by dissim-
ilarity rather than dispersion (Supplementary
Table 1).

Management effects on a-diversity were statisti-
cally less robust, although significant shifts were
still detected (Table 3 and Supplementary Table 2).
In contrast, the crop type had no significant effect on
a-diversity. Joint biplot correlations revealed trends
of increasing richness and decreasing evenness in
FYM-amended soils (Figure 1). ANOSIM tests con-
firmed this observation for bacteria but only par-
tially for fungi (Supplementary Table 2). CONMIN
showed the lowest richness and highest evenness
among all farming systems, whereas BIODYN
showed the opposite trend (Table 3). All parameters
except bacterial evenness were also significantly

influenced by the temporal component (Table 3),
and the significant ‘time�management’ interaction
for bacterial richness calls for a cautious interpreta-
tion of these results. Differences in a-diversity
among FYM-amended soils were small and not
significant.

In order to investigate treatment effects on a-
diversity at greater sequencing depth, we pooled all
sequences from the same farming system and
generated rarefaction curves of the observed rich-
ness including confidence intervals (Supplementary
Figure 1). The bacterial and fungal rarefaction
curves revealed higher a-diversity in the fertilized
organically managed systems and lower a-diversity
in the conventional systems (BIODYN4BIOORG4
CONFYM4CONMIN). Differences were less sup-
ported for fungi than for bacteria. Interestingly, the
unfertilized system NOFERT revealed low bacterial
but the highest fungal a-diversity.

Soil chemical properties and relationship with
community structure
As part of the regular data collection in the DOK
experiment, the parameters pH, Corg, Ntot, P, K and Mg

Table 2 Effects of agricultural management effects on bacterial and fungal b-diversity

Main testa Bacteria Fungi

F P VC F P VC

Management (F4, 30) 3.6 o0.001 10.3 3.9 o0.001 13.2
Crop (F1, 30) 1.9 0.023 3.7 6.1 o0.001 11.0
Management� crop (F4, 30) 0.8 0.914 Neg 1.1 0.172 3.6
Plot (F30, 30) 1.4 o0.001 9.4 1.3 o0.001 11.1
Time (F1, 30) 7.4 o0.001 8.4 13.0 o0.001 14.5
Time�management (F4, 30) 1.3 0.003 4.3 1.5 o0.001 6.6
Time� crop (F1, 30) 1.4 0.031 3.1 3.1 o0.001 8.7
Time�management� crop (F4, 30) 1.0 0.610 Neg 1.2 0.065 5.6

Farming systemsb t Padjust Øsim t Padjust Øsim

NOFERT vs CONMIN 1.2 0.142 63.4 1.5 0.010 50.1
NOFERT vs BIODYN 2.5 0.003 59.8 2.1 0.001 48.9
NOFERT vs BIOORG 1.8 0.013 62.4 1.8 0.001 49.3
NOFERT vs CONFYM 1.7 0.013 63.2 2.3 o0.001 48.0
CONMIN vs BIODYN 2.8 0.002 59.3 2.4 o0.001 49.7
CONMIN vs BIOORG 2.1 0.003 61.9 2.0 o0.001 50.4
CONMIN vs CONFYM 1.7 0.013 64.0 2.0 o0.001 51.7
BIODYN vs BIOORG 1.4 0.013 66.3 1.4 0.002 55.1
BIODYN vs CONFYM 2.0 0.002 64.6 2.3 o0.001 52.7
BIOORG vs CONFYM 1.3 0.032 66.4 1.7 o0.001 54.3

Abbreviations: BIODYN, manured biodynamic; BIOORG, manured bioorganic; CONFYM, manured conventional; CONMIN, minerally fertilized
conventional; Neg, negative; NOFERT, unfertilized biodynamic.
aEffects of main factors and their interactions as assessed by multivariate permutational analysis of variance (PERMANOVA; degrees of freedom
for each factor and the corresponding error term are given in brackets). Main factors represent agricultural management system (NOFERT,
CONMIN, BIODYN, BIOORG and CONFYM), crop (winter wheat and grass-clover), plot (nested in management and crop) and time (year of
sampling, that is, 2000 and 2007). Values represent the pseudo-F ratio (F), the permutation-based level of significance (P) and the estimation of the
variance component (VC). Values at Po0.05 are shown in bold. Negative variance components (neg) can result from underestimations of small or
zero variances; therefore, variance components of the remaining factors were estimated according to Fletcher and Underwood (2002) by
sequentially removing factors with negative components from the model.
bPairwise comparisons between farming systems. Values represent the univariate t-statistic (t) and the average between-group Bray–Curtis
similarity (Øsim). The permutation-based level of significance was adjusted for multiple comparisons using the Benjamini–Hochberg procedure
(Padjust). Values at Po0.05 are shown in bold.
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were measured biannually between 2000 and
2008. Overall, soil chemistry showed the most
pronounced differences between the unfertilized
system NOFERTand all other systems (Figure 2), but
ANOSIM tests significantly differentiated all farming
systems (Supplementary Table 3). Although the
management regime accounted for the largest part
of the variance, crop type and the spatiotemporal
component also introduced significant variability
and often interacted with the management effect,
calling for careful interpretation of the results
(Table 4). The ‘time�management’ interaction was
not strong in NOFERT, BIOORG and BIODYN, but
more pronounced in CONMIN and CONFYM
(Supplementary Table 3). NOFERT showed the
lowest values for all soil chemical properties
(Table 4), leading to a separate clustering
(Figure 2). Among the fertilized systems, soil pH,
Corg and Ntot were significantly higher in BIODYN,
but similar among CONMIN, CONFYM and
BIOORG. In contrast, soil P was higher in CONFYM
and soil Mg was higher in CONMIN when compared
with all other fertilized systems. All six chemical
parameters were significantly co-correlated (data not
shown), with the strongest correlations between Corg

and Ntot as well as between P and K (Figure 2).
Because of the biannual sampling scheme, soil

chemical data were available for 2000 but not 2007.
Thus, microbial and chemical data were not exactly
comparable. However, despite the significant
‘time�management’ interaction observed for most

chemical properties, we may use the data from 2006
and 2008 as approximation for 2007, as soil
chemistry did not change significantly in that period
as assessed by ANOSIM (Supplementary Table 3).
Accordingly, distance-based multivariate regression
between b-diversity and soil chemistry gave very

Table 3 Effects of agricultural management on bacterial and fungal a-diversity

Main testa Bacteria Fungi

Richness (Sobs) Evenness (Evar) Richness (Sobs) Evenness (Evar)
F (P) F (P) F (P) F (P)

Management (F4, 30) 8.2 (o0.001) 6.6 (o0.001) 5.4 (0.002) 2.6 (0.055)
Crop (F1,30) 0.3 (0.589) 0.6 (0.445) 0.0 (0.831) 0.2 (0.696)
Management� crop (F4, 30) 1.4 (0.258) 0.3 (0.862) 0.7 (0.586) 0.3 (0.853)
Plot (F30, 30) 1.5 (0.149) 1.3 (0.212) 1.0 (0.453) 1.3 (0.263)
Time (F1, 30) 32.7 (o0.001) 0.8 (0.384) 6.7 (0.015) 20.5 (o0.001)
Time�management (F4, 30) 3.3 (0.024) 1.4 (0.243) 0.9 (0.474) 0.3 (0.850)
Time� crop (F1, 30) 0.8 (0.378) 0.0 (0.945) 8.5 (0.007) 18.0 (o0.001)
Time�management� crop (F4, 30) 0.7 (0.569) 0.4 (0.832) 0.5 (0.731) 1.1 (0.368)

Farming systemb Mean±s.e. Mean±s.e. Mean±s.e. Mean±s.e.

NOFERT 522±7A,B 0.247±0.005A,B 282±9A,B 0.385±0.005A

CONMIN 517±5A 0.251±0.003A 265±7A 0.393±0.004A

CONFYM 541±6B,C 0.232±0.003B,C 288±6A,B 0.391±0.004A

BIOORG 544±8B,C 0.228±0.004C 290±8A,B 0.382±0.004A

BIODYN 560±7C 0.230±0.004B,C 308±6B 0.379±0.003A

Abbreviations: BIODYN, manured biodynamic; BIOORG, manured bioorganic; CONFYM, manured conventional; CONMIN, minerally fertilized
conventional; Evar, Smith–Wilson evenness index; NOFERT, unfertilized biodynamic; Sobs, observed richness.
aEffects of main factors and their interactions were assessed by univariate permutational analysis of variance (PERMANOVA; degrees of freedom
for each factor and the corresponding error term are given in brackets). Main factors represent agricultural management system (NOFERT,
CONMIN, BIODYN, BIOORG and CONFYM), crop (winter wheat and grass-clover), plot (nested in management and crop) and time (year of
sampling, that is, 2000 and 2007). Values represent the pseudo-F ratio (F) and the level of significance (P). Values at Po0.05 are shown in bold.
bAverage richness and evenness (mean±s.e.; n¼16) for each agricultural management system. Estimates are based on rarefied data sets (that is
randomly subsampled to the same number of sequences per sample, that is, 2812 bacterial and 3292 fungal sequences). Different letters represent
significant differences at Po0.05 with P-values adjusted for multiple comparisons using the Benjamini–Hochberg method.

Figure 2 Management effects on soil chemistry measured
biannually between 2000 and 2008. PCO ordinations of Euclidean
distances calculated based on z-transformed soil chemical
parameters, that is, pH, Corg, Ntot, P, K and Mg. Joint biplots show
the correlation between the soil chemical parameters and the
ordinations scores on each PCO axis.
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similar results when used with data from 2006 or
2008 (data not shown). Most soil chemical proper-
ties revealed significant relationships with both
bacterial and fungal b-diversity when examined
separately (Table 4, ‘marginal test’). Corg, Ntot and
pH were the strongest predictors of community
structure, explaining between 5% and 9% of the
variance. Because of the significant co-correlations
among the chemical properties, fitting all para-
meters into one model can add additional informa-
tion by removing contributions from co-correlations
and simultaneously unravelling underlying relation-
ships with other parameters. When all parameters
were fitted into one model (Table 4, ‘sequential
test’), Corg was the strongest predictor of bacterial
b-diversity, whereas Ntot was the strongest predictor
of fungal b-diversity. pH explained an additional 3%
in both data sets. P added only little additional
information in the case of bacteria, but another 4%
in the case of fungi. Notably, whereas Mg was a weak
predictor of community structure when considered
separately, it explained an additional 3% when the
effects of the other variables were removed in the

combined model. In total, the six soil chemical
properties explained B19–20% of the variance in
b-diversity (Table 4).

Taxonomic composition and management-sensitive taxa
The overall taxonomic complexity of the community
is visualized in Figure 3 and a complete list of all
detected bacterial and fungal taxa, summarized from
phylum to OTU level, is provided in Supplementary
Data 2. Among the 3877 bacterial OTUs, 2840
(representing 97% of all sequences) were assigned
at the phylum level. At lower taxonomic levels,
2504 (94%), 1912 (83%), 1104 (53%), 484 (25%) and
61 (6%) bacterial OTUs were assigned at the levels
class, order, family, genus and species, respectively.
Equivalently, among the 2554 fungal OTUs, 1962
(89%), 1507 (80%), 1223 (78%), 1087 (75%), 897
(65%) and 361 (33%) were assigned at the levels
phylum, class, order, family, genus and species,
respectively. Thus, the assignment success at lower
taxonomic levels such as genus or species was
higher for the fungal pyrotags, whereas the bacterial

Table 4 Soil chemical properties between 2000 and 2008 and the relationship between soil chemistry and bacterial or fungal b-diversity

Main testa pH Corg Ntot P K Mg
F (P) F (P) F (P) F (P) F (P) F (P)

Management (F4, 30) 36.5 (o0.001) 28.8 (o0.001) 20.0 (o0.001) 78.6 (o0.001) 72.0 (o0.001) 87.8 (o0.001)
Crop (F4, 30) 1.9 (0.112) 4.0 (0.005) 6.6 (o0.001) 3.0 (0.217) 11.7 (o0.001) 8.8 (o0.001)
Management� crop (F16, 30) 1.4 (0.138) 0.4 (0.975) 0.1 (1.000) 1.7 (0.063) 2.4 (0.005) 7.1 (o0.001)
Plot (F135, 30) 12.3 (o0.001) 2.4 (0.004) 26.0 (o0.001) 1.6 (0.088) 1.1 (0.376) 7.7 (o0.001)
Time (F2, 30) 6.2 (0.004) 25.7 (o0.001) 52.6 (o0.001) 4.6 (0.010) 5.3 (0.008) 48.9 (o0.001)
Time�management (F8, 30) 26.8 (o0.001) 0.8 (0.574) 5.0 (o0.001) 2.4 (0.029) 4.2 (0.001) 36.4 (o0.001)

Pairwise testb (% soil) (% soil) (mg per kg soil) (mg per kg soil) (mg per kg soil)

NOFERT 5.94±0.06A 1.09±0.03A 0.150±0.004A,B 19±1A 3.9±0.1A 60±2A

CONMIN 6.27±0.05B 1.22±0.03B 0.160±0.003B,C 59±2B 11.5±0.7B 129±6C

CONFYM 6.32±0.03B 1.24±0.02B 0.162±0.002C 87±3C 11.4±0.4B 94±2B

BIOORG 6.36±0.03B 1.30±0.03B 0.167±0.003C 60±3B 10.9±0.4B 95±1B

BIODYN 6.71±0.03C 1.52±0.03C 0.193±0.003D 64±3B 12.2±0.5B 95±3B

DISTLM
c VC (P) VC (P) VC (P) VC (P) VC (P) VC (P)

Bacteria (marginal test) 9.1 (o0.001) 9.3 (o0.001) 9.0 (o0.001) 4.9 (o0.001) 4.4 (o0.001) 1.6 (0.139)
Bacteria (sequential test) 3.3 (o0.001) 9.3 (o0.001) 1.2 (0.229) 1.5 (0.044) 2.0 (0.003) 3.1 (o0.001)
Fungi (marginal test) 5.3 (o0.001) 5.6 (o0.001) 6.4 (o0.001) 4.6 (o0.001) 3.9 (o0.001) 2.1 (0.016)
Fungi (sequential test) 2.6 (o0.001) 1.5 (0.080) 6.4 (o0.001) 4.2 (o0.001) 1.8 (0.011) 2.6 (o0.001)

Abbreviations: BIODYN, manured biodynamic; BIOORG, manured bioorganic; Ca, calcium; CONFYM, manured conventional; CONMIN,
minerally fertilized conventional; Corg, organic carbon; DISTLM, distance-based linear modelling; K, potassium; Mg, magnesium; NOFERT,
unfertilized biodynamic;
Ntot, total nitrogen; P, phosphorus.
aEffects of main factors and their interactions assessed by univariate permutational analysis of variance (PERMANOVA; degrees of freedom for
each factor and the error term are given in brackets). Main factors represent agricultural management system (NOFERT, CONMIN, BIODYN,
BIOORG and CONFYM), crop (winter wheat and grass-clover), plot (nested in management and crop) and time (year of sampling, that is, 2000 and
2007). Because of the temporally shifted crop rotation, crop types were different in the different years, leading to a nonfactorial design. Therefore,
interactions ‘ Time� crop’ and ‘ Time�management� crop’ could not be analysed and terms were pooled into the residuals. Values represent the
pseudo-F ratio (F) and the level of significance (P). Values at Po0.05 are shown in bold.
bAverage soil chemical properties (mean±s.e.; n¼ 40) for each agricultural management system. Different letters indicate significant differences
assessed by PERMANOVA at Po0.05 with P-values adjusted for multiple comparisons using the Benjamini–Hochberg method.
cDistance-based linear modelling examining the relationship between soil chemistry and microbial b-diversity. Soil chemical data were derived
from 2000 and 2006 (as proxy for 2007). The marginal test examines the relationship between b-diversity and each predictor variable individually,
whereas the sequential test examines the relationship by sequentially fitting all predictors into the most parsimonious model. The sequential
modelling was performed using a stepwise selection procedure and the adjusted R2 selection criterion. Values in table represent the estimation of
the variance component (VC) and the level of significance (P).
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pyrotags had higher assignment success at higher
taxonomic levels such as phylum or class. A total of
1037 (2.6%) bacterial and 592 (11%) fungal OTUs
were unclassified at the phylum level. Overall, 44
phyla, 113 classes, 203 orders, 345 families, 602
genera and 329 species were identified.

In the following, we focus only on OTUs that
differed significantly among the different farming
systems, but point out that, given the main effects on
the overall community structure (Figure 1), there
were certainly other OTUs that solely differed
between crop types or sampling years. We provide
the indicator statistics for all 6431 detected OTUs in
Supplementary Data 2. A total of 452 (12%) bacterial
and 176 (7%) fungal OTUs were significantly
(qo0.05) associated with specific farming systems
or system combinations; notably however, these
B10% OTUs represented 51% and 43% of the
pyrotags in the bacterial and fungal data sets,
respectively. These 628 bacterial and fungal OTUs
were broadly distributed across the taxonomic tree
(Figure 3, red nodes). However, certain abundant
phyla such as Actinobacteria and Acidobacteria
showed a clear accumulation of these manage-
ment-sensitive OTUs.

A bipartite association network was used
to visualize the associations between OTUs and
the different farming systems or system combina-
tions (Figure 4). The bipartite network strongly
resembled the constrained CAP ordination plots
(Figure 1b) by recovering the major discriminative
gradients related to FYM application (horizontally)
and organic versus conventional management
(vertically). The association strength (that is,
correlation coefficient R) of the 628 significant
OTUs varied between 0.30 and 0.82 (indicated by
the different edge lengths in the network of
Figure 4). Of these OTUs, 49% were most strongly
associated with only one system (Figure 4, clusters
1–5), confirming the basic distinctness of the
communities in all five systems. Approximately
23% of the significant OTUs were most strongly
driven by FYM application (clusters 6, 7, and 9),
whereas another 17% were associated with combi-
nations of organic or conventional farming systems
(clusters 8, 10–12). Only 11% of the significant
OTUs were associated with cross-combinations
(Figure 4, white nodes). All 628 management-
sensitive OTUs occurring in these clusters are
marked in the Supplementary Data 2 (column

Figure 3 Taxonomic dendrograms of the detected bacterial and fungal communities showing the OTU distribution (excluding OTUs
with o0.001% relative abundance) across the different taxonomic branches (colour coded by phylum). Nodes correspond to OTUs and
node sizes correspond to their relative abundances (square root) in the data set. Edges (that is, lines connecting the nodes) represent the
taxonomic path from the root, that is, bacteria or fungi (marked by yellow asterisks), to OTU level, and OTUs were placed at the level of
the lowest possible assignment. The most abundant phyla are labelled including the total OTU number and relative abundance in
parentheses. Red nodes correspond to OTUs that significantly (qo0.05) differed among farming systems, whereas white nodes represent
insensitive OTUs. Supplementary Figure 2 shows the same taxonomic dendrograms with only the significant OTUs colour coded
according to the system association information.
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‘BipartiteCluster’) in order to facilitate individual
inspection.

A complete discussion of all statistically signifi-
cant observations is beyond the scope of this study
and we attempt to focus on the most salient patterns.
At a first glance, however, OTUs responding to a
specific management regime were heterogeneously
distributed across the taxonomic tree with
largely no taxonomic clades responding uniformly
(Supplementary Figure 2). Thus, we used a two-step
strategy to retrieve more specific information. First,
we examined co-correlation patterns among the 628
statistically significant OTUs in order to elucidate
general trends at the phylum level. Second, as OTUs
only classified at higher taxonomic levels carry little
information to infer the putative ecological role of
the taxon, we extracted all OTUs that were at least
assigned to genus level.

Co-correlation networks can identify groups
where members respond uniformly to a specific
influence. Among the 10 most populated networks
at the phylum level, network density was highest for
Acidobacteria, Actinobacteria, Gemmatimonadetes
and Bacteroidetes, whereas Basidiomycota and
Ascomycota were more dispersed (Figure 5).

Many of the denser networks showed a bimodal
distribution reflecting the strong effect of
FYM application, but largely no other influences
(Supplementary Figure 3). In contrast, the more
dispersed networks constructed for Proteobacteria,
Ascomycota and Basidiomycota showed additional
influences. For example, Ascomycota and Basidio-
mycota appeared to contribute most in separating
CONFYM from BIODYN and BIOORG (Figure 5 and
Supplementary Figure 3), in agreement with the
higher farming system reclassification rates
observed for fungi (Figure 1). The Firmicutes net-
work constituted an exception to the contrasting
distributions of the other networks. Although the
overall network density for Firmicutes was only
intermediate, it represented almost exclusively
positive correlations (Figure 5). All Firmicutes
OTUs except one were associated with farming
systems receiving FYM (Supplementary Figure 3).
At lower taxonomic levels, the three networks
containing the highest numbers of positive correla-
tions included the acidobacterial genus Candidatus
Solibacter, the ascomycete family Lasiosphaeriaceae
and the firmicute class Clostridia (Figure 5, white
boxes).

Figure 4 Bipartite association network showing positive associations between the farming systems and the 628 significantly (qo0.05)
associated OTUs. Node sizes represent relative abundance (square root) of the OTUs in the data sets. Edges represent the association
patterns of individual OTUs with the farming systems. The edge-weighted spring-embedded algorithm pulled together OTUs with
similar associations and systems with similar structure. OTUs associated with only one farming system are symbol and colour coded
according to Figure 1. Diamond-shaped nodes represent OTUs associated with multiple farming systems. White nodes represent
multisystem cross-combinations not falling into the same category with respect to either FYM application (FYM or no FYM) or farming
regime (conventional or organic). Clusters are labelled as discussed in the text and marked in the Supplementary Data 2. Number of
OTUs and relative abundances are provided for each cluster.
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Co-correlation networks are well suited to detect
general patterns in highly populated taxonomic
groups, but they lack power to examine taxonomic
groups with only very few OTUs, and this is
intrinsically the case at lower taxonomic levels (for
example, many genera are represented by only one
OTU). On the other hand, OTUs classified at lower
taxonomic levels contain more information relevant
to inferring their putative ecological role in the
system. Therefore, and in combination with the
observations in the co-correlation networks, we
examined the individual response of all genus-level
OTUs in order to find clades where multiple genus-
level OTUs responded similarly. The response
of these genus-level indicators is visualized in
Supplementary Figure 4 followed by a more detailed
discussion in the context of the existing literature in
the Discussion section below.

Discussion

The DOK field experiment represents a unique
system to evaluate the influence of management
strategies under near-practical conditions including
different crop types. More than two decades of
continuous organic and conventional farming

altered soil microbial diversity (Figure 1 and
Tables 2 and 3). The long-term effect of agricultural
management revealed a greater impact than the
short-term effects of the cultivated crop, in particu-
lar on bacteria. The spatiotemporal variability was
substantial, demonstrating the importance of thor-
oughly replicated, temporally monitored long-term
field studies to measure robust effects. Application
and quality of the fertilizer appeared to be the major
factor shaping the soil microbiota, whereas the plant
protection measures, applied at moderate and
targeted levels, were of subordinate importance
(Figures 1 and 4). In general, management-sensitive
taxa were heterogeneously distributed across the
taxonomic tree (Figure 3 and Supplementary
Figure 2); however, some consistent patterns, for
example among members of the Acidobacteria and
Firmicutes (Figure 5), were observed.

Long-term agricultural management drives soil
microbial community structure
All five farming systems harboured structurally
distinct microbial communities, and both bacteria
and fungi showed a very similar response (Figure 1).
Despite the significant spatiotemporal variability
common to field studies, our approach revealed

Figure 5 Co-correlation networks calculated for the significantly (qo0.05) associated OTUs of the 10 most populated phyla (coded with
different colours). Nodes correspond to OTUs and node sizes correspond to their relative abundances (square root) in the data set. Edges
represent significant (qo0.01) negative (blue) or positive (red) Spearman’s correlations between pairs of OTUs. The edge-weighted
spring-embedded algorithm pulled together OTUs that were strongly co-correlated. Dense co-correlation networks indicate that all or
most OTUs in this cluster showed either a similar (¼ positive correlations) or contrasting (¼negative correlations) response. Network
density (d) calculated for each network represents the number of significant co-correlations divided by all possible co-correlations, that
is, higher density represents more uniform response. Symbol coding indicates the association with the different farming systems as
provided in Figure 4. Clusters are labelled with the approximate association information with respect to the management regime (that is,
farming systems or system combinations such as FYM or NoFYM). For closer inspection, the same network but OTUs colour coded with
the system association information is provided in Supplementary Figure 3.
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consistent underlying management effects, indicat-
ing that the spatiotemporal variation, although high,
did not confound these effects. While these observa-
tions are largely in agreement with earlier assess-
ments in the DOK experiment using first-generation
molecular techniques, the pyrotag approach offered
improved resolution of the management effects in
terms of explained variance and discrimination
power (see Supplementary Results for detailed
evaluation). Overall, FYM application appeared to
be the major driver of microbial diversity by altering
composition, reducing dispersion, increasing rich-
ness and decreasing evenness of the soil microbiota
(Figure 1, Tables 2 and 3 and Supplementary
Tables 1 and 2). The observation that conventional
(CONFYM and CONMIN) or organic (BIODYN and
NOFERT) systems under the same plant protection
regime share less similarity in community structure
than systems with similar nutritional status but
different plant protection regimes (for example,
NOFERT and CONMIN) suggest that the plant
protection component is likely of subordinate sig-
nificance in the DOK experiment (Figures 1 and 4).
It is, however, important to understand that the DOK
experiment compares management regimes at the
system level rather than evaluating the impact of
individual management factors; therefore, the
impact of the plant protection strategies cannot be
completely isolated from fertilization effects.
Although it can be expected that plant protection
strategies affect microbial diversity, either directly
by means of fungicides or indirectly by changing
above- and below-ground communities through
herbicide and insecticide application (Bünemann
et al., 2006), the rather small plant protection effect
in the DOK experiment is not necessarily surprising
as herbicides, fungicides and insecticides have been
applied according to the Swiss standards of inte-
grated farming that largely corresponds to a moder-
ate and targeted application of these chemicals
(Fliessbach et al., 2007; Mäder et al., 2007).

While research has long focussed on the effect of
agricultural management on biodiversity of higher
organisms, assessing microbial diversity has only
recently become more accurate in the light of high-
resolution sequencing. Based on the response of
richness, evenness and dispersion, it could be
hypothesized that the high availability of a rich
substrate like FYM increased richness by promoting
copiotrophic organisms, whose predominance in
turn reduced evenness. Furthermore, the consistent
availability of the same substrate in all these plots
streamlined the community and therefore reduced
across-sample dispersion. In contrast, the absence of
FYM led to a less eutrophic environment and a
likely more variable distribution of nutrients, lead-
ing to reduced richness while increasing evenness
and dispersion potentially by favouring various
slow-growing oligotrophic organisms. We can
conclude that organic farming significantly altered
the soil microbiota when compared with

conventionally managed soils under exclusively
mineral fertilization; however, these effects were
largely attributed to the use and quality of organic
fertilizer, as differences became smaller when
conventionally managed soils under an integrated
fertilization scheme were compared.

Reports on the effects of organic farming on
microbial diversity are often ambiguous, in particu-
lar because the experimental systems and manage-
ment definitions vary widely. Although Ge et al.
(2008) observed the same countertrend between
richness and evenness, other studies reported an
increase in richness being accompanied by either
positive (Parham et al., 2003; Jangid et al., 2008) or
no effect (Sun et al., 2004) on evenness after manure
amendment. More recent high-throughput sequen-
cing studies reported an increase in microbial
evenness in organic systems (Sugiyama et al.,
2010; Chaudhry et al., 2012), but have not detected
significant effects on richness (Sugiyama et al.,
2010; Li et al., 2012). Hence, it seems difficult to
draw a robust conclusion on the effect of conven-
tional and organic farming on bulk diversity para-
meters, in part because these metrics have often
little power in resolving differences in community
structure (Hartmann and Widmer, 2006), but most
importantly because the conclusion drawn strongly
depend on the methods used, on the metric
itself and, largely, on the experimental design.
As an example for the latter, it has been reported
that bacterial evenness under organic farming
only increased in the first few years and
then decreased in the long term (van Diepeningen
et al., 2006), highlighting the importance of the
temporal component for evaluating management
effects.

Soil chemistry appeared to be a statistically
significant determinant of the soil microbial com-
munity structure, but it explained only B20% of the
variance (Table 4), and this could largely be
attributed to the consistent differences between the
unfertilized and all other systems (Figure 2). The
consistently lowest values in the unfertilized system
could indicate poor sustainability of this farming
system. At the other end of the spectrum, the
biodynamic system showed significantly higher Corg,
Ntot and pH, all of which are factors known to
influence the soil microbiota (Lauber et al., 2008,
2009). The higher degree of organic matter stability
in composted FYM could be one explanation for the
higher Corg content (Fliessbach et al., 2007). The
strongest differences were observed for soil P and
Mg (Table 4). It could be hypothesized that arbus-
cular mycorrhizal fungi changed in abundance and/
or composition in soils with lower P concentrations
(Antunes et al., 2012); however, we observed only
few Glomeromycota, probably in part because of
limited coverage by the primers used (Kohout et al.,
2014; Stockinger et al., 2010), and their response to
the management regimes was minor. Overall, given
the rather small differences in soil chemistry among
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the other farming systems, for example, 0.4 units of
pH, 0.3% C or 0.03% N, it must be acknowledged
that these differences, although statistically robust,
are likely of minor biological significance. These
small differences in soil chemistry, despite the large
differences in carbon and nutrient inputs among the
farming systems, suggest that substrate amendments
had likely a more direct effect on the community
structure than indirectly by altering the soil chemi-
cal status.

Management-sensitive microbial taxa
One of the most important attributes of the high-
throughput sequencing approach is the potential to
identify microbial taxa responsible for shifts in
community structure. A considerably large fraction
of the community, representing 10% of the OTUs
that accounted for 50% of the pyrotags, responded
significantly to the management regimes (Figure 4).
In general, OTUs associated with the same farming
system or system combination were scattered across
the taxonomic tree and only very few taxonomic
groups responded uniformly (Supplementary
Figure 2). This is not necessarily surprising.
Whereas a severe environmental impact such as soil
compaction can affect entire clades of the soil
microbiota by changing fundamental factors such
as oxygen and water availability (Hartmann et al.,
2014), more moderate changes introduced by agri-
cultural management such as differences in the
nutritional status likely cause more subtle shifts in
community composition.

The construction of co-correlation networks
demonstrated that many of the abundant phyla
revealed a strongly bimodal response to FYM
application instead of favouring one condition
(Figure 5). Acidobacteria showed the strongest
bimodal response, but different acidobacterial
groups were found to occupy different clusters.
OTUs assigned to the genus Candidatus Solibacter
(and one Candidatus Koribacter) revealed the most
tightly correlated cluster in the complete network
and were associated with systems not receiving
FYM (Supplementary Figure 4). Members of this
genus have been suggested to be slow-growing
oligotrophs adapted to nutrient-limited environ-
ments (Ward et al., 2009). Therefore, an increased
abundance of these taxa in farming systems not
receiving manure, where nutrients inputs are either
low (NOFERT) or directly accessible to plants
(CONMIN), is in agreement with this putative
lifestyle. In contrast, the cluster tightly associated
with FYM-based systems was mainly characterized
by OTUs assigned to the classes Chloracidobacteria
and RB25, who’s lifestyles are largely unknown.
Our observations therefore partially confirm the
hypothesis that Acidobacteria generally prefer soil
environments of low resource availability (Fierer
et al., 2007) and higher acidity (Jones et al., 2009),
but are also in agreement with the contrasting

behaviour of individual acidobacterial subgroups
reported previously (Rousk et al., 2010).

The Firmicutes clade appeared to be the only
abundant phyla responding in the same direction
(Figure 5). All OTUs assigned to this phylum, with
one exception (Paenibacillus chondroitinus), were
associated with systems receiving FYM; however,
the rather dispersed co-correlation network indi-
cates very different preferences for the different
FYM systems. Among these 35 Firmicutes OTUs,
12 were assigned at genus level and included
the genera Bacillus, Clostridium, Epulopiscium,
Paenibacillus, Solibacillus, Symbiobacterium, Tepi-
dimicrobium, Thermobacillus and Ureibacillus
(Supplementary Figure 4). Many of these genera
have been found during meso- and thermophilic
degradation processes of organic materials such as
manure or compost (Ryckeboer et al., 2003) and
are known to be capable of degrading various
complex organic materials (Watanabe et al., 2007;
Charbonneau et al., 2012). Similar observations
were made for fungi. OTUs assigned to coprophilous
taxa such as Coprinellus, Coprinopsis, Preussia,
Psathyrella and Mortierella, including members of
the family Lasiosphaeriaceae such as Cercophora,
Cladorrhinum, Podospora, Schizothecium and
Zopfiella (Krug et al., 2004; Bills et al., 2013), were
tightly associated with FYM-based systems
(Supplementary Figure 4). Indeed, co-correlation
analysis identified the family Lasiosphaeriaceae as a
largely uniform cluster associated with FYM
(Figure 5).

It is important to understand that we can only
speculate on the ecological role of the detected taxa
based on what has been previously described in
other systems. Furthermore, we discovered several
management-sensitive bacterial and fungal taxa for
which we have little or no information about their
lifestyle or for which we were not able to get
taxonomic information at lower levels. It therefore
remains challenging to infer the ecological role for
many community members simply from phylogen-
etically based surveys, and additional information
on the distribution of functional genes can now shed
more light on our overarching observations. There-
fore, our data should not be overgeneralized and the
statistically significant observations need to be
confirmed in other agricultural systems. It seems,
however, that many of the OTUs associated with
FYM-based farming systems are related to bacterial
and fungal taxa that have been frequently described
in manure and similar substrates. It remains to be
determined whether manure served as inoculum for
introducing novel taxa to the soil, or whether
manure mainly served as substrate for indigenous
taxa. As a next step, it would therefore be interesting
to analyse the microbiota of the different manure
types and evaluate how soil communities that have
been unfertilized for a long time would respond
to manure amendments over an extended period
of time.
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With the novel sequencing technologies, we have
tools at hand to monitor soil microbial taxa at higher
throughput and resolution than previously possible.
This offers the potential to evaluate success of
agricultural soil management at the level of indivi-
dual taxa and, potentially, their attributed function.
For example, we can look specifically for known
beneficial or pathogenic taxa that are promoted or
suppressed by different management strategies.
Members of the fungal order Hypocreales, for
instance, are of vast economic importance in
agricultural systems as they include many plant
pathogens as well as potential biocontrol agents
(Rossman, 1996). In this study, several members of
this group responded to the different management
strategies (Supplementary Figure 4). One of the most
abundant OTUs (1.8%) assigned to the hypocrealean
genus Bionectria was strongly (R¼ 0.6) associated
with all organic systems, suggesting a negative
influence of fungicide application or other plant
protection measures. The necro- and biotrophic
Bionectria are known plant, insect and mycopar-
asites that have found use as biocontrol agents in
agriculture (Schroers, 2001). Another common agri-
cultural biocontrol agent, the entomopathogenic
fungus Beauveria bassiana (Feng et al., 1994), was
also positively associated with one of the organic
systems. Conversely, several members of the com-
mon plant pathogen Fusarium were associated with
conventional systems or systems not receiving
manure (Supplementary Figure 4). As another
example, members of the potential plant pathogens
Phoma and Ascochyta (Davidson et al., 2009) were
particularly associated with the unfertilized system.
These observations demonstrate that specific man-
agement strategies can select for beneficial or
detrimental organisms. In the light of these exam-
ples, the novel technologies offer new ways to
monitor the presence and absence of different
beneficial and pathogenic taxa and thereby mana-
ging the soil microbiome for improving sustainable
agricultural production (Chaparro et al., 2012).

Conclusion

Agricultural soils under long-term organic and
conventional farming harbour distinct microbiomes.
The response of microbial diversity to agricultural
management is, however, highly complex and
simplistic statements like ‘higher biodiversity under
low-input farming’ fall short of this complexity.
Under the exclusion of other fundamental factors
often common to agricultural management such as
differential soil tillage or monocropping systems,
our study demonstrated that the fertilization
scheme, in particular the application and quality
of organic fertilizers, is the major determinant of
microbial diversity. The impact of an integrated pest
management regime, characterized by moderate and
targeted application of pesticides, appears to be of

subordinate importance, although some effects may
be attributed to this factor. It can be assumed that
differences in microbial diversity between organic
and conventional farming would have been even
more substantial at more intense pesticide applica-
tions and soil tillage operations as well as with
cropping systems lacking soil-replenishing crops
such as legumes, all traits that are common to many
conventional farming systems. Long-term agricul-
tural management in the DOK experiment appeared
to select for system-specific community patterns
that are consistent with the existing knowledge of
individual taxonomic groups, but the limited func-
tional information provided by phylogenetic sur-
veys also precludes more definite conclusions.
However, the ability to observe specific structural
shifts at the level of individual microbial taxa now
offers novel insights into the potential of managing
the soil microbiome for sustainable agricultural
productivity and plant protection.
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