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Abstract

Cortical activity is organized across multiple spatial and temporal scales. Most research on the dynamics of neuronal

spiking is concerned with timescales of 1ms–1 s, and little is known about spiking dynamics on timescales of tens of

seconds and minutes. Here, we used frequency domain analyses to study the structure of individual neurons’ spiking

activity and its coupling to local population rate and to arousal level across 0.01–100Hz frequency range. In mouse medial

prefrontal cortex, the spiking dynamics of individual neurons could be quantitatively captured by a combination of

interspike interval and firing rate power spectrum distributions. The relative strength of coherence with local population

often differed across timescales: a neuron strongly coupled to population rate on fast timescales could be weakly coupled on

slow timescales, and vice versa. On slow but not fast timescales, a substantial proportion of neurons showed firing

anticorrelated with the population. Infraslow firing rate changes were largely determined by arousal rather than by local

factors, which could explain the timescale dependence of individual neurons’ population coupling strength. These

observations demonstrate how neurons simultaneously partake in fast local dynamics, and slow brain-wide dynamics,

extending our understanding of infraslow cortical activity beyond the mesoscale resolution of fMRI.
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A single action potential lasts about a millisecond, and a sec-

ond suffices for a vast range of sensory-motor and cognitive

behaviors, such as recognizing pictures and sounds, getting up

or sitting down, or recalling a memory. Accordingly, most

neurophysiological research has focused on subsecond time-

scales. However, several neural processes occur over much lon-

ger timescales (Huk et al. 2018). Transitions between sleep and

wakefulness and between different stages of sleep occur on

timescales of minutes and hours (Weber and Dan 2016; Lecci

et al. 2017; Meisel et al. 2017). During wakefulness, changes in

arousal can span tens of seconds and minutes, yet they affect

performance in subsecond behavioral tasks (Harris and Thiele

2011; Palva and Palva 2012; McGinley et al. 2015). Slow time-

scale dynamics has been revealed by resting-state fMRI

(Raichle 2015), which infers neural activity from the (slow)

changes in blood supply to different areas of the brain.

However, fMRI monitoring of neural activity is limited to the so

called infraslow range of 0.01–1Hz. Furthermore, both fMRI and

other approaches to study mesoscale infraslow cortical dynam-

ics—such as electro- and magneto-encephalography (EEG,

ECoG, LFP, MEG, e.g., see Popa et al. 2009; Palva and Palva 2012;

Mitra et al. 2018), and intrinsic and voltage-sensitive
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fluorescent-protein or dye imaging in experimental animals

(White et al. 2011; Chan et al. 2015; Kraft et al. 2017)—cannot

characterise individual neurons’ relationships to infraslow

activity.

The relationship of individual neurons to infraslow brain

dynamics, and the relationship between a neuron’s coupling to

infraslow and fast mesoscale cortical dynamics, is thus poorly

understood. For example, how much can the firing rate of an

individual neuron change over tens of seconds and minutes,

and how can these slow dynamics be summarized quantita-

tively? To what extent are slow changes in firing rate correlated

among neurons, and what is the structure of these slow corre-

lations? To what extent are neurons’ relationships to slow and

fast firing rate fluctuations similar, and might they be driven by

the same underlying mechanisms?

Here we addressed these questions by analyzing multi-

hour recordings of neuronal populations in mouse medial

prefrontal cortex (mPFC), performed using chronically

implanted high-density silicon probes. We found that neuro-

nal spike trains have f1/ power spectral density (PSD), and

that PSD in combination with interspike interval (ISI) distri-

bution suffices for an accurate quantitative model of single

neuron spiking dynamics on both fast and slow timescales.

Coupling between individual neurons and the population

rate (defined as the summed rate of all the spikes recorded

by the probe) was timescale-dependent, with many neurons

strongly coupled to population rate on fast timescales but

weakly coupled on slow timescales, or vice versa. Furthermore,

on slow but not fast timescales, neurons’ phase preference with

respect to the population rate was bimodal. Finally, in fre-

quencies ≤0.1 Hz population rate was highly correlated with

arousal as reflected by the pupil area. These results suggest

that dynamics on fast and infraslow timescales are distinct

processes, and likely regulated by distinct mechanisms at the

single neuron level.

Materials and Methods

Electrophysiological Recordings

All experimental procedures were conducted according to the

UK Animals (Scientific Procedures) Act 1986 (Amendment

Regulations 2012). Experiments were performed at University

College London under personal and project licenses released by

the Home Office following institutional ethics review. Adult

C57BL/6 mice of both sexes were used.

The experimental procedures for chronically implanting

Neuronexus and Neuropixels probes were previously described

in (Okun et al. 2016; Jun et al. 2017). Briefly, in an initial surgery

under isoflurane anesthesia animals were implanted with a

custom built head-plate. Following full recovery and acclimati-

zation to head-fixation, probe implantation was performed

under isoflurane anesthesia. The probes were implanted

through a craniectomy above mPFC (0.5mm lateral and 1.8mm

anterior to bregma). Neuronexus probes (A2 × 2-tet with

CM16LP connector and Buzsaki32 with CM32 connector) were

lowered 1.7mm, placing the recording sites in the prelimbic

cortex (PrL). Neuropixels probes were lowered ~3.5mm (so that

the most superficial of the 374 recording sites remained outside

of the brain, while the deepest sites were ~3.5mm inside the

brain; the recording sites were thus placed in the cingulate, pre-

limbic, and infralimbic cortices). The probes were oriented

approximately parallel to the cortical layers, ~0.5mm lateral

offset of the insertion point relative to the midline implied that

the probes resided in cortical layers 5 and 6 (which was also

confirmed histologically).

Recordings were performed over the course of several

months following the probe implantation. For head-fixed

recording, mice were placed inside a plastic tube where they

could comfortably sit or stand. The recordings lasted 1.5–3 h. In

animals implanted with a Neuronexus probe, recordings were

performed using OpenEphys (www.open-ephys.org) recording

system (Siegle et al. 2017). Mice with a Neuropixels probe were

recorded using SpikeGLX system (github.com/billkarsh/SpikeGLX)

developed at Janelia Farm. (Some of the mice were trained and

recorded in a behavioral task which the animals would perform

for water reward (Lak et al. 2018); the data analyzed here is from

recordings of ongoing activity in separate sessions without

behavior, performed on days when the animals were not water

deprived).

Recordings in freely behaving animals implanted with a

Neuronexus probe lasted 4–8 h. Mice were briefly head-fixed to

allow attaching the amplifier head-stage to the probe and then

released into their home cage, where they were free to engage

in any activity of their choice, while being monitored to make

sure that the thin cable leading from the amplifier to the

OpenEphys box was not entangled.

Spike Sorting and Drift Contamination

Spike sorting of Neuropixels recordings was performed using

Kilosort software (Pachitariu et al. 2016), with manual curation

performed using phy (github.com/cortex-lab/KiloSort and

github.com/kwikteam/phy). Spike sorting of Neuronexus probe

recordings was performed similarly, or using SpikeDetekt,

KlustaKwik, and Klustaviewa software suite (Rossant et al.

2016).

We have evaluated the quality of spike sorted units using

isolation distance metric (Schmitzer-Torbert et al. 2005) and by

quantifying the contamination of the refractory periods of the

spike autocorrelograms, which was expressed as proportion of

the number of spikes in the first 2ms of the autocorrelogram

relative to the autocorrelogram asymptote (Harris et al. 2000).

We have limited the analysis to units with isolation distance >

20 and refractory period contamination < 0.2. Our analyses

yielded quantitatively similar results when more (and less)

stringent criteria were applied.

A possible concern is that our results, instead of reflecting

the properties of actual infraslow fluctuations in the firing rates

of cortical neuronal populations, are dominated by contamina-

tion introduced by unstable recordings. Such concern is not

unique to the present work, and was raised in the past regard-

ing estimation of pairwise correlations (Ecker et al. 2010). Here,

Neuropixels recordings provided an unprecedented opportunity

to detect and monitor drifts, as the recording sites span a con-

tiguous stretch of >3mm. For spikes detected simultaneously

on several contacts, we have computed the vertical location of

the “center of mass” of the spike, according to the relative

amplitude of the spike waveform on each contact. Changes in

these locations over time, particularly for high-amplitude

spikes, reveal potential drifts. In the example shown in Fig. S1,

multiple drift events are visually apparent. In each event, the

vertical locations of high-amplitude spikes at a particular

neighborhood of the probe drift ~10 μm upwards over the

course of ~5 s, and over the next ~20–40 s return to their origi-

nal locations. Similar drift pattern occurs ~200 μm further down

the shank (Fig. S1b,c), which is a strong indication that these

drifts are produced by a vertical movement of the probe with
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respect to cortical tissue, rather than any other cause. In fact,

drifts were simultaneously observed at >10 locations across the

top 800 μm of the probe. Drifts were not observed when vertical

location of low-amplitude spikes was considered. This is con-

sistent with the idea that a vertical movement has a much

larger impact on the waveforms of high-amplitude spikes origi-

nating from neurons abutting the probe, compared with the

low-amplitude spike waveforms of neurons that are more (hor-

izontally) distant.

In the example recording, drifts of high-amplitude spikes

were not observed on contacts deeper than ~800 μm (Fig. S1d).

In recordings from this mouse, all data originating from the top

1mm was excluded from the analyses. No similar drifts were

observed in Neuropixels recordings from the second animal. In

recordings performed with Neuronexus probes, the recording

sites were located only at the bottom 200 μm of probes which

were lowered 1.7mm into the brain, thus to the extent that

drifts of Neuropixels and Neuronexus probes are similar, we do

not expect to find vertical drifts in these recordings (since the

recording sites were not covering a contiguous interval, the

above drift analysis cannot be repeated for Neuronexus

recordings).

An additional observation suggesting that our results are

not driven by drifts concerns the relationship between ampli-

tude of the different units and their phase preference. If drifts

introduce a strong bias into our estimation of phase with

respect to population rate (see below), then there might exist

some consistent relationship between the phase and spike

waveform amplitude of the different units, because drift bias is

expected to be stronger for units close to the probe and having

high-amplitude spike waveforms. However, no significant cor-

relation between phase and spike amplitude was found in our

data. We conclude that drift is an important caveat that has

the potential to bias measurements of spiking activity obtained

with extracellular probes, however in view of the control analy-

ses explained above, we believe that the phenomena described

here are not due to such drifts.

Pupil Tracking

Pupil area was tracked as previously described in Burgess et al.

(2017). Briefly, a camera (DMK 21BU04.H or DMK 23U618, The

Imaging Source) with a zoom lens (ThorLabs MVL7000) was

focused on one of the eyes of the animal. The eye was illumi-

nated by an infrared LED (SLS-0208A, Mightex). Videos of the

eye were acquired at ≥30 Hz. In each video frame, excluding

frames with blinks, an ellipse was fit to the pupil image, and

pupil area was estimated based on this fit.

Single Spike Train Analysis

PSD of individual spike trains (Fig. 2a) was estimated using

mtspectrumsegpb function of Chronux toolbox (chronux.org).

Note that this function is specifically intended for point pro-

cesses such as spike trains (Mitra and Bokil 2007). PSD in differ-

ent frequencies was estimated by breaking the entire recording

into segments of appropriate length, and averaging across

them. Specifically, segments of length l were used to estimate

PSD in l7/ to l10/ frequencies (for example, a 2 h recording is

broken into 72 000 segments, 0.1 s each, and these segments

are used to estimate PSD in 75–100Hz frequencies. Then the

recording is broken into 54 014 segments, 0.133 s each, to esti-

mate PSD in 56–75Hz frequencies, and so on. Eventually 12 seg-

ments of 556 s are used to estimate PSD in 0.013–0.018 Hz

frequencies). For frequencies <0.01 Hz the spectrum of the

entire recording was computed using mtspectrumpb function

without breaking it into segments. For presentation purposes

only it was further smoothed using Matlab’s smooth function.

PSD of a spike train is closely related to, but distinct from,

the PSD of the underlying (continuous) firing rate intensity. If

the firing rate λ ( )t is itself a random process with power spec-

trum ω( )λλS , then the power spectrum of the spike train

μ(ω) ≈ + (ω)λ λλS Snn , where μλ is mean firing rate (Lepage et al.

2011). To intuitively see why the μλ term in the right hand side

of the equation is required, consider the simplest case where

λ ( )=t const, that is, the case of a constant intensity (homoge-

neous) Poisson spike train stochastic process. In this case

(ω) =λλS 0, and (ω)Snn = μλ. A homogeneous Poisson spike train

has constant power in all frequencies for the same reason that

white noise has power in all frequencies. The power spectrum

is the Fourier transform of the autocorrelation (a result known

as the Wiener–Khinchin theorem). The autocorrelation of a

Poisson spike train is a delta function at time 0, because of the

correlation of each spike with itself, and is zero at all other

times since no other spikes are correlated. The Fourier trans-

form of a delta function is a constant function, explaining why

the power spectrum of a Poisson spike train is flat.

Single Spike Train Modeling

The spike train model which captures both the fast and slow

timescale dynamics of cortical spiking relies on both ISI distri-

bution and PSD of spike trains (Fig. 2). The goal of the model is

to generate synthetic spike trains satisfying constraints on

both distributions simultaneously.

Let I denote the observed ISI distribution of a spike train.

For modeling, I was represented by a histogram with logarith-

mically spaced bins of all the observed ISIs (32 bins were used

to describe ISIs, from 1ms up to 200 s). Instead of using the PSD

of the spike train itself, the model uses the PSD of the underly-

ing continuous firing rate intensity, which we denote by ℘ (the

two are closely related but distinct, as described above). For

modeling, ℘ was represented by the power of a continuous sig-

nal obtained by convolving the observed spike train with a

50ms FWHM Gaussian (50 parameters were used to represent

℘). With I and ℘ as its inputs (82 parameters in total), the goal

of the model is to generate a synthetic spike train whose ISI

distribution and PSD are as close as possible to the original

spike train. An intermediate step towards this final goal is con-

structing a continuous firing rate intensity signal ( )r t for the

synthetic spike train. However, we start by constructing a dif-

ferent firing rate intensity signal, ( )r t1 , by sampling ISIs from I

and convolving the resulting spike train with a 50ms FWHM

Gaussian. Typically ( )r t1 will have much less power in the infra-

slow frequencies than what is required. On the other hand, the

straightforward way to generate a signal with power ℘ (i.e., to

use inverse Fourier transform) produces a signal whose values

are normally distributed with 0 mean, which is inappropriate

for a firing rate intensity function. Therefore, we used an itera-

tive algorithm of (Schreiber and Schmitz 1996) to generate a sig-

nal ( )r t with power ℘ and distribution of values of ( )r t1 . Once

( )r t was generated, we sample a spike train n1 using ( )r t as a

time dependent firing rate signal. In the final step the ISIs of

the spike train are adjusted to have the desired distribution I.

Specifically, we convert the sequence of ISIs in n1 into a

sequence of ISI ranks, by replacing each ISI with its rank among

all the ISIs of n1. We build the final output spike train n by sam-

pling from I the same number of ISIs found in n1 and
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rearranging them according to the sequence of ranks from n1,

that is, the ISI rank sequences of n and of n1 match.

When the model is used to generate an output without an

explicit constraint on I (i.e., only ℘ input is provided), it implic-

itly assumes I has an exponential distribution, with an addi-

tional constraint forbidding ISIs <2ms (representing a hard

refractory period).

Although it is possible in principle to consider a spike train

model which relies solely on the autocorrelation structure

(equivalently the PSD), these models are complex and not nec-

essary for our purposes. The reason we used ISIs to model fast

timescale dynamics and PSD for slow timescale dynamics is

that ISI distribution provides a simple generative model for fast

timescale dynamics of spike trains, whereas methods for con-

structing spike trains with a given (fast timescale) autocorrela-

tion are substantially more complex (Krumin and Shoham

2009; Macke et al. 2009).

Time Domain Population Coupling on Fast and Slow

Timescales

Time domain correlation between spike trains of single neu-

rons and the population rate (Fig. 3d-f) was computed as previ-

ously described in (Okun et al. 2015). Specifically, we computed

the inner product between the vectors representing the popula-

tion rate and single unit spike train at different lags (using

Matlab’s xcorr), and normalized it by the number of spikes of

the single neuron. For fast timescale correlation, the vectors

were at 1ms resolution, and the single neuron spike train was

smoothed with Gaussian of 12ms halfwidth. For slow timescale

correlation, the vectors were at 1 s resolution. In both cases the

baseline (average values 800–1000ms away from zero lag for

fast timescale correlation, and average values 12–20 s away

from zero lag for slow timescale correlation) was subtracted.

Coherence Analysis

For analyzing the relationship between spike trains of individ-

ual units and population rate, the latter was obtained by sum-

ming all the spikes detected on all the shanks/tetrodes barring

the one on which the single unit was recorded. For Neuropixels

recordings, where the entire probe consists of one shank (with

374 recording sites over ~3.5mm) this approach was not appli-

cable. Instead, for each unit we have performed our analyses

with population rate based on all spikes on the probe (except

for those of the unit itself) and with population rate based only

on spikes from recording sites >60 μm away from the location

of the single unit. All results were almost identical for both con-

ditions. The population rate typically was >100 spikes/s.

Coherence between population rate or pupil area and indi-

vidual units was estimated, together with its confidence inter-

val, using coherencysegpb function of the Chronux toolbox

(estimating coherency using coherencysegcpb, where popula-

tion rate was considered a continuous signal rather than spike

count, produced identical results). We used theoretical, asymp-

totic confidence intervals as computed by Chronux (we have

also found that it provides more stringent, i.e., wider, intervals

than jackknife). As in the case of PSD estimation, coherence in

different frequencies was estimated by breaking the entire

recording into segments of appropriate length for each

frequency.

There is a non-intuitive correspondence between the coher-

ence of some continuous signal with a spike train and its

coherence with the continuous spike intensity signal

Figure 1. Fast and slow timescale dynamics of individual cortical neurons. (a) ISI distribution of 5 simultaneously recorded example neurons in mPFC of an awake,

head-fixed mouse. (b) Firing rate (smoothed with 8 s FWHM Gaussian) over the course of the recording for the neurons in a (inset: spike train corresponding to the

shaded region in the red trace). (c) Firing rate of ISI-shuffled spike trains (cf. b). (d) Fano factors of spike counts using bins of 10−3 –102 s for original (color) and ISI-

shuffled (gray) spike trains. Shaded areas indicate 95% confidence intervals.
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underlying the spike train (e.g., the neuron’s membrane poten-

tial). Unlike the more familiar case of coherence between a pair

of continuous processes, coherence between a continuous pro-

cess and a point process (such as a spike train of a neuron)

depends on the PSD and the rate of the latter. This (mathemati-

cally unavoidable) fact has two implications. First, the f1/ pro-

file of firing rate PSD implies that coherence of the spike train

with population rate falls with frequency, even when coher-

ence between the underlying firing rate intensity and the popu-

lation rate does not (Fig. S2c,d). Second, because coherence

depends on the rate of the spike train, 2 neurons whose firing

rate intensities are exactly proportional but unequal do not

have the same coherence with population rate. To account for

this second issue of rate dependence, we use a correction factor

to produce a coherence which reflects a firing rate of 1 spike/s,

rather than the actual firing rate of the neuron.

More formally, let ( )y t be a continuous process, ( )n t a spike

train of a single neuron and λ ( )t the underlying firing rate, that

is, ( )n t is a doubly stochastic Poisson process with intensity

λ ( )t . It holds that

ω ω μ ω( ) = ( )( + ( )) ( )λ λλ
−C C S1 / 1yn y
1/2

where, Cyn and λCy denote the coherence between ( )y t and ( )n t

or λ ( )t , μ is the mean rate of ( )n t , and λλS is the power spectrum

of λ ( )t (Aoi et al. 2015). From the above equation, it is clear that

2 spike trains with proportional but unequal rate intensities

(i.e., if λ αλ( ) = ( )t t1 2 where α ≠ 1) will have different values for

coherence. This is not desirable, therefore instead of reporting

the coherence between a spike train and the population rate,

we report “rate adjusted coherence” which reflects the coher-

ence that would have been measured if the neuron had a firing

rate of 1 spike/s, that is, if its firing intensity was λ( ) μt / instead

of λ( )t , see Fig. S2a,b for an example. We use a correction factor

of ( + (μ − )μ (ω))−1 1 /Snn
1/2, as derived in Aoi et al. (2015), to

obtain the rate adjusted coherence. The PSD of the spike train,

used for the correction was estimated as described above.

The rate adjusted coherence still depends on the PSD of the

spike train of the single unit. For instance, it is possible to have

2 intensity functions λ ( )t1 and λ ( )t2 with equal means of 1 spike/

s, and equal coherence with ( )y t , but with different power spec-

tra. In this case, Equation (1) implies that if n1 and n2 are spike

trains with intensities λ1 and λ2, then (ω) ≠ (ω)C Cyn yn1 2 even

though (ω) = (ω)λ λC Cy y1 2 . Here, we did not attempt to remove

this dependence, which would have required an accurate esti-

mate of (ω)λλS . In practice, λλS cannot be directly inferred from

Snn because the assumption that ( )n t is a doubly stochastic

Poisson process with intensity λ( )t does not hold. For example,

the existence of refractory period in ( )n t reduces the power in

all low frequencies in (ω)Snn (Bair et al. 1994; Rivlin-Etzion et al.

2006). Furthermore, the spiking of actual neurons is driven by

changes in the subthreshold membrane potential ( )V tm which

is rather distinct from λ( )t , as exemplified in Fig. S2. Of note,

this discussion primarily applies to high frequencies, whereas

in low frequencies μ is significantly lower than (ω)λλS (or (ω)Snn )

and thus the discrepancy between (ω)Cyn and (ω)λCy is minor

(see Equation 1).

To compare the strength of population coupling of 2 simul-

taneously recorded neurons across all timescales, we have

compared their rate adjusted coherences in the following spe-

cific frequencies: 0.01, 0.03, 0.1, 0.32, 1, 3.2, 10, 32, and 100Hz. If

the null hypothesis that first neuron has higher rate adjusted

coherence in these frequencies could be rejected at P ≤ 0.001

(after using Bonferroni correction for performing 9

comparisons), and the reverse null hypothesis could also be

rejected with P ≤ 0.001, the 2 were considered as (a positive)

example of a simultaneously recorded pair of neurons where

neither neuron dominated the other across all frequencies.

Phase Analysis

Phase of spiking of single units with respect to population rate

or pupil area was estimated using the same Chronux toolbox

functions used to estimate the coherence (see above). As in the

case of PSD estimation, phase in different frequencies was esti-

mated by breaking the entire recording into segments of appro-

priate length for each frequency. After the phase in each

segment was estimated, circular mean and standard deviation

were computed. If the distribution of phases (across the seg-

ments) had no statistically significant (at P ≤ 0.05) mean, no

phase was assigned (e.g., the nonsignificant neurons in the his-

togram in Fig. 4c,d).

All phases are specified with respect to the population rate,

for example, a phase of π− /4 means that the single unit lags

behind the population rate, whereas a phase of π /6 means that

the unit leads it.

Our MATLAB code for the estimation of PSD, coherence and

phase, following the above described procedures, is publicly avail-

able on github.com/m-okun/FrequencyDomainPopulationAnalysis.

Linearity and Logarithmicity Indices

For a continuous, nonconstant function ( )f x defined on an

interval [ ]a b, ( < <a b0 ), consider the following expression:

( )

( )
log

f x

f x

V

V
,b

k

k
a

where, ⋁ ( )f x
d

c

denotes the total variation of ( )f x on the interval

[ ]c d, . We define the linearity index of ( )f x as the value of this

expression for = ( + )k a b /2. Similarly, the logarithmicity index

is the expression’s value for =k ab . The rationale for these

definitions is that for a function changing on a linear scale,

total variation in the first and second halves of [ ]a b, is expected

to be of comparable magnitude. Thus, linearity index is close to

0 for functions changing on linear scale (the function itself

does not have to be linear, e.g., ( )xsin on any sufficiently long

interval), positive for supralinear functions, and negative for

sublinear functions. On the other hand, for a function changing

on a logarithmic scale, the total variation in [ ]a ab, and [ ]ab b,

intervals is expected to be of comparable magnitude, thus its

logarithmicity index would be close to 0 (while its linearity

index would be negative).

For empirically measured ( )f x , total variation is contami-

nated by measurement noise. To avoid this problem, and rely-

ing on the fact that phase functions were either monotonic or

had just a few extremum points (typical examples shown in

Fig. 5), we used the following expression instead of the one

given above:

{ ( )}

{ ( )}
( )

≥ ≥

≥ ≥

log
f x

f x

diam

diam
2

b x k

k x a

{ ( )} ≥ ≥f xdiam d x c denotes the diameter of the set { ( )} ≥ ≥f x d x c

(except for cases when ( )f x wraps around π± , this is equal to

( ) − ( )f x f xmax min ). For each neuron, equation (2) was evalu-

ated using the longest continuous interval of frequencies over

which phase was well-defined (i.e., it had no frequencies in
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which coherency with population rate was not statistically sig-

nificant). Neurons for which such interval spanned less than an

order of magnitude were excluded from the analysis.

Results

To examine the intrinsic spiking dynamics of single cortical

neurons on timescales extending to tens of seconds and min-

utes we used multisite silicon probes to record the activity of

neuronal populations in the frontal cortex. All the recordings

were performed using chronically implanted probes (Okun

et al. 2016; Jun et al. 2017). We used 16- and 32-channel

Neuronexus probes in 6 animals and 374-channel Neuropixels

probes in 2 additional animals. The recordings lasted 1.5–3 h

in head-fixed mice, standing or sitting in a plastic tube (22/26

recordings, 730/775 neurons), and 4–8 h in freely behaving

mice residing in their home cage (4/26 recordings, 45/775

neurons).

Single Neurons Show Dynamics at Multiple Timescales

On fast timescales the spiking dynamics of cortical neurons

can be summarized by the ISI distribution. The characteristic

irregular firing of cortical neurons results in ISIs varying by sev-

eral orders of magnitude (Softky and Koch 1993), with some

neurons also exhibiting ISI histogram peaks indicating rhyth-

micity at particular frequencies (Fig. 1a).

Figure 2. Modeling spiking dynamics on fast and slow timescales. (a) PSD of the original (color) and ISI-shuffled (gray) spike trains for the 5 example neurons shown

in Figure 1. (b) Firing rate of synthetic spike trains constructed by requiring that their ISI distribution and PSD match the original data (cf. Fig. 1b,c). (c) Fano factors of

spike counts using bins of 10−3–102 s: the plots for original data (color) and for synthetic spike trains (black) closely match (cf. Fig. 1d). Shaded areas (where visible)

indicate 95% confidence intervals. (d) Observed and predicted spike count Fano factors for 65 s bins for the entire dataset (775 neurons). Predictions were based on ISI

distribution only (gray), on PSD only (cyan), or on the full model in which both constraints apply (black). (e) Relative error (in %) of predicting the observed Fano factors

for bins of 10−3–102 s for the 3 models, averaged over all neurons. Diamonds mark values for 65 s bin, shown in d (1072%, 305%, and 47% errors of ISI only, PSD only

and the full models, averaged across all neurons). Shaded area shows the standard error. (f) The PSD of each neuron was fit with a βconst f/ function in the range

0.01–1Hz. The power-law exponent β is specific to each neuron, which is demonstrated by the fact that the values estimated separately in 2 halves of the recording

closely match (R2
= 0.69, P < 10−100).
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A neuron’s ISI distribution was not on its own sufficient to

account for the structure of its spike train at long timescales.

Indeed, visual inspection shows that cortical firing rates

typically fluctuate on timescales of minutes or more (Fig. 2b),

longer than almost all ISIs of neurons with firing rates ≥1 spike/

s. Synthetic spike trains created by randomly reshuffling the

original ISIs did not have this slow timescale dynamics (Fig. 2c).

The discrepancy between actual and ISI-shuffled data could

be summarized by the spike count Fano factor: the variance

divided by the mean of spike counts in bins of prescribed tem-

poral duration (Fig. 2d). For bins of short duration (1–100ms),

Fano factors were close to 1, and the Fano factors of the original

and shuffled data were similar. However, for bins of 1–100 s,

the Fano factors of actual data were several-fold higher. Across

all analyzed neurons (n = 775), the Fano factor of the number of

spikes in 1024ms bins was 1.6 times higher in the actual data

compared with ISI-shuffled trains, and with 16 384ms bins it

was 4.8 times higher (for a summary across all bin sizes see the

error of ISI model in Fig. 1e, below).

Although the ISI distribution could not alone capture the

infraslow porion of a cell’s spiking dynamics, the combination

of ISI distribution and spike train PSD provided a good approxi-

mation. Because our recordings lasted several hours, we were

able to compute power spectra down to very low frequencies,

where the PSD values were much higher than for fast frequen-

cies, indicative of infraslow dynamics (Fig. 1a). We devised an

algorithm that generates synthetic spike trains with prespeci-

fied PSD and ISI distributions (see Materials and Methods). The

slow-timescale firing dynamics of these synthetic spike trains

was visually similar to the original data (compare Fig. 1b with

Fig. 2b) and closely matched the observed Fano factors over

multiple timescales (Fig. 1c), as expected from the analytical

relationship between Fano factor and autocorrelation of a sta-

tionary spike train (Teich et al. 1997). The full model was better

than models that used either PSD or ISI distribution indepen-

dently (Fig. 1d). At slow timescales (e.g., 1min; Fig. 1e), Fano fac-

tors predicted from PSD alone are significantly closer to the

actual values than ISI-based predictions, but still not as accu-

rate as the full model. For fast timescales (e.g., 100ms), ISIs pre-

dict spike count accurately, but the PSD alone is insufficient

(Fig. 1e). The full model respects both constraints, and as a

result provides predictions that are significantly better than

either ISI distribution or PSD alone (e.g., for 1-min bins its aver-

age error is 47%, compared with 1072% and 305% for ISI only

and PSD only models, Fig. 1d,e). These results also demonstrate

the major contribution of slow dynamics to spiking variability

in the cortex.

Cortical neurons are diverse in their intrinsic dynamics.

This diversity is well characterized at short timescales by dif-

ferences in spike regularity (Maimon and Assad 2009) and by

the differing propensity of neurons to emit complex-spike

bursts (McCormick et al. 1985; de Kock and Sakmann 2008), but

dynamical diversity at slow timescales is largely unexplored.

To address this question, we observed that the PSD of most

neurons had power-law profile over the 0.01–1 Hz range, with

the exponent significantly different between neurons (Fig. S3a).

Fitting spike train power with a βconst/f function over 0.01–1Hz

revealed that the power-law exponent β covered a range of 0.39 ±

0.19 (mean and standard deviation for n = 775 neurons), and was

conserved when fit separately for the first and second halves of

each recording (Fig. 1f; R2 = 0.69 overall; median R2 of individual

recordings = 0.63; P <0.05 in each recording). The power law expo-

nent was unrelated to mean firing rate and weakly related to

bursting (Fig. S3b–d). We conclude that cortical neurons are

diverse in the strength of their infraslow firing rate fluctuations,

and that the structure of these fluctuations can be summarized,

to first approximation, by the PSD slope β .

Population Coupling Strength is Unrelated at Fast and

Slow Timescales

To understand how the slow dynamics of individual neurons

was related to that of the entire population, we started by con-

sidering how individual neurons are related to the population

rate—the summed rate of all spikes detected on the probe. At

short timescales, neurons vary continuously in the strength of

their coupling with population rate (Okun et al. 2015). To char-

acterise the relation of neurons to the population across multi-

ple timescales, we extended this analysis into the frequency

domain. Analysis in frequency domain does not suffer from the

inherent ambiguity of time domain analysis, where correla-

tions computed using a time bin of a specific duration reflect

co-modulation not just on the scale of the bin, but also on all

slower timescales (Brody 1999).

The PSD of population rate had 1/f profile, similar to the

profile of PSDs of single neuron spike trains. In high frequen-

cies the value of the PSD of any spike train is dominated by the

firing rate term (see the section on single spike train analysis in

Materials and Methods), therefore in high frequencies PSD of

population rate was close to the sum of PSDs of all the individ-

ual spike trains that together comprise the population rate.

However, in all frequencies <1 Hz, the population rate PSD was

several fold higher than the sum of PSDs of the individual spike

trains (Fig. 3a, Fig. S4). As the PSDs of independent neurons

would add linearly, this result indicates that infraslow fluctua-

tions in firing rates of neurons were correlated in all these fre-

quencies. To estimate the coherence between population rate

and spike trains of specific neurons, we considered the former

as a continuous function of time, and computed its “rate

adjusted coherence” (Aoi et al. 2015) with the spike train of

each neuron, which accounts for differences in mean firing rate

between neurons (Fig. S2a,b; see Materials and Methods). To

verify that this method provided a reliable measure, we esti-

mated coherence separately in two halves of single recordings,

obtaining similar estimates for coherence on both slow and

fast timescales for most neurons (for 0.1 and 10Hz, correspond-

ingly: overall R2
= 0.63 and 0.75, median R2 of individual record-

ings = 0.59 and 0.61, P <0.05 in 19/26 and 22/26 recordings; Fig.

3b,c, see also Fig. S7).

Coherence analysis revealed widely diverse relationships to

population rate, both between neurons, and between timescales

within individual neurons. In all cases, coherence decayed to zero

with increasing frequency. This behavior is a by-product of the

point processes nature of spike trains and need not signify a

decay in coherence between population rate and the membrane

potential of individual neurons (Fig. S2c,d; see the section on

coherence analysis in Materials and Methods). Importantly, the

manner of this decay varied greatly between neurons (Fig. 3d-f).

In some cases the relative strength of different neurons’ popula-

tion coupling was conserved across frequencies (e.g., the red neu-

ron in Fig. 3d has consistently larger coherence than the green or

blue neurons). However, simultaneously recorded neurons often

showed different rates of coherence decay: in 25% of simulta-

neously recorded pairs each neuron had a significantly stronger

coherence in a subset of frequencies (Fig. 3e,f). Furthermore, some

neurons’ coherence with population rate was nonmonotonic (15%

of cells, e.g., green neuron in Fig. 3f). On average across neurons,

rate adjusted coherence with population rate remained <0.5 in all
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our recordings, even in frequencies as low as 0.1–0.01Hz (Fig. 3b,

Fig. S5).

Phase of Population Coupling Differs Across Timescales

Coherence is an indication of a constant phase relationship

between 2 processes. Thus, if a neuron has high coherence

with population rate at a given frequency, this means it fires at

a reliable phase with respect to the population—but does not

imply that this phase is zero. Phase analysis showed that most

neurons had a stable phase preference with respect to popula-

tion rate across halves of the recording on both slow and fast

timescales (Fig. 4a,b, see also Fig. S7). It also revealed a major

difference between phases of population coupling on slow and

fast timescales, with out of phase activity several-fold more

likely in the infraslow range (Fig. 4a–e). Specifically, at ≥10Hz

just 5% of cells had phase closer to π than to 0, whereas at

≤ 0.3 Hz this was the case for ≥ 28% of the cells (P < 10−28, Z-test

for equality of 2 proportions). This however did not completely

summarize a neuron’s phase preference: even within a mode,

there remained significant correlation in a neuron’s precise

phase from one half of the recording to the other (Fig. 4a), and

at high frequencies phases also had reliable nonzero values

across the 2 halves of the dataset (Fig. 4b,d). The preferred

Figure 3. Frequency-resolved population coupling. (a) Top: PSD of population rate and sum of PSDs of individual spike trains comprising the population rate, in an

example recording. Bottom: the ratio between the two, indicating that in frequencies < 1 Hz the former is several-fold higher. (b) Top: Distribution of rate adjusted

coherence with population rate at an example slow timescale frequency (0.1 Hz) across all neurons. Some neurons have no significant coherence (“non-signif.”).

Bottom: rate adjusted coherence with population rate at 0.1 Hz, evaluated separately in first and second halves of the recordings, R2
= 0.63 (P < 10−100). (c) Same format

as b, for fast time scale example frequency (10 Hz), R2
= 0.75 (P < 10−100). (d) Top: Time domain correlation between spike trains of 3 example simultaneously recorded

neurons and the population rate, on slow and fast time scales (scale bar: median amplitude of the correlation across all neurons in the recording). Bottom: Rate

adjusted coherence of each example neuron with population rate. (e) Two example simultaneously recorded neurons, where one (red) has high coherence with the

population in low frequencies and low coherence in high frequencies, when compared with the other neuron (green), which exhibits the opposite behavior. Layout as

in d. (f) Two example simultaneously recorded neurons whose relative strength of population coupling switches twice over the frequency range, furthermore one of

the neurons (green) has a nonmonotonic coherence with population. Note that the time domain correlation with population rate of both neurons is of equal magni-

tude on both fast and slow timescales. Layout as in d. In c–f coherence values are shown using power function scaling, to make low values visible. In d–f shaded areas

indicate 95% confidence intervals.
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phase distribution in the infraslow frequencies was not sym-

metric: more neurons had phases between π /4 and π3 /4 (i.e.,

leading the population rate) than between π−3 /4 and π− /4 (lag-

ging the population rate, e.g., 16% vs. 10% at 0.1 Hz, P <0.001).

The fact that neurons show an asymmetric phase distribution

relative to their summed activity might seem contradictory, but

was possible because neurons which lagged the population had

higher firing rates compared with neurons which led it (4.5 ±

4.8 vs. 3.1 ± 4.8 spikes/s, for π−3 /4 to π− /4 vs. π /4 to π3 /4, P

<0.0001). In contrast to the phase preference of individual cells,

the relative phase of population rate on different shanks or

tetrodes (or on different segments of the Neuropixels probe)

was close to 0 in all frequencies (Fig. S6), suggesting that varia-

tions in population coupling phase mainly differ within, rather

than between local populations.

The phase spectra of individual neurons were diverse, and

could show a complex dependence on frequency. According to

the phase distribution histogram (Fig. 4e) one expects to find

neurons’ phase preference to be close to either 0 or π at infra-

slow frequencies, and close to 0 at high frequencies. While

many neurons conformed to this pattern (Fig. 5a, Fig. S7a), neu-

rons that were anticorrelated with infraslow population rate

differed in the dependence of phase preference on frequency: it

was discontinuous, with clear subdomains and a drop in coher-

ence in some neurons, but gradual in others (Fig. 5b,c, Fig. S7b,

c). We also observed neurons whose phase preference did not

fit the overall pattern, for example, having phase preference of

~π/2 in infraslow frequencies (Fig. 5d, Fig. S7d) or exhibiting

altogether different behaviors (Fig. 5e, Fig. S7e).

Phase modulation seemed to occur on logarithmic rather

than linear scale (Fig. 5c–e). To assess the rate of phase changes,

we devised indices which quantify the linearity and logarithmi-

city of the phases (see Materials and Methods). The linearity

index is 0 for phase changing on linear scale, and it is positive

(negative) for phase changing on supra- (sub-) linear scale.

Similarly, the logarithmicity index is 0 for phase changing on

logarithmic scale, and it is positive (negative) for phase chang-

ing on supra- (sub-) logarithmic scale. We found that phase

spectra were overwhelmingly changing sublinearly (just 4%

had positive linearity index), whereas the logarithmicity index

values were about equally distributed around 0 (logarithmicity

index of 59% of the neurons was positive, Fig. 5f). We conclude

that the phase between single neuron and population rates

predominantly changes on a logarithmic scale with frequency.

The logarithmic rate of phase preference change implies

that phase in nearby frequencies is similar. In other words,

when only a small range of frequencies is considered (e.g., on

linear scale), the phase is approximately constant, and thus to

a first approximation single cell neuronal dynamics with

respect to population rate is independent of timescale. To test

this prediction we compared how well constant phase and lin-

ear phase models fit the phase preference in nearby frequen-

cies (0.1 Hz vs. 0.03 Hz or 0.32 Hz). The former model

corresponds to timescale-independent dynamics, the latter to a

lead or lag by a fixed time interval between an individual neu-

ron and the population rate. As predicted by the logarithmic

rate of phase change, the constant phase model fit the data

substantially better than the linear model (23% explained vari-

ance vs. no explained variance for 0.32 Hz, and 28% vs. 17%

explained variance for 0.03 Hz, Fig. S8).

Infraslow Dynamics Correlates With Pupil Diameter

Head-fixed mice, such as those we recorded here, show fluctua-

tions in alertness levels over time. To address the degree to

which the infraslow dynamics we observed could relate to

alertness, we monitored the animals’ pupil area in a subset of

head-fixed recordings (Fig. 6a). At 0.03 Hz, 65% (350/541) of the

neurons were significantly coherent with the pupil area signal,

and the magnitude of this coherence was consistent when esti-

mated from separate halves of the recording (Fig. 6b; P <0.01 in

10/13 recordings, the median percentage of variance in one half

of the data explained by the other half across recordings: 41%).

Phase preferences were similarly stable, and the phase distri-

bution had 2 clear peaks ~π rad apart (Fig. 6c), consistent with

the existence of 2 populations positively and negatively cou-

pled to arousal (Stringer et al. 2018).

Next, we considered how individual neurons’ coupling to

the pupil and to the local population rate are related. Visual

inspection of population rate and the pupil area signals sug-

gested the two are similar in the infraslow range (Fig. 6a),

which was confirmed by coherency analysis showing that the

Figure 4. Phase of population-coupling. (a, b) Phase evaluated separately in first

and second halves of the recordings, indicating that it is a conserved property

for most neurons. Average absolute discrepancy between the 2 halves: 0.44 ±

0.43 rad and 0.34 ± 0.39 rad (mean and standard deviation for n = 582 and n =

610 neurons with statistically significant phase preference at 0.03 and 10Hz,

correspondingly). Explained circular variance: 0.79 and 0.54 (P < 10−16). (c, d)

Distribution of the preferred phase of firing of individual neurons with respect

to population rate at example frequencies (0.03 and 10Hz). Some neurons have

no significant coherence or phase preference (“non-signif.”); gray: neurons for

which the phase was not significantly (i.e., P > 0.05) different from 0.

(e) Pseudocolor histogram of phase preference with respect to population rate

across 0.01–100Hz. Dashed lines indicate the 2 example frequencies shown in

a–d.
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two signals were highly coherent in frequencies ≤0.1 Hz (Fig.

6d). Correspondingly, individual neurons’ coherence with pupil

area closely matched their coherence with population rate (Fig.

6e). Phases with respect to the population rate and the pupil

area were also closely matched; a consistent gap between the

two (which at 0.03 Hz constituted 0.78 ± 0.51 rad) indicates that

neuronal spiking preceded the pupil signal (Fig. 6f).

Coupling to pupil fluctuations was related to the infra-

slow dynamics of firing of individual neurons. We observed

that the power-law exponent β obtained from fitting the

spike train power with a βconst/f function (Fig. 1f) corre-

lated with pupil coherence across the recorded neurons (r =

0.43, P <10−9). Interestingly, this correlation was highly

significant only for neurons firing in phase with the pupil

Figure 5. Population coupling phase spectrum. (a) Examples of neurons whose firing has phase preference close to 0 with respect to population rate. In the second

example the phase is at the same time significantly distinct from 0. Top: time domain correlation between the neuron and population rate on fast and slow timescale

(scale bar: median amplitude of the correlation across all neurons in the corresponding recording). Middle: rate adjusted coherence with population rate. Bottom: phase

spectrum. (b) Examples of neurons with sharp transition between π~ phase in infraslow frequencies and ~0 phase preference in high frequencies, dividing the fre-

quency range into 2 clear subdomains. (c) Examples of neurons whose phase preference is close to π in the infraslow frequencies and gradually becomes close to 0 in

high-frequency range. (d, e) Additional examples of observed phase spectra behaviors. Panels b–e use the same format as a, shaded areas in a–e indicate 95% confi-

dence intervals, y-axis of coherence plots uses power function scaling, to make low values visible. (f) Logarithmicity index versus linearity index (see Materials and

Methods) of the longest continuous interval of the phase spectrum of each neuron.
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Figure 6. Global origin of infraslow dynamics. (a) Population rate, pupil area and spiking activity of example neurons during 1000 s portion of a recording. For presen-

tation purposes only, signals were low-pass filtered below 0.05 Hz and z-scored, vertical scale bar is 5 standard deviations. (b, c) Magnitude (rate adjusted) and phase

of coherency of individual neurons (n = 350, from 13 recordings) with pupil area signal, separately estimated from 2 halves of each recording, shown for an example

frequency of 0.03 Hz. In b, R2
= 0.42 (P < 10−50). In c, average absolute discrepancy between the 2 halves: 0.34 ± 0.35 rad, explained circular variance: 0.88 (P < 10−16).

Colored dots represent the example neurons shown in a. (d) Coherence between population rate and pupil area, in individual recordings (gray, n = 13 recordings in 5

animals) and in their average (black). (e, f) Top: Distribution of coherency magnitude (rate adjusted) and phase of individual neurons’ spiking with respect to the pupil

area signal at 0.03 Hz. Bottom: magnitude and phase of coherency of individual neurons with pupil area vs their coherency with population rate. R2
= 0.67 (P < 10−90) in

e, 0.85 explained circular variance (P < 10−16) in f. (g) The slope of power-law fit to the infraslow PSD portion (in 0.01–1 Hz) of each neuron was positively correlated

with the rate adjusted coherence with pupil (at 0.03 Hz), for neurons whose phase with respect to pupil fluctuation was close to 0 (the left peak in the bimodal histo-

gram in f, shown in orange; r = 0.64, P < 10−9). (h) No significant correlation was found between the PSD power-law slope and pupil coherence for neurons whose

phase with respect to the pupil was close to π (the right peak in the bimodal histogram in f, shown in purple; P = 0.66). (i, j) Coherence (phase) of individual neurons

with pupil signal on slow timescale (0.03 Hz) and their coherence (phase) with population rate on fast timescale (10 Hz) are uncorrelated (P = 0.85, Spearman correla-

tion in i, P = 0.31, circular correlation in j). (k) Fast timescale phase was uncorrelated with coherence with the pupil (P = 0.77). (l) A significant correlation between

phase with pupil at 0.03Hz and coherence with population rate at 10 Hz (P < 0.001) was observed, where neurons anticorrelated with the pupil were more coherent

with population rate on fast timescales.
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fluctuations, and insignificant for the antiphase neurons

(Fig. 6g,h).

Population coupling on fast and slow timescales were

largely unrelated: we observed no relationship between coher-

ence with population rate on fast timescales and coherence

with the pupil signal (P = 0.85, Fig. 6i; P >0.2 in each individual

recording, Spearman correlation) and no relationship between

the phases (P = 0.31, Fig. 6j, P >0.17 in each individual recording,

circular correlation). Similarly, no significant relationship

between fast timescale phase and coherence with the pupil

was observed (P = 0.77, Fig. 6k), although phase with pupil did

show a statistically significant relation to fast timescale coher-

ence with the population (Fig. 6l, this might be due to some

subclasses of cortical neurons differing in their fast and slow

timescale population coupling properties). Considered together,

these observations are consistent with the idea that population

coupling on slow timescales is controlled by separate mecha-

nisms from the local synaptic inputs driving fast timescale

population coupling.

Discussion

We used frequency domain analysis to examine the activity of

neuronal populations in mPFC across frequencies spanning 4

orders of magnitude (0.01–100Hz). Our findings point to a fun-

damental difference between fast and infraslow timescale cor-

tical dynamics. The strengths of a neuron’s population coupling

at fast and slow timescales were unrelated; furthermore, at fast

timescales nearly all neurons fired at preferred phases close to 0

relative to population rate, whereas at slow timescales the phase

distribution was bimodal, with preferred phases of ~30% of the

neurons closer to π . Population coupling in infraslow, but not

fast frequencies reflected coupling to brain-wide arousal signal

(pupil area). While these general rules held for most neurons, a

great diversity of fine-detailed behaviors was seen within local

populations, for example regarding the slow-timescale dynamics

as captured by a neuron’s power spectrum, and the way its

coherency with population rate depended on frequency.

The difference between population coupling at fast and

slow timescales likely indicates different mechanisms driving

these types of coupling. Fast timescale dynamics reflects local

synaptic activity (Haider and McCormick 2009), and the fast-

timescale population coupling of individual neurons is corre-

lated with the number of the local synaptic connections they

receive (Okun et al. 2015). In contrast, infraslow dynamics cor-

relates with global, brain-wide phenomena related to arousal,

which are controlled at least in part by neuromodulatory inputs

(McGinley et al. 2015; Reimer et al. 2016); a similar mechanism

has been suggested for the global component of resting state

fMRI measurements (Scholvinck et al. 2010; Wong et al. 2013;

Turchi et al. 2018). The fact that a neuron’s population coupling

on fast and slow timescales were uncorrelated therefore sug-

gests that the degree to which a neuron’s firing is controlled by

global brain states is unrelated to its local connectivity; for

instance, a neuron weakly affected by neuromodulatory tone

could still be strongly wired into the local network. The hypoth-

esis that fast and slow population coupling arise through differ-

ent mechanisms is supported by observations of neurons

whose phase with population rate had discontinuous subdo-

mains in high and low frequencies, as one would expect to see

if the slow but not fast fluctuations are produced by a mecha-

nism that suppresses the firing of these neurons while elevat-

ing the population rate (Fig. S9). This hypothesis is also

supported by the fact that only slow-timescale population

coupling phases were bimodal, an observation consistent with

previous work in mouse primary visual cortex (V1). Specifically,

in a previous study in V1 we observed neurons with weak fast-

timescale population coupling but only very few with negative

fast-timescale coupling (Okun et al. 2015). Furthermore, finding

two populations of neurons in V1 that couple negatively as well

as positively to arousal (on slow-timescales) was reported by

Vinck et al. (2015) and Stringer et al. (2018). Whereas the

recording conditions in these works were not identical to ours

(mice were recorded on a wheel, and in (Vinck et al. 2015)

arousal was increased by a sensory stimulus), the combined

evidence from these studies seems to suggest that the dynam-

ical properties we have described are not unique to the deep

layers of mPFC. On the other hand, based on analysis of Utah

array recordings in primates, it was suggested that the struc-

ture of neuronal activity in cortical networks is preserved

across timescales (Kiani et al. 2015); it is unclear if this dis-

crepancy is due to difference in species, cortical areas, or other

factors.

Most of our present day knowledge on infraslow cortical

dynamics comes from fMRI studies of resting state activity

(Buckner et al. 2013; Raichle 2015; Foster et al. 2016). Because

fMRI provides a blood-oxygen-level dependent (BOLD) signal

rather than a direct measure of neural activity, it is limited to

measurements on infraslow timescales. Multiple studies have

shown that the BOLD signal correlates with population rate

(Logothetis et al. 2001; Ma et al. 2016; Mateo et al. 2017),

although disagreements on the BOLD signal’s interpretation

remain (e.g., see Winder et al., 2017). Our study provides an

account of how individual neurons’ activities combine to pro-

duce infraslow fluctuations in population rate, and hence in

BOLD (to the extent the two are correlated). The low-frequency

power of the population rate was 2–5 times larger than it would

be if cells were independent of each other (Fig. 3a, Fig. S4).

Because the recorded populations were spread over hundreds

of micrometers, this increase would likely have been even

higher if the recorded populations were concentrated in a smal-

ler volume. We observed that the contribution of single neuron

activity to the mesoscale signal is limited in two ways. First, for

majority of neurons their coherence with population rate

remained relatively low (typically between 0.2 and 0.4) even in

the 0.01–0.1 Hz range of frequencies (Fig. S5), and for some neu-

rons coherence in this range was found to be even lower than for

higher frequencies (Fig. 3f). Second, the infraslow fluctuations in

firing rate of many neurons were partially or completely out of

phase with the population (Fig. 4). The present study is limited to

measurements of spiking activity in one cortical area (including

in cases where several population rate signals from different

shanks or parts of the silicon probe were compared), the coher-

ency relationship between neurons and population rates of distal

cortical areas remains to be elucidated, for example, see Mitra

et al. (2018). Another potential caveat with linking the present

work to resting state fMRI studies is the degree to which the activ-

ity we observed is in the pure resting state regime (Logothetis

et al. 2009; Winder et al. 2017). While it is possible to find short

intervals during which a mouse does not move, this is not the

case for intervals longer than a few seconds (e.g., typically mice

move their eyes every 5–10 s). Thus our results should not be

viewed as describing pure spontaneous activity (an ideal which is

impossible to achieve in practice for infraslow timescales in

awake subjects), but pertain to the actual cortical dynamics which

is partially driven by intrinsic behaviors.

At the single neuron level, power spectral analysis was con-

sistent with scale-free dynamics in the infraslow frequency
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range (Fig. 1a, Fig. S3). Such dynamics is typical of neuronal

activity on various spatial scales, from fMRI measurements to

ion channels, e.g., (Lowen et al. 1997, 1999; He 2011), and else-

where in biology, for example, organization of heart beats

(Bassingthwaighte et al. 1994). Similar spectra have been

reported for retinal and thalamic cells recorded in anesthetized

cats (Teich et al. 1997; Lowen et al. 2001), and more recently in

resting humans (Nir et al. 2008), with a mean power-law expo-

nent of 0.45, close to the 0.39 value observed here (Fig. 1f,

Fig. S3d). For an intuitive interpretation of this value consider

that for a signal with power spectrum proportional to 1/f 0.4 ,

66% of the total power slower than any chosen frequency ω is

concentrated in frequencies ≤ω/2. As a result of these slow

changes in firing rate of individual neurons, their spike count

variance in minute bins was on average ~10-fold higher than

what fast-timescale spiking dynamics alone (i.e., the ISI model)

would predict (Fig. 1e). The interpretation and causes of such

scale-free dynamics are controversial. Here we find that in neu-

rons positively (but not negatively) correlated with arousal the

power-law exponent is highly correlated with the strength of

pupil coupling (Fig. 6g,h), implicating brain-wide neuromodula-

tory mechanisms. Another suggested possibility is that on slow

timescales it is inherent to recurrently connected networks

(Chaudhuri et al. 2018). Yet another possibility is that scale-free

behavior could be caused by single-cell intrinsic mechanisms

such as firing rate adaptation (Marom 2010; Xu and Barak 2017),

which can result in a frequency-independent lead of ~0.2 rad of

the output spiking over sinusoidal input currents with peri-

ods <1 Hz (Lundstrom et al. 2008; Pozzorini et al. 2013). These

effects can build up across more complex networks: for

example, when rat whiskers were stimulated by white noise

on top of which sinusoidal modulation with 0.3–0.03 Hz fre-

quency was added, barrel cortex neurons preceded the sinu-

soidal stimulus envelope by ~0.8 rad on average, while

thalamic neurons were leading by less than half as much

(Lundstrom et al. 2010). An alternative, recently proposed

possibility is that infraslow firing rate fluctuations are driven

by slow changes in ion concentrations (Krishnan et al. 2018).

While the contribution of each of these mechanisms remains

to be elucidated, it is likely that their effect on cortical

dynamics is particularly complex on intermediate timescales

(~1 Hz) where they interact with fast-timescale local synaptic

activity.

Supplementary Material

Supplementary material is available at Cerebral Cortex online.
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