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Abstract

Gastric cancer is not a single disease, and its subtype classifi-

cation is still evolving. Next-generation sequencing studies have

identified novel genetic drivers of gastric cancer, but their use as

molecular classifiers or prognostic markers of disease outcome

has yet to be established. In this study, we integrated somatic

mutational profiles and clinicopathologic information from 544

gastric cancer patients from previous genomic studies to identify

significantly mutated genes (SMG) with prognostic relevance.

Gastric cancer patients were classified into regular (86.8%) and

hypermutated (13.2%) subtypes based on mutation burden.

Notably, TpCpWmutations occurred significantlymore frequent-

ly in regular, but not hypermutated, gastric cancers, where they

were associatedwith APOBEC expression. In the former group, six

previously unreported (XIRP2, NBEA,COL14A1,CNBD1, ITGAV,

and AKAP6) and 12 recurrent mutated genes exhibited high

mutation prevalence (�3.0%) and an unexpectedly higher inci-

dence of nonsynonymous mutations. We also identified two

molecular subtypes of regular-mutated gastric cancer that were

associated with distinct prognostic outcomes, independently of

disease staging, as confirmed in a distinct patient cohort by

targeted capture sequencing. Finally, in diffuse-type gastric cancer,

CDH1 mutation was found to be associated with shortened

patient survival, independently of disease staging. Overall, our

work identified previously unreported SMGs and a mutation

signature predictive of patient survival in newly classified sub-

types of gastric cancer, offering opportunities to stratify patients

into optimal treatment plans based on molecular subtyping.

Cancer Res; 76(7); 1724–32. �2016 AACR.

Introduction

Despite a decrease in both incidence and mortality owing to

progresses in Helicobacter pylori eradication and cancer screening,

gastric cancer remains the seventh most common cancer and the

third leading cause of cancer-related death worldwide with a

5-year survival rate of 29.6% (1). According to Lauren classifica-

tion, gastric cancer can be divided into two distinct subtypes (i.e.,

intestinal and diffuse type) with substantial differences in histol-

ogy and pathogenesis (2). The intestinal type is featured by well-

differentiated, glandular neoplastic cells that are structurally

analogous to intestinal cells and more likely to occur in an area

with a high risk of gastric cancer (2), whereas the diffuse type is

characterized by poorly differentiated neoplastic cells that mor-

phologically resemble signet ring cells and exhibit deeper inva-

sion and infiltration of the whole stomach wall (3–4).

Cancer is a genetic disease arising fromchanges inDNAsequences

(5–6). Many endogenous and exogenous factors can cause somatic

mutations, such as defective DNA repair, infidelity in DNA replica-

tion, andmutagenic exposures. The landscape of somaticmutations

bears the signatures ofmutagenic factors (i.e.,mutational processes)

that have actedupon thegenome(7). For example, a vastmajorityof

somatic mutations in skin and lung cancers are associated with

ultraviolet and smoking exposure, respectively. Until recently, with

the benefit of vast amount of genome data, researchers began to

elucidate mutational signatures in human cancers. Alexandrov

and colleagues identified 21 mutational processes of 30 different

types of primary cancers, some of which were linked to known

factors, including DNA mismatch repair deficiency and APOBEC
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overactivity (8). Several independent studies also reported that

APOBEC-mediated mutagenesis is widespread across human can-

cers, and APOBEC3B is responsible for clusteredmutation in cancer

genomes, as well as PIK3CA hotspot mutations (9–11).

Next-generation sequencing has become a powerful tool to

elucidate potential driver genetic aberrations underlying cancer

development. In gastric cancer, Wang and colleagues and Zang

and colleagues reported frequent somaticmutations in chromatin

remodeling and cell adhesion genes (e.g., ARID1A, MLL, MLL3,

and FAT4), respectively (12, 13). Comprehensive genomic char-

acterizations conducted by The Cancer Genome Atlas (TCGA;

ref. 14) and Wang and colleagues (15) further revealed genetic

alterations underlying gastric carcinogenesis with multi-omics

profiling. Together with the study conducted by Kakiuchi and

colleagues (16), these three studies highlighted anovel driver gene

RHOA in diffuse-type gastric cancer with varying mutational

prevalence. Through whole-exome deep sequencing, we reported

that high clonality is correlated with poorer prognosis in gastric

cancer in the Chinese population (17). These studies also impli-

cated that gastric cancer with mutator phenotype has a higher

mutational burden and is more likely to exhibit microsatellite

instability. Nevertheless, our knowledge of cancer driver genes,

especially those mutated at low or intermediate frequencies, in

gastric cancer is far from complete because of limited sample size

in these studies (18). Themutational processes underlying gastric

cancers with or without mutator phenotype are still obscure and

have not been investigated. Moreover, gastric cancer is genetically

and clinically heterogeneous. Thus, the lack of systematic clinical

correlation analyses impedes translation of these findings into

clinical benefits. Therefore, deeper insights into gastric carcino-

genesis, particularly related to clinical properties, are needed.

The purposes of this study are to characterize mutational

processes operative in gastric cancer and to identify previously

unreported significantly mutated genes (SMG) and prognostica-

tors for patients with gastric cancer.

Materials and Methods

Genome data

All somatic mutations, including single-nucleotide substitu-

tion and short insertion/deletion, were collected from recent

publications (Supplementary Table S1), representing five geo-

graphically different studied cohorts and annotated by ANNO-

VAR (19). All somatic mutations were examined in a panel of

442 sequenced normal samples. Mutations present in this panel

were removed. Clinical data were also acquired from these pub-

lications (Supplementary Dataset S1). However, only TCGA and

Tianjin cohorts have the follow-up and vital status of patients.

Clustering based on mutation loads

We applied the optimal k-means clustering via dynamic pro-

gramming to the number of somatic mutations identified in each

case (20). It can guarantee that thewithin-cluster distance for each

cluster is always minimal. Given that the exact cluster number is

unknown, we ran this algorithm with different cluster numbers

ranging from 1 to 9. The optimal cluster number was selected on

the basis of Bayesian information criterion. Finally, an exact

cluster number of 6 was selected. Through visual inspection, we

divided 544 cases into regular-mutated and hypermutated groups

for follow-up analyses. The optimal k-means clustering was

performed with R package Ckmeans.1d.dp (20).

Identifying genes overrepresented in the hypermutated gastric

cancer

To identify genes overrepresented in the hypermutated group,

we need to take into account different backgroundmutation rates

between the hypermutated and regular-mutated groups, aswell as

different background mutation rates among mutational catego-

ries. Herein, we used goodness-of-fit test with Poisson distribu-

tion to address this issue. The backgroundmutation rate for the ith

category in the regular- and hypermutated groups are ai and bi,

respectively. For a given gene, the number of nucleotides in the

ith category is ni. The expected number of mutations given ai, bi,

and ni across all categories f can be estimated by Poisson distri-

bution in regular- and hypermutated gastric cancers, i.e.,

la ¼
P

� ai�ni and lb ¼
P

� bi�ni, respectively (21). The ai and

bi can be obtained after running MutSigCV, with pa andpb as the

numbers of observedmutations in the regular- and hypermutated

gastric cancers, respectively. To test whether a gene is significantly

overrepresented in the hypermutated group, we examined the

difference between pb=pa and lb=la. If pb=pa is significantly

greater than lb=la, this gene was considered to be significantly

overrepresented in the hypermutated group.

Identification of significantly mutated genes

We identified significantly mutated genes with three algorithms

using MutSigCV, MutSigCL, and MutSigFN. MutSigCV (21) quan-

tifies significance of nonsilentmutations in a genewith background

mutation rate estimated by silent mutations, with other confound-

ing covariates taken into account.MutSigCLandMutSigFNmeasure

the significance of clusteredmutations and the functional impact of

mutation, respectively (18). In MutSigFN analysis, we separately

usedCADDandPolyphen2 scores available fromdbNSFPdatabase

(22) to measure the functional impact of somatic mutations. For

efficient computation, we carried out a 2-step permutation. We

performed 999 times in the first step to define candidate SMGs (i.e.,

P < 0.05), followed by extensive permutationwith 1,000,000 times.

We then combined P values obtained from the first and second

steps.P valueswere then FDR-corrected (q values)using themethod

of Benjamini and Hochberg. For the final analysis of SMGs, we

appliedadditionalfiltering steps toeliminatepossible falsepositives

that may result from the batch effect via combining somatic muta-

tions from different studies. In the regular-mutated group, a gene

was considered to be a SMG if it satisfied these conditions: (i)

statistically significant (q value < 0.1) by at least one of MutSig

algorithms; (ii) expressed in the TCGA pan-cancer dataset (23),

human cancer cell lines (24), and/or reported in previous studies

(18,23,25,26); (iii) mutated in at least 3 of 5 cohorts; and (iv)

mutational prevalence comparable among different cohorts (if

mutated). In the hypermutated group, we employed similar but

more stringent criteria to select SMGs, including statistically signif-

icant by at least two MutSig algorithms andmutated in at least 2 of

the 3 available cohorts (i.e.,HongKong, TCGA, and Tianjin China).

This produced a final list of 66 SMGs in the hypermutated group.

Molecular typing

We applied nonnegative matrix factorization (NMF; refs.

27–29) to perform molecular subtyping. A binary matrix A

describing mutations of SMGs (rows) across cancer samples

(columns) was constructed. Specifically, a(i, j) ¼ 1 if gene i was

mutated in sample j, otherwise a(i, j)¼ 0; then, Awas factorized

into two nonnegative matricesW andH (i.e., A�WH). MatrixH

was used to group samples into clusters. Optimal number of

Genomic Analysis of Gastric Cancer
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clusters was selected on the basis of cophenetic coefficient and

dispersion value (29–30).

Targeted capture sequencing

Genomic DNA from gastric cancers and lymphocytes was

fragmented and hybridized to commercially available capture

arrays for enrichment. All samples were collected from patients

diagnosed with primary gastric cancer with long-term survival

data (15–60 months). Data were analyzed using a bioinformatic

pipeline as previously described (31). All patients had given

written informed consent, and the study protocol was approved

by the clinical ethics committee of the Peking University Cancer

Hospital & Institute (Beijing, China).

Results

Classification of gastric cancer based on mutation loads

Somatic mutational profiles of 544 gastric cancer patients

from previous genomic studies were aggregated. These samples

exhibited large variation in mutation density, ranging from 0 to

200.2 mutations per megabase pair (Mb). To avoid undue

effects of samples with high-burden mutation on subsequent

analyses (32–33), unsupervised clustering of these 544 gastric

cancer samples was performed according to their number of

somatic mutations. Two distinct clusters with varying mutation

burdens were identified (Fig. 1A and Supplementary Fig. S1A),

which were thereafter referred to as regular- (n ¼ 455; 2.4

mutations/Mb; range, 0–8.3) and hyper-mutated (n ¼ 89;

20.5 mutations/Mb; range, 9.6–200.2) gastric cancer, the latter

of which showed marked overrepresentation of samples with

microsatellite instability (Fisher exact test; OR ¼ 1,012.4; P <

0.001). Although several genes (BRCA2, FANCM, PRKDC,

MSH3, etc.) that are involved in maintaining genomic integrity

were frequently mutated in the hypermutated group, these

genes were not significantly enriched when the heterogeneity

of background mutation rates was considered (Supplementary

Dataset S2).

Figure 1.

Mutational signatures of human gastric cancer. A, mutation burden stratified gastric cancers into the regular- and hypermutated types. Regular-mutated

could be further classified into two subgroups (i.e., C1 and C2) based on mutation patterns. B, seven mutational signatures (i.e., signatures 1–7),

indicative of distinct underlying mutational processes, were derived from 544 gastric cancer genomes. C, mutational exposures (number of mutations)

were attributed to each mutation signature. There were significantly more mutations attributable to signature 6 (i.e., APOBEC signature) in regular-mutated

as compared with hypermutated gastric cancer. D, prevalence and proportion of mutations associated with each mutational signature are also shown.

A signature is considered to be operative in a tumor if it contributed to more than 100 SNVs or more than 25% of all SNVs in that sample. RGC, regular-mutated

gastric cancer; HGC, hypermutated gastric cancer. E, proportion of APOBEC signature mutations. F, mutational patterns of PIK3CA in regular- and

hypermutated gastric cancer. G and H, relationships between APOBEC3B mRNA levels and number of APOBEC signature mutations in regular- and

hypermutated gastric cancer. I, mRNA expression level of APOBEC3B in regular- and hypermutated gastric cancer.

Li et al.
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Mutation signatures of gastric cancer in relation to

clinicopathologic features and APOBEC3B expression

To gain further insights into the mutational processes oper-

ative in regular- and hyper-mutated gastric cancer, we delineated

their mutation signatures using the computational framework

proposed by Alexandrov and colleagues (34). Seven mutation

signatures were extracted from all 544 gastric cancer samples,

namely signatures 1 to 7, each of which contributed to different

proportion of mutations in the regular- and hypermutated

groups (Supplementary Fig. S1B and S1C). In kernel principal

component analysis, we found that mutation signatures corre-

sponding to different studies were intermingled, whereas the

regular- and hypermutated groups were clearly distinguishable

(Supplementary Fig. S1C), suggesting a minimal impact of batch

effect on mutation signatures. General linear regression was

performed to analyze the relationship between mutation sig-

natures and clinicopathologic features. We observed that age

at diagnosis was associated with signature 2 (Fig. 1C), which is

concordant with a previous report (8). Of interest, signature 6,

which was dominated by mutations at TpCpW DNA motif

(where W¼A or T; mutated nucleotide underlined), accounted

for 32.5%mutations in regular- but only 3.2% in hyper-mutated

gastric cancer. In this regard, regular-mutated gastric cancer

harbored 6 times more mutations at TpCpW DNA motif than

the hypermutated group (Wilcoxon test; median, 0.06 vs. 0.01;

P < 0.001; Fig. 1D). This mutation pattern is also known as

APOBEC signature, which is widespread across multiple human

cancer types (10). The dominance of TpCpW mutations in

regular-mutated gastric cancer could be exemplified by the muta-

tion pattern of PIK3CA (Fig. 1E), which is a driver gene in gastric

cancer. The RNA-editing enzyme APOBEC3Bhas been reported to

contribute to mutations at TpCpW motif in cancer genome (10).

To interrogate the contribution of APOBEC3B to mutations in

gastric cancer, we analyzed the relationship between its expression

levels and number of TpCpW mutations. We observed that

APOBEC3B mRNA levels were positively correlated with the

number of TpCpW in regular- (Spearman r¼ 0.42; P < 0.001; Fig.

1F) but not hypermutated gastric cancer (Spearman r¼ 0.21; q¼

0.67; Fig. 1F) despite similar expression levels in both groups (q¼

0.32; Fig. 1F), signifying their difference in mutagenesis. As

regular- and hypermutated gastric cancers were characterized by

distinct molecular features, these two subgroups were analyzed

separately in subsequent analyses.

Significantly mutated genes in gastric cancer

A total number of 39,891 and 101,189 nonsilent somatic

mutations, including missense, nonsense, splice-site, and frame-

shift mutations, were detected in 455 and 89 cases of regular- and

hypermutated gastric cancer, respectively. To identify SMGs that

are causally linked to tumorigenesis, we used three algorithms,

namely MutSigCV (21), MutSigCL, and MutSigFN, to identify

genes whose mutations were positively selected, clustered in

hotspots or of functional consequences. In regular-mutated gas-

tric cancer, 31 SMGs were identified (Fig. 2A; Supplementary

Dataset S2), among which 12 reported [TP53 (48.4%), ARID1A

(13.8%), CDH1 (11.6%), PIK3CA (8.4%), APC (6.8%), RHOA

Figure 2.

Mutational landscape and prognostic significance of molecular subtyping in regular-mutated gastric cancer. A, mutational landscape of SMGs ordered by

overall mutation frequencies in regular-mutated gastric cancer samples. Molecular classification into C1 and C2 based on mutation status of 31 SMGs

was performed using NMF. Asterisks indicate SMGs with preferential mutations in either molecular subtype. B, Kaplan–Meier survival curves displaying

survival outcomes of C1- and C2-type regular-mutated gastric cancer. Univariate (C) and multivariate (D) Cox regression analyses for age, sex, TNM

staging, Lauren classification, and molecular subtypes. HR, 95% CI, and P values are displayed.

Genomic Analysis of Gastric Cancer
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(5.7%), SMAD4 (6.2%), ERBB4 (5.7%), KRAS (4.4%), ERBB2

(3.2%), andCTNNB1 (3.1%)] and6previously unreported [XIPR2

(7.3%), NBEA (7.0%) COL14A1 (4.4%), AKAP6 (3.7%), CNBD1

(3.1%), and ITGAV (3.1%)] SMGs exhibited moderate to high

mutation prevalence (�3.0%). In particular, four genes, namely

TP53, CDH1, SMAD4, and CTNNB1, were ranked as significantly

mutated by all 3 algorithms. The 6 previously unreported SMGs

were frequently mutated across multiple human cancer types

(Supplementary Dataset S3; refs. 35, 36). ITGAV, upstream regu-

lator of PI3K signaling pathways and located in 2q32.1, was

significantly deleted in Hong Kong and TCGA cohorts (14, 15).

NBEA (located in 13q12.11) and CNBD1 (located in 8q22) were

focally deleted in TCGA cohort, with the latter significantly mutat-

ed in 1% of previous pan-cancer dataset, but not in individual

cancer types (14, 18). AKAP6, protein kinase anchoring factor, was

reported to be significantly mutated in esophageal adenocarcino-

ma (37). COL14A1 was reported to be frequently mutated and

downregulated in other cancer types (38, 39). In the hypermutated

group, we first used 3 MutSig algorithms to define SMGs by

evaluating only single-nucleotide substitutions, giving rise to 4

SMGs, including ARID1A and TP53 (Supplementary Dataset S2).

By including short insertions/deletions, the final list of SMGs was

expanded to 66, including MLL2, RNF43, B2M, ACVR2A, and

RNF43 (Supplementary Dataset S2).

SMG mutation patterns predictive of survival in regular-

mutated gastric cancer

Todetermine if SMGmutation status couldbeused formolecular

typing, NMF-based unsupervised clustering on binary mutation

matrix of SMGs was performed, which yielded two subgroups

(hereafter referred to as C1 and C2; Supplementary Fig. S1D). The

first subgroup C1 was enriched with mutations in TP53 (89.9%;

q<0.001),XIRP2 (13.7%;q<0.001),APC (11.1%;q¼0.01),ERBB4

(8.4%; q ¼ 0.047), and AKAP6 (6.6%; q ¼ 0.004), whereas the

second subgroup C2 was overrepresented by mutations in ARID1A

(27.5%; q < 0.001), CDH1 (17.5%; q < 0.001), PIK3CA (14.4%;

q < 0.001), andRHOA (9.2%; q¼ 0.007). C2was also featuredwith

more gastric body–located [OR ¼ 1.71; 95% confidence interval

(CI), 1.0–2.93; P ¼ 0.05] and diffuse-type (OR ¼ 2.45; 95% CI,

1.49–4.06; P < 0.001) gastric cancer. In comparison with TCGA

molecular subtypes, we found that C1 was more enriched with

chromosome instability (CIN) subtype (Fisher exact test,P< 0.001),

whereas C2 had even distribution of CIN and genome stable (GS)

subtypes (45 CINs vs. 42 GSs). Importantly, C1was associated with

a significantly better prognostic outcome (P ¼ 0.02; Fig. 2B).

Univariate analysis indicated that advanced tumor–node–metasta-

sis (TNM) staging (stage III/IV) andC2 subtypebutnot other factors,

including tumor location (antrum, body, or cardia), were signifi-

cantly associated with poorer survival outcome (Fig. 2C). Multivar-

iate analysis revealed that the prognostic significance of C1/2 was

independent of age, sex, Lauren classification, TNM staging, and

studied cohorts (Fig. 2D). Nevertheless, subgroup analysis stratified

by Lauren classification indicated that the prognostic significance of

C1/2 was more apparent in diffuse-type than intestinal-type gastric

cancer (Supplementary Fig. S2A).

C1/2 signature validation in an independent cohort

We observed that 8 (TP53, ARID1A, CDH1, PIK3CA, XIRP2,

APC, ERBB2, and RHOA) of the abovementioned 31 SMGs

exhibited differential mutation frequencies withmutational prev-

alence >5%. Importantly, we found that these 8 SMGs could

achieve comparable prediction accuracy in discriminating C1

from C2 as by the 31 SMGs (Supplementary Fig. S2B). By

performing targeted capture sequencing in an independent

cohort of gastric cancer patients and classifying these patients

into C1 and C2 subgroups based on these 8 SMGs, we found

that C1/2 remained a significant independent prognostic marker

in gastric cancer (Supplementary Fig. S2C).

Mutation distribution in cancer signaling pathways

Bymapping SMGs andotherwell-known genes to cell signaling

pathways, we observed that several pathways were frequently

altered in regular-mutated gastric cancer, including genotoxic/

oncogenic stress response (57.6%), histone modification/chro-

matin remodeling (26.6%), and growth factor receptor signaling

(22.4%) and Wnt signaling (24.4%; Fig. 4).

Recurrent point mutations in gastric cancer

Recurrent point mutations could help to identify cancer driver

genes and druggable targets (40). Herein, we depicted the pan-

orama of recurrent point mutations in gastric cancer (Supple-

mentary Dataset S2). Of the 31 SMGs in regular-mutated gastric

cancer, twenty of them were significantly enriched for recurrent

point mutations, including TP53, PIK3CA, CDH1, KRAS, RHOA,

ERBB2, and ERBB4. Nevertheless, only three SMGs, namelyTP53,

PIK3CA, and KRAS, were identified in hypermutated gastric

cancer. Notably, two recurrent mutations (p.E542K and p.

E545K) in PIK3CA are significantly overrepresented in the reg-

ular-mutated gastric cancer (OR ¼ 4.26; Fisher exact test, P ¼

0.004), whichwere exclusively located at TpCpWmotif (Fig. 3A).

Conversely, another PIK3CA hotspot mutation (p.H1047R) was

significantly enriched in the hypermutated group (OR ¼ 4.46;

Fisher exact test, P¼ 0.02), which occurred in ApTpG rather than

TpCpW motif (Fig. 3B). For other SMGs, recurrent point muta-

tions ofCDH1 and RHOAwere only observed in regular-mutated

but not hypermutated gastric cancers.

CDH1 mutation as a prognostic factor in diffuse-type gastric

cancer

To discover single-gene prognosticators, we analyzed the asso-

ciation between nine SMGs (mutated at >5%) and survival data.

We found that CDH1 and SMAD4 mutations were significantly

associated with shortened survival in patients with gastric cancer

as revealed by Kaplan–Meier analysis. In subgroup analysis strat-

ified by Lauren subtype, CDH1 mutation(s) was a significant

prognostic factor in diffuse-type but not intestinal-type gastric

cancer independent of TNM staging (Supplementary Fig. S3A). In

contrast, SMAD4mutationwas associatedwith shortened survival

only in the intestinal-type gastric cancer. We then verified the

prognostic significance of CDH1 and SMAD4 in an independent

cohort (17), in which these two genes were sequenced on an

orthogonal-sequencing platform. We observed that CDH1muta-

tions remained an independent factor for poor survival in the

diffuse-type gastric cancer (Supplementary Fig. S3B). However,

the significance of SMAD4 mutations could not be verified. The

prognostic significance of CDH1 in the diffuse-type gastric cancer

by combined analysis of two cohorts was shown in Fig. 5.

Discussion

In this study, we performed systematic analyses on 544 gastric

cancers and correlated genetic events with clinicopathologic

Li et al.
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features. Major findings derived from our study include (i) there

are ubiquitous and specific mutational processes underlying the

pathogenesis of different subtypes of gastric cancer with varying

mutation burdens; (ii) several previously unreported SMGs that

are mutated at intermediate or low prevalence were identified;

(iii) regular-mutated gastric cancer can be further stratified into

Figure 3.

Mutation plots of PIK3CA in the regular- (A) and hypermutated (B) gastric cancers. The distribution of different classes of mutations (different shapes)

and functional domains of PIK3CA is shown.

Figure 4.

Altered signaling pathways in regular-mutated gastric cancer. Key pathways and inferred functions are summarized. Red and blue colors denote SMGs with

activating and inactivating mutations, respectively, whereas genes in white are not identified as SMGs but known to have tumorigenic roles. Potential druggable

targets are marked with stars. TF, transcription factor.
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two subtypes (i.e., C1 and C2) with distinct clinical outcomes;

and (iv) CDH1 mutation is an independent prognostic factor

for poorer survival in patients with diffuse-type gastric cancer.

In line with the previous observation (8,10), we revealed that

APOBEC-mediated mutation pattern is ubiquitous in gastric

cancer. Although hypermutated gastric cancer that showed defects

in DNA damage repair is more likely to generate single-strand

DNA breakage, which is an ideal substrate for APOBEC family of

cytidine deaminases (41); this mutational process contributed to

the majority of somatic mutations in regular-mutated but not

hypermutated gastric cancer. Besides, we observed that PIK3CA

mutations (p.E542K and p.E545K) of regular-mutated gastric

cancer are more likely to occur in TpCpW motif in comparison

with the hypermutated group. These discrepancies have not been

reported in gastric cancer. Concordant with our findings, a recent

study on esophageal squamous cell carcinoma reported that these

two PIK3CA hotspot mutations were overrepresented in APOBEC

signature tumors (42). In addition, a supervised random forest

clustering (43, 44), with mutational exposures as input, ranked

signature 6 (APOBEC signature) as the most important predictive

feature in distinguishing the regular-mutated from the hyper-

mutated gastric cancer with high prediction accuracy (Supple-

mentary Fig. S1C and S1E). Taken together, these findings suggest

that APOBEC-mediated mutagenic activity is operative to greater

extent in regular-mutated gastric cancer, and alternative underly-

ing mutagenic factors, presumably defective DNA proofreading

and repair, have substantially greater impact on the hypermutated

gastric cancer.

According to a previous study, nearly 600 samples per cancer

type are required to achieve a complete catalog of cancer genes

(18). Our study encompassed the largest number of gastric cancer

samples available (n ¼ 544) by combining data from previous

whole-genome and whole-exome sequencing studies on gastric

cancer (14–17, 45). Thus, we are able to identify SMGs that are

mutated less frequently with a higher statistical power (18). For

instance, we found that FBXW7, widely reported as cancer driver

in multiple human malignancies but not gastric cancer (23), was

significantly mutated at 2.4% in our gastric cancer study; besides,

there are other previously unreported SMGs (e.g., XIRP2, NBEA,

COL14A1, CNBD1, AKAP6, and ITGAV) that are reported for the

first time in gastric cancer, underscoring the importance of increas-

ing sample size to identify potential cancer genes. However, the

statistic power to identify cancer genes mutated at 2% of samples

is merely 12% in regular-mutated gastric cancer (18); thus, more

rare SMGs are awaited to be discovered.

Batch effect is a common phenomenon in meta-analysis. To

exclude artifacts in our SMG list, we employed stringent

criteria to filter out possible false positives, including genes

showing bias towards specific cohorts. However, cancer devel-

opment is closely related to environmental exposures, which

can provide unique selective pressure over specific cancer

genes. As different cohorts may have their unique exposures,

SMGs displaying cohort-specific features could be discarded in

this study, leading to underestimation of the number of SMG.

Another limitation of our study is the lack of functional

validation of the identified SMGs. Until such data are avail-

able, whether these SMGs are indeed drivers in gastric tumor-

igenesis remains uncertain.

A major clinically relevant finding of this study is the use of 8

SMGs to classify regular-mutated gastric cancer into two prog-

nostically distinct subgroups, namely C1 and C2 (Fig. 2 and

Supplementary Fig. S1C). The prognostic significance of C1/2

was validated in an additional cohort and independent of age, sex,

Lauren classification, TNM staging, and studied cohorts. Together

with other genome-based molecular subtyping studies (46–48),

this finding highlighted the importance of molecular subtyping

based on genome data in clinical utility. However, the lack of

clinical and surgical data (residual tumor, number of removed

lymph nodes, and more refined clinical tumor staging) may be a

potential limitation of this study.

Another key finding that emerged from our study is the iden-

tification of CDH1 mutation(s) as an independent prognostic

marker for poor prognosis in diffuse-type gastric cancer. Somatic

mutations in CDH1 are frequently reported for sporadic gastric

cancer with predilection towards the diffuse type (15, 16), which

is associated with dismal survival (3). Interestingly, we revealed

that CDH1 mutation(s) allows further stratification of diffuse-

type gastric cancer into distinct subgroups with significantly

different survival outcomes. In summary, our findings may be

leveraged to speed up interpretation of cancer genome data that

may foreshadow clinical outcomes and thus potentially help to

guide gastric cancer intervention.

Figure 5.

Prognostic significance of CDH1 mutation(s) in a combined cohort of diffuse-type gastric cancer. A, Kaplan–Meier survival curves showing survival outcomes

for two subgroups stratified by CDH1 mutation status. B and C, univariate (B) and multivariate (C) Cox regression analyses for CDH1 mutation in

relation to age, sex, and TNM staging.
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