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Abstract

The differentiation of discrete and continuous movement is one of the pillars of motor behavior classification. Discrete
movements have a definite beginning and end, whereas continuous movements do not have such discriminable end
points. In the past decade there has been vigorous debate whether this classification implies different control processes.
This debate up until the present has been empirically based. Here, we present an unambiguous non-empirical classification
based on theorems in dynamical system theory that sets discrete and continuous movements apart. Through
computational simulations of representative modes of each class and topological analysis of the flow in state space, we
show that distinct control mechanisms underwrite discrete and fast rhythmic movements. In particular, we demonstrate
that discrete movements require a time keeper while fast rhythmic movements do not. We validate our computational
findings experimentally using a behavioral paradigm in which human participants performed finger flexion-extension
movements at various movement paces and under different instructions. Our results demonstrate that the human motor
system employs different timing control mechanisms (presumably via differential recruitment of neural subsystems) to
accomplish varying behavioral functions such as speed constraints.
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Introduction

Discrete movements constitute singularly occurring events

preceded and followed by a period without motion (i.e., with zero

velocity) for a reasonable amount of time, such as a single finger

flexion or flexion-extension cycle [1,2]. Continuous movements

lack such recognizable endpoints, and normally are considered

rhythmic if they constitute repetitions of particular events, in

which case they often look quite sinusoidal. While it is trivial that

discrete movements can be repeated periodically, the question

whether motor behavior is fundamentally discrete or rhythmic is

not. Is motor behavior fundamentally discrete, reducing rhythmic

movement to mere concatenations of discrete movements [3,4]?

Or is motor control fundamentally rhythmic, in which case

discrete movements are merely ‘aborted’ cycles of rhythmic

movements [5–7]? Alternatively, both types of movements may

belong to distinct classes that are irreducible to each other [8–10],

hence implying the utilization of different movement generating

mechanisms.

Proponents of the ‘discrete perspective’ have sought evidence

for discrete movement control through the identification of

movement segments in movement trajectories. However, seg-

mented motion need not imply segmented control [11]. In fact, the

possibility to settle the dispute (solely) on the basis of kinematic

features of movement (movement time, peak velocity, symmetry of

velocity profiles, etc.) has recently been questioned [12]. Other

researchers have aimed to identify the neural structures associated

with discrete and rhythmic movements. For instance, Schaal and

colleagues [9] showed that the brain areas that were associated

with rhythmic movements were approximately a subset of those

that were active during discrete movement execution. Differential

involvement of neural subsystems does not provide a classification

principle, however. Unambiguous classification requires the

identification of invariance that is unique to each class so that

the intersection of these two sets of characteristics is empty. Such a

result will provide unambiguous evidence that two classes indeed

are distinct. Dynamic systems theory offers such a classification

principle based on phase flow topologies, which identify all

behavioral possibilities within a class. Its significance lies in the fact

that the classification is model-independent; every behavior within

a class can be mapped upon others, whereas maps between classes

do not exist. We use this principled approach to address the

controversy whether discrete and rhythmic movements are

fundamentally different. To that aim, we introduce the notion of

phase flow topologies, identify the invariance separating two

movement classes, and present an experimental study testifying to

the existence of (at least) two different movement classes.

Deterministic, time-continuous and autonomous systems can be

unambiguously described through their flow in state (or phase)

space, defined as the space spanned by the system’s position x and

velocity _xx (under the commonly adopted assumption that the

deterministic component of movement trajectories can be fully

described by two state variables). Whereas the phase flow

quantitatively describes the system’s evolution as a function of its
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current state (x, _xx); the system’s qualitative behavior is solely

determined by its phase flow topology. From the Poincaré-

Bendixson theorem [13,14] it follows that the only possible

topologies in two dimensional systems are composed of elements

referred to as fixed points, limit cycles, and separatrices. A fixed point

of the system identifies a rest state (i.e., rate of change is zero, _xx~0),

and, if stable, all trajectories in phase space eventually converge to it

(Figure 1A). A system located at a fixed point can only depart from it

in the presence of an external stimulation. A separatrix is a subset of

points in the phase space that divides locally distinct phase flows

(Figure 1A and 1B). In most cases for two-dimensional phase spaces,

a separatrix is a line from which the flow points away in

approximately opposite directions. Even simpler, for one-dimen-

sional phase spaces any unstable fixed point is a separatrix. Limit

cycles (Figure 1C) are closed loops in a two-dimensional phase space.

If a limit cycle is stable, then all trajectories converge to it. A system

on a limit cycle will repetitively traverse the same trajectory in phase

space and sustain a periodic motion. Since these elements, fixed

points and limit cycles, compose all phase flows in two dimensions,

we associate discrete and rhythmic movements with these. The

Hartman-Grobman theorem [13,14] states that the flow in the local

neighborhood of a fixed point is topologically equivalent to that of its

linearization, which implies that a continuous invertible mapping (a

homeomorphism) between both local phase spaces exists. From these

theorems it follows that dynamical systems belong to the same class

if, and only if, they are topologically equivalent. Therefore,

movements that can be shown to be governed by fixed point

dynamics versus movements governed by limit cycle dynamics are

Author Summary

A fundamental question in motor control research is
whether distinct movement classes exist. Candidate classes
are discrete and continuous movement. Discrete move-
ments have a definite beginning and end, whereas
continuous movements do not have such discriminable
end points. In the past decade there has been vigorous,
predominantly empirically based debate whether this
classification implies different control processes. We
present a non-empirical classification based on mathemat-
ical theorems that unambiguously sets discrete and
continuous rhythmic movements apart through their
topological structure in phase space. By computational
simulations of representative modes of each class we show
that discrete movements can only be executed repetitively
at paces lower than approximately 2.0 Hz. In addition, we
performed an experiment in which human participants
performed finger flexion-extension movements at various
movement paces and under different instructions.
Through a topological analysis of the flow in state space,
we show that distinct control mechanisms underwrite
human discrete and fast rhythmic movements: discrete
movements require a time keeper, while fast rhythmic
movements do not. Our results demonstrate that the
human motor system employs different timing control
mechanisms (presumably via differential recruitment of
neural subsystems) to accomplish varying behavioral
functions such as speed constraints.

Figure 1. Phase space topologies. The small arrows delineate the phase flow. Horizontal axes represent position (x); vertical axes represent
velocity ( _xx) (only indicated in [C]). (A–B) Stable fixed point and separatrix. A close-up of the dotted-boxed area in (A) is provided in (B). A stable fixed
point is represented by the black point; arrows converge to it. The divergence of nearby starting trajectories reveals locally distinct flows set apart by
a separatrix. (C) Stable limit cycle.
doi:10.1371/journal.pcbi.1000061.g001
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not reducible to each other, and as such we can make the strong

claim that they are from different equivalence classes.

In consideration of the notion of topological equivalence, Jirsa

and Kelso [15] recently formulated a generic model construct that

allows for a stable fixed point and a separatrix (referred to as the

mono-stable regime) or a stable limit cycle regime (Figure 1) in its

corresponding phase space (see Text S1). These topologies

correspond to single (i.e., discrete) flexion-extension movements

and rhythmic movement, respectively. This perspective has three

crucial features. First, the qualitative behavior in each regime is

model independent. Second, each single movement execution in

the mono-stable regime depends on an external triggering

(mathematically speaking, the system is non-autonomous). In

contrast, in the (autonomous) limit cycle regime no external

stimulation is required and movement is self-sustaining. Third, the

phase flow underlying movement is invariant on the time scale of

the movement in both cases. Here, we examine this perspective by

directly investigating numerically generated phase flows as well as

those generated by humans and show that discrete and continuous

movements belong to distinct dynamical classes.

Results

We computationally examined the generic model under a large

parameter and frequency range in order to examine the robustness

and limits of its behavior in both dynamical regimes (see Materials

and Methods). In the limit cycle regime, the timing requirement

(i.e., the computationally implemented movement frequency) was

met under all movement paces (i.e., frequencies). In contrast, in

the mono-stable regime the actual timing deviated from the

required timing due to a period-doubling when the movement

pace exceeded approximately 2.0 Hz. (Figure 2A), which occurs

due to the arrival of stimulus n before movement n21 has finished.

These observations were robust under all parameter settings

within each dynamical regime (see Text S1 and Figures S1, S2,

and S3), although the frequency at which the period doubling

occurred showed a small variation as a function of one of the

model parameters. In fact, while the exact frequency at which

stimulus – movement interference occurs will show little variation

as a function of the specific model realization (i.e., through

function g1 and g2; see Equation 1 in Text S1), its occurrence with

increasing frequency of stimulation is unavoidable. By implication,

every discrete movement system has an upper (frequency) limit in

generating sequential movements.

In the behavioral experiment human participants (n = 8)

performed an auditory-paced unimanual finger flexion-extension

timing task under similar movement paces (from 0.5 Hz to 3.5 Hz;

step size 0.5 Hz) that were presented in ascending or descending

order (see Materials and Methods). The participants were

instructed to synchronize their full flexion with the metronome

under three instruction conditions: to move as fast as possible (with

staccato like movements being initiated to end/start a cycle), as

smooth as possible (move so that the finger is continuously moving

during the movement period interval) or without any specific

instruction. We refer to these conditions as ‘discrete’, ‘smooth’,

and ‘natural’, respectively (Figure 2B). Please note that, notwith-

standing the repetitiveness of the movements, these instructions

may elicit movements generated by distinct control mechanisms

but do not prescribe the latter.

We reconstruct the vector fields underlying the phase flow (see

Figure 3 and Materials and Methods) using a novel technique [16,17]

that has been successfully tested on simulated data from dynamical

systems [18,19] and applied in fields like (among others) physics

[16,17], engineering [20], economics [21], and which was recently

introduced in the study of human movement [19,22,23]. In addition,

we investigate the phase spaces in terms of two-dimensional

probability distributions and performed more ‘traditional’ kinematic

analysis commonly utilized in the (human) movement sciences (see

Text S1 and Figures S4, S5, S6, S7, S8, and S9). Figure 3 represents

the vector fields (Figure 3A, 3B, 3D, 3E) from five trials of a single

participant and the corresponding angle diagrams (Figure 3C and 3F,

respectively), and clearly indicates the existence of a fixed point

(Figure 3A–3C) and a limit cycle (Figure 3D–3E). Figure 4A–4C

(upper row for each subfigure) shows the angle diagrams averaged

across all participants for each frequency and instruction condition.

Obviously, the averaging across participants, to some extent, smears

out the representation of the topological structures, as indicated by

the standard deviations across participants of the angle reconstruc-

tions in the lower rows of Figure 4A to 4C. Regardless, the existence

of a single fixed point at slow movement paces in the discrete

condition, indicating the utilization of the mono-stable regime

dynamics, can be appreciated from Figure 4A (upper row). In the

natural and smooth condition the vector fields are less structured at

slow paces, especially at 0.5 Hz (Figure 4A–4C). Scattered (to some

degree) vector fields and the existence of either one or two fixed points

appear at 0.5 Hz in the smooth and the natural condition. The fixed

point(s) appears clearer at 1.0 Hz to 2.0 Hz in both conditions.

Under all instruction conditions, however, the fixed point(s) vanishes

at high movement paces and invariantly gives way to limit cycle

dynamics (Figure 4A–4C). These results indicate that humans utilize

distinct timing mechanisms in a movement pace-dependent manner.

Discussion

What are the implications of these finding? First and foremost,

our results lay the foundation of a motor behavior classification

scheme based on mathematical theorems. We demonstrated that

discrete and fast rhythmic movements constitute distinct classes;

their genesis is, by implication, underwritten by different

mechanisms. Fast rhythmic movements are autonomous and their

timing emerges from the movement dynamics. In contrast, discrete

movements are non-autonomous: Their timed execution cannot

originate from their dynamics and hence requires external time

keeping, most likely arising from a neural structure or network that

is not implicated in the implementation of the dynamics. In that

regard, the discrete movements studied here constituted full,

repetitive (flexion-extension) cycles. Similar movements are

sometimes referred to as continuous movements in the presence

of temporal events [24,25]. We refer to them as ‘discrete’ as they

are governed by fixed point dynamics. Regardless, please note that

even though in many cases the exact timing of a discrete

movement is hardly of importance, every discrete movement

initiation (be it embedded in a regular or irregular sequence of

movements or not) requires ‘external’ stimulation, which is

ultimately timed. This also holds for an additional class of discrete

movements, namely, point-to-point movements (cf. [9]), in which

two stable fixed points exist simultaneously (see Supporting

Information, and [15]). While our findings are by and large in

line with the more ‘traditional’ and purely behaviorally-defined

classification [2] as well as recent versions thereof in terms of

movement continuity [24,25], they also identify their limitation;

continuous movements do not constitute a single class. This

limitation indeed strengthens our call for a classification of

movement rooted in mathematical theory that bears directly on

the mechanisms underlying movement genesis.

The movements at a slow pace, in particular at 0.5 Hz, under

the ‘smooth’ instruction (and for some participants under the

‘natural’ instruction) were invariantly characterized by (relatively)

Distinct Timing Mechanisms
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irregular phase flows (see Figure 4C). The Poincaré-Bendixson

theorem [13,14] rules out topological structures other than fixed

points (and separatrices) and limit cycles in two-dimensional phase

space. The (relatively) irregular phase flows (with indices of

multiple fixed points) may (by hypothesis) represent movements

whose phase flow changes on a similar time scale as the

movement. Such flows can be predicted for equilibrium point

models [4–6] that, from a dynamical perspective, can be

interpreted in terms of (the relocation of) a fixed point [26]. In

fact, phase flow changes on the time scale of the movement also

underwrite an alternative dynamical model [7]. Accordingly,

discrete movements are accounted for by the destabilization and

subsequent stabilization of fixed points interspersed by a time

interval in which a limit cycle exists that effectively generates the

(discrete) movement. The destabilization is accounted for by an

external impact relative to the dynamics (‘behavioral information’).

In other words, discrete movement generation is non-autonomous

according to this account also.

The notion of time keepers versus timing resulting from

movement dynamics are not new. On the contrary, these notions

Figure 2. Representative time-series. Time [s] is represented on the horizontal axes; (normalized) position on the vertical axes (not depicted in
the Figure). (A) Model simulations in the mono-stable (upper panel) and limit cycle regime (lower panel) at 0.5 Hz, 2.0 Hz, and 3.5 Hz (left, middle,
and right column, respectively). (B) Data of one participant in the natural, discrete, and smooth condition (upper, middle, and lower row, respectively)
at 0.5 Hz, 2.0 Hz, and 3.5 Hz (left, middle, and right column, respectively). Note the qualitative correspondence with the mono-stable regime in the
discrete and natural condition at slow movement paces and with the limit cycle regime in all conditions at high paces.
doi:10.1371/journal.pcbi.1000061.g002
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are central to two distinct theoretical camps (the information

processing perspective and dynamical system approach, respec-

tively) that have little interaction ([27]; and see e.g., the special

issue of Brain & Cognition 48, 2002). The notion of a time keeper (or

central timer) became firmly established by the well-known two-

level timing model [28,29]. Accordingly, the behavioral expression

in tapping movements – the often observed negative correlation

between consecutive tapping intervals – is the resultant of the

repetitive movement initiation by a central time keeper and the

impact of the motor delays preceding and following each

particular tap (which are all random variables). Notwithstanding

the various elaborations of (‘cognitive’) timing models ever since

[30–33], the notion of time keeping is inherently connected with

abstract mental representations. In contrast, eschewing represen-

tational concepts, dynamicists view timing and coordination as

properties arising from (self-organized) pattern formation processes

[34–37]. Here, we elaborated on two distinct dynamical

organizations and report evidence that humans ‘implement’ either

of these depending on movement rate. In the non-autonomous

scenario movement initiation (and thus timing) depends on a

mechanism external to the dynamics. While we framed this in

terms of time keeping, this should not be taken to imply that we

adhere to a representational account thereof (cf. [36]). In other

words, the non-autonomous case should not be simply equated

with a dynamical version of a two-level model (notwithstanding the

– to some extent superficial – similarity in terms of a distinction

between ‘clock’ and ‘motor’ components).

The implication of external timekeeper during discrete

movements begs the question what neural structure(s) could fulfill

this function? Spencer and colleagues [25] showed that patients

with cerebellar lesions have deficits in producing discontinuous but

not continuous movements, which supports the idea that the

cerebellum is implicated in timing in the non-autonomous but not

autonomous case (see also [38–40]). However, Schaal and

colleagues [9], using fMRI, reported contralateral activity in

several non-primary motor areas and the cerebellum during

discrete wrist movements that was absent during their rhythmic

counterparts. This result favors the suggestion that timing is a

property originating from a distributed neural network [41,42].

Indeed, the neural basis underlying timing remains yet to be

elucidated. Implementing the present paradigm in the context of

brain imaging may help establishing that aim.

Finally, it has been repeatedly suggested that motor control is

simplified through the use of ‘motor primitives’, the motor system’s

Figure 3. Reconstructed vector field and corresponding angles between neighbouring phase flow vectors corresponding to five
trials from one participant. Horizontal axes represent normalized position (x); vertical axes represent normalized velocity ( _xx) (only indicated in [A]
and [D]). (A) Reconstructed vector field for the discrete condition at 0.5 Hz (left; see text and Data Analysis). (B) Enlarged representation of the boxed
area in (B). (C) Corresponding angle diagram. While the existence of a fixed point (vectors with different directions pointing towards a point [i.e., the
arrowheads converge]) and a separatrix (that locally divides the space in distinct flows; vectors with different directions pointing away from a point
[i.e., the arrowheads diverge]) can be directly glanced from (B), they have to be inferred from (C). The existence of locally opposing angles, however,
necessarily implies the presence of a fixed point and a separatrix. (D–F) Equivalent representations as in (A–C) corresponding to five trials from one
participant in the ‘discrete’ condition at 3.5 Hz. Vectors inside and outside the limit cycle point slightly towards it while being close to parallel to it.
doi:10.1371/journal.pcbi.1000061.g003
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elements thought of as its ‘building blocks’. The modular

organization of the vertebrae spinal motor system and the

reproducibility of specifically coordinated muscle activity upon

stimulation of certain modules (neural circuits) instigated the idea

that motor behavior is organized along such hard-wired structures

[43–45]. On a more abstract level, the two timing architectures we

identified here qualify as candidate building blocks in human

motor control.

Materials and Methods

Computational Analysis
We numerically investigate the equation

_xx~ cxzy{x3
�

3{x5
�

5
� �

t

_yy~{ v2x{azby{I
� ��

t

in which a and b, and c, represent parameters, v represents the

system’s eigenfrequency, t represent a time constant, and I the

external stimulation. For all simulations we use t = 1, and if

applicable, a stimulus duration corresponding to 80 ms and

magnitude of 3.5.

For the mono-stable regime, the following parameter settings

are implemented: c = 1; v = 1; a = [1.01, 1.09] with steps of 0.02;

b = [20.1, 0.8] with steps of 0.1; and I = [0.25 Hz, 4.00 Hz] with

steps of 0.25 Hz. For the limit cycle regime, the implemented

parameters are: a = 0; b = [20.2, 0.3] with steps of 0.1; and

v = [0.25 Hz, 4.00 Hz] with steps of 0.25 Hz. For each frequency

v, c is chosen to as to ensure that the system oscillates with the

appropriate frequency. All simulations are performed using a

fourth-order Runge-Kutta method. Gaussian white noise j(t) is

added to the evolution equations of the y-variable, where Æj(t)æ = 0,

Æj(t)j(t)æ = Q2d(t2t), Q = 0.01. The triangular brackets Æ?æ denote

time averages.

Participants
Eight participants (mean age = 27.9 years) took part in the

experiment. Seven participants were (self-reported) right-handed,

one participant was left-handed. Participants reported an average

of 2.75 years of musical experience with a minimum of 0 years and

a maximum of 8 years. The protocol was approved by the Purdue

University Committee on the Usage of Human Research

Participants and was in agreement with the Declaration of

Helsinki. Informed consent was obtained from all participants.

Movement Recording
Data were collected using a Polhemus Liberty-8 receiver

(23613611 mm, 4 gm) that was affixed to the participant’s index

Figure 4. Reconstructed angle diagrams averaged across all participants as a function of movement pace and instruction condition.
Horizontal axes represent normalized position (x); vertical axes represent normalized velocity ( _xx) (only indicated in lower left panel). (A) For the
natural condition. (B) For the discrete condition. (C) For the smooth condition. For (A–C) the mean and standard deviation are depicted in the upper
and lower row, respectively. The magnitude of the angles is represented through colour coding (right side of each panel).
doi:10.1371/journal.pcbi.1000061.g004
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finger with adhesive tape. This receiver was controlled by Matlab

using an AuSIM-AuTrakMatlab USB driver and collection

interface via library C++ calls. Three dimensional position data

were collected at 240 Hz. The motion in the medio-lateral

direction was used for further analysis.

Task and Procedure
The flexion-extension movements were performed in the

transverse plane involving no physical contact with any object.

During the performance, the participants were seated at a 77-cm

high table, and each participant rested the medial portion of his or

her hand on a padded wooden block and Velcro held their hand in

place. Ten trials were performed under three instruction

conditions. Under each instruction condition, the participant

was instructed to time the full finger flexion with the occurrence of

the metronome tone. The instruction for the ‘natural’ condition

was to do so in a manner that felt most natural. The instruction for

the ‘smooth’ condition was to execute the movements as smooth

(sinusoidal) as possible so as to be moving always ‘at an even pace’.

For the ‘discrete’ condition the instruction was to execute each

complete flexion and extension movement as quickly as possible.

In each condition five trials were performed with increasing

metronome pace (from 0.5 Hz to 3.5 Hz; step size 0.5 Hz) and

five trials with decreasing pace. Every frequency plateau lasted for

15 tones. Participants were instructed to quickly and smoothly

adjust to changes in pace. A 30 second rest interval was provided

between trials. Feedback was given after a trial if the participant’s

average cycle duration for any of the seven metronome paces had

deviated more than 15 percent of the goal interval duration. The

order of increasing or decreasing set of trials was performed in a

blocked design. All participants performed the first condition

(‘natural’) on day one. The order of the other two conditions was

balanced for all participants. Each session lasted approximately

one and a half hour.

Data Analysis
Human movement is inherently stochastic; its dynamics

constitutes a deterministic and a stochastic (i.e., random)

component [19,34,35]. The future state of a stochastic process is

conditional upon the probability for its state to be at a given time

instant at a specific point in phase space, which can be described

by probability distributions [34,46]. The computation of proba-

bility distributions allows one to disentangle the deterministic and

stochastic dynamical components underlying stochastic processes

[16–19]. Here, we extract these components to focus on the

deterministic dynamics. Thereto, for each trial, we computed the

movement velocity and normalized all position (x) and velocity (y)

time-series to the interval [21, 1]. Next, using a grid size of 31, we

computed for all trials the conditional probability matrix,

P(x,y,t|x0,y0,t0), that is, the probability to find the systems at state

(x,y) at a time t given its state (x0,y0) an earlier time step t0.

Subsequently, we computed the Kramers-Moyal coefficients [16–

20] representing the drift coefficient according to

Dx x,yð Þ~ lim
t?0

1

t

ðð
x0{xð ÞP x0,y0,tzt x,y,tjð Þdx0dy0

Dy x,yð Þ~ lim
t?0

1

t

ðð
y0{yð ÞP x0,y0,tzt x,y,tjð Þdx0dy0

The coefficients Dx and Dy were averaged across the five trial

repetitions for each participant, instruction condition and

movement frequency. From the first two coefficients (that

represent the x-, and y-component of the corresponding velocity

vector), we computed for each bin the angle h between its

corresponding velocity vector and that of each of its neighbors

(provided their existence) according to

hxy~cos
u:v

uk k vk k

� �

in which u and v represent two neighboring vectors defined by

Dx(x,y) and Dy(x,y) at position x and y in phase space. Next, we

extracted the maximal value of h in phase space. The existence of

locally opposing vectors (i.e., with an angle of approximately 180u)
indicate the existence of a fixed point. We then computed for each

instruction condition6movement frequency condition the mean

and standard deviation of the maximal angle across participants

and frequency order.

Supporting Information

Figure S1 Probability density distributions. The position and

velocity axes are indicated in the lower right panel, and the

extracted 3-bin summed probability values are provided for each

distribution. (A) Probability density distributions of model

simulations in the mono-stable regime (upper panel) and limit

cycle regime (lower panel) at 0.5 Hz, 2.0 Hz, and 3.5 Hz (left,

middle, and right column, respectively). The cycle period always

corresponds to the required frequency except for the mono-stable

regime at 3.5 Hz, due to a period doubling. (B) Probability density

distributions of the data of one participant in the discrete, natural,

and smooth condition (upper, middle, and lower row, respectively)

at 0.5 Hz, 2.0 Hz, and 3.5 Hz (left, middle, and right column,

respectively).

Found at: doi:10.1371/journal.pcbi.1000061.s001 (5.28 MB TIF)

Figure S2 Symmetry ratios in the mono-stable regime. The

symmetry ratio of the simulated data in the mono-stable regime is

presented as a function of parameter b and frequency.

Found at: doi:10.1371/journal.pcbi.1000061.s002 (0.76 MB TIF)

Figure S3 Spectral power in the mono-sable regime. The

amount of spectral power in the mono-stable regime as a function

of parameter b and frequency at the sub-harmonic (P[v/2]) (left

panel), the fundamental frequency (P[v]) (middle panel), and the

first super-harmonic (P[2v]) (right panel).

Found at: doi:10.1371/journal.pcbi.1000061.s003 (0.59 MB TIF)

Figure S4 Symmetry ratios of the human data. The average

symmetry ratio for the participants (n = 8) adopting a ‘discrete’

motor solution (D; n = 4) and a ‘smooth’ motor solution (S; n =

4) in the natural condition as a function of frequency for the

natural, discrete, and smooth condition (left, middle, and right

panel, respectively). The vertical bars indicate standard deviations.

Found at: doi:10.1371/journal.pcbi.1000061.s004 (0.91 MB TIF)

Figure S5 Spectral power in the human data. The amount of

spectral power in the human data as a function of instruction

condition and frequency at the sub-harmonic (P[v/2]) (left panel),

the fundamental frequency (P[v]) (middle panel), and the first

super-harmonic (P[2v]) (right panel). For the natural conditions,

the data for the participants who adopted the ‘discrete’ and

‘smooth’ condition (Nd and Ns, respectively) are depicted

separately, whereas for the discrete and smooth condition thee

data are collapsed across both groups.

Found at: doi:10.1371/journal.pcbi.1000061.s005 (0.88 MB TIF)

Figure S6 Goal frequency versus observed frequency. Note that

in conditions where participants were slowing down, the observed
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frequency values are plotted in the reverse order of which they

were performed.

Found at: doi:10.1371/journal.pcbi.1000061.s006 (0.24 MB TIF)

Figure S7 Goal frequency versus coefficient of variation. Note

that in conditions where participants were slowing down, the CVs

are plotted in the reverse order of which they were performed.

Found at: doi:10.1371/journal.pcbi.1000061.s007 (0.27 MB TIF)

Figure S8 Goal frequency versus normalized mean squared jerk.

Note that in conditions where participants were slowing down, the

values of jerk are plotted in the reverse order of which they were

performed.

Found at: doi:10.1371/journal.pcbi.1000061.s008 (0.27 MB TIF)

Figure S9 Goal frequency versus percentage of time to peak

negative velocity. Note that in conditions where participants were

slowing down, the values of percent time to peak negative velocity

are plotted in the reverse order of which they were performed.

Found at: doi:10.1371/journal.pcbi.1000061.s009 (0.29 MB TIF)

Text S1 Supporting information.

Found at: doi:10.1371/journal.pcbi.1000061.s010 (0.07 MB

DOC)
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